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Abstract 

We argue that the Planck scale for length and time is the only countable scale for 
measurements of lengths and times in the universe. Accordingly, any 
measurement of length which seeks a precision below the Planck length is 
unmeasurable and meaningless; so, every length in the universe has a countable 
number of Planck lengths. We see that there is a distinction between the physical 
quantities of length and time in the universe, and number, which is distinct from 
the physical universe.  

1. Background 
 
There is a very interesting and short (5:32) YouTube video, called “Why Irrational 
Numbers Don’t Make Sense”1 by Shirley Zhu from Learning0to1.  For background 
purposes and later discussion, we mention some observations made in the video: 
 

• Measurements are made using some standard unit of measure (i.e., for 1 
assigned unit). 

• Some measurements can be made using ratios of a countable number of 
these units, and these are rational measurements. 

• Some measurements cannot be made using ratios of a countable number 
of these units, and these are irrational. 

 
The video concludes with the following text, starting at 4:02. The subsequent 
screen shot is taken at 5:10. 
 

Being measurable is related to being a rational number. So, if it’s 
irrational, then it means it can’t be measured. So, if it’s irrational, then 
it means it’s unmeasurable - because how can it be measurable if you 
can’t even quote how many units it occupies. It has nothing to do with 
how you do the measurement. Hence eventually, irrational numbers 
mean something unmeasurable. But measurement is our critical tool to 
know the world. So, if the length is unmeasurable, that means it’s 
unknowable. 



A length of square root of 2 can be approximated with greater and 
greater accuracy. But you never know exactly what it is. Each decimal 
place is unpredictable, until you actually compute it. But, how come we 
see the length exists in front of us, yet there is no way of knowing.  
It reminds me of the uncertainty principle in quantum mechanics - 
which says that the essential property of an electron, it’s position and 
momentum (or simply velocity) can’t be known precisely. It’s pretty 
interesting that both math reasoning and physics seem to suggest that 
the world can’t be known precisely. 

 
 
2. Introduction 
 
Zhu’s YouTube video, discussed in the previous section, captures some very 
important observations about length measurement and what is knowable. In this 
paper, we will expand upon those observations.  
 
In the following sections we show that, 1) measurements and the quantities used 
for length are only relatable to each other by a unit scale. 2) anything quantifiable 
is finite, 3) the Planck-length scale and the Planck-time scale have the ultimate 
precisions and the only countable (whole number) measurement scales for these 
quantities, 4) there is a distinction between all real-world physical quantities of 
length and time, and numbers, which need not be correlated with anything 
physical in the universe.  
 



Some of our arguments are similar to those found in the literature and YouTube, 
which is a popular source for the layperson. We include YouTube sources that we 
believe are trustworthy and which explain concepts clearly and correctly. These 
YouTube sources may also be more accessible and engaging to a broader 
audience. 
 
The arguments presented in this paper could be associated with a limited view of 
finitism. A passage about finitism from Calmet and Hsu2 state that “[s]ome 
mathematicians, called finitists, accept only finite mathematical objects and 
procedures.”  
 
However, Incurvati3 discusses that there are different conceptualizations of 
finitism, which might not agree or be consistent with each another. In any case, 
we seek to avoid any controversy with the usage of finitism; we will not attempt 
to take a specific position on its usage. Instead, we will let our arguments stand 
(or fall) on their own.  
 
We begin our discussion in the next section by considering quantities of lengths. 
 
3. Measurements and Finite Length Unit Scales  
 
Zhu’s YouTube video shows an isosceles right triangle where sides can be 
expressed as ratios. These ratios can only provide for the length of one of the 
sides when one length is known. In order to have a quantity for a length, we must 
have a measurement unit. In other words, measurements of length can only be 
made with the adoption of a unit scale, such as meter, inch, etc., which is a key 
point in this paper. 
 
Key Point 1: Measurements and the quantities used for length are only relatable 
to each other by a unit scale.  
 
The units used for a measurement determine what can be measured rationally. A 
rational number can be expressed as the ratio (fraction) of two whole numbers. 
An irrational number is a real number that is not expressible as a ratio. Examples 
of irrational numbers are √2 and 𝜋. If a length could be determined to be 
irrational, then its length would not be commensurate with the unit scale used. 



Courant and Robbins4 make an important point about irrational numbers used for 
lengths: 

 
From a physical point of view, the definition of an irrational number 
by a sequence of nested intervals corresponds to the determination 
of the value of some observable quantity by a sequence of 
measurements of greater and greater accuracy. Any given operation 
for determining, say, a length, will have a practical meaning only 
within the limits of a certain possible error which measures the 
precision of the operation. Since the rational numbers are dense on 
the line, it is impossible to determine by any physical operation, 
however precise, whether a given length is rational or irrational. 
Thus it might seem that the irrational numbers are unnecessary for 
the adequate description of physical phenomena. 

 
The text goes on to point out the advantage of irrational numbers for the 
limit concept and the number continuum. However, the passage recognizes 
a limited precision for a measurement, even when a greater precision is 
possible. This limited measurement precision is a result of a human 
endeavor/activity. This is different than the ultimate precision possible for a 
length, which will be discussed later. The passage also indicates a 
distinction between number, such as an irrational number, and a physical 
quantity for length. This distinction will also be discussed later.  
 
Our main purpose here is to recognize that, although an irrational number 
may have an infinite decimal expansion of digits that never repeat, a 
quantifiable length is always finite.  This is true in general. 
 
Key Point 2: Anything quantifiable is finite. 
 
Although a unit scale is required to quantify a length, the scale can almost be 
arbitrarily designated. For example, drawing a line on a piece of paper and 
designating 0 and 1 at the end points will assign an implied unit length against 
which things can be measured; it is a “ruler” with its own assigned unit measure. 
This arbitrary nature of a unit scale is key in determining whether one specified 
length is identified with a rational or irrational measure. 
 



Consider a right triangle, similar to the one shown by Zhu, with 1 meter (m) sides 
and hypotenuse √2 m. Here the sides are rational, and the hypotenuse is 
irrational. Suppose a different measurement scale is adopted where the length of 
the hypotenuse (√2 m) is assigned a unit called “sqrt2”. So, the hypotenuse has a 
length of 1 sqrt2. In this measurement scale, it is the side lengths of the right 
triangle that are now irrational; they do not have a rational unit of measure 
relative to 1 sqrt2. In fact, in the scale of sqrt2, all rational lengths in meters, 
besides 0 m, are irrational (and some irrational numbers are now rational). So, it 
might seem that a specific length may always be considered to be either rational 
or irrational depending on the unit scale used.  
 
However, math and science have consilience when it comes to quantities of 
length.  
 
4. What we can know about a physical length: The Planck length precision  
 
We now consider what we can possibly know about a length in terms of its 
ultimate precision in the universe, which we will identify as the Planck length. This 
section will quote heavily from interesting YouTube sources since they provide for 
excellent descriptions and explanations. It is hoped that readers will watch these 
videos. 
 
For background purposes, we mention that the Planck length has, somewhat 
controversially, been referred to as the smallest length. An interesting YouTube 
video by Don Lincoln5 discusses how Alden Mead’s work (after Max Planck’s 
death) resulted in other people saying that the Planck length was the smallest. 
Don summarizes this as follows: 
  

The bottom line is that the Planck length is not necessarily the 
shortest length, but it is a length at which existing physics has to fail 
and needs to be replaced with something better. So, it’s an 
important size, but it may not be the smallest size. 

 
Matt O’Dowd6 also discusses the smallest length, the limits of physics, and the 
Planck length: 
  



 So, is there a smallest length? Well, there’s a smallest meaningful 
length, at least for any intuitive conception of space. Quantum 
uncertainty thwarts our attempts to understand the universe by 
simply splitting it into smaller parts… 

 
At another point in the video, O’Dowd states: 
 

There’s no limit to the number of times you can half a number, but 
the same might not be true of space. The Planck length is thought to 
represent the minimum length for which the concept of length is 
even meaningful. Here, the illusion that space is smooth and 
continuous breaks down. 

 
Whether or not the Planck length is the smallest length, physics says it is the 
ultimate measure before things become unmeasurable. This is the key for 
measurability – and is a main argument of this paper. 
 
O’Dowd uses an example where a light wave is envisioned to measure a distance 
with increasing accurately by using a beam with higher frequencies, and shorter 
wavelengths. However, the uncertainty principle becomes a limiting factor, and 
“… the Planck constant represents the limit to which we can measure the 
universe.” 
 
O’Dowd reviews the physics for how this happens, including the warping of space 
itself: 
 

So, this is one way of thinking about it – the Planck length 
represents the best possible resolution that any distance can be 
measured. It also represents the minimum size that you 
meaningfully ascribe to anything. 

 
In any attempt to measure a length below the Planck length, the uncertainty 
becomes 100%. The universe is described as seemingly anthropomorphic to 
thwart measurements below the Planck length: 
 

So, the universe seems to be conspiring to stop us measuring 
distances or sizes smaller than the Planck length. 



 
We agree with O’Dowd statement that the Planck length “represents the 
fundamental limit of measurability of space”. So, we take the Planck-length scale 
to have the ultimate precision possible in the universe. If a different unit scale, say 
one using the meter, is used in an attempt to specify a number (irrational or 
rational) for a measurement, then this measurement eventually becomes 
meaningless below the Planck length scale.  
 
Key Point 3: Lengths can only have a precision down to the Planck length. The 
Planck length has the ultimate precision possible for length. 
 
A unit length is inextricably linked with what can be measured. And every possible 
measurement length is measurable by a whole number of Plank lengths. This 
shows that: 
 
Key Point 4: The Planck-length scale provides for the only rational number line. 
Ultimately, all lengths have countable measure in the Planck-length scale. 
 
5. What we can know about physical time: The Planck time precision 
 
So far, this paper has discussed the physical quantity for length measurement and 
the Planck length. However, everything discussed for length also applies to time 
and the Planck time. That is, the physical quantity of time in the universe has its 
ultimate precision with the Planck time. Both the Planck length and Planck time 
are shown by Don Lincoln and Arvin Ash7 in SI units: 

 

Planck Length 𝑙! = #ℏ#
$!

 Planck Time 𝑡! = #ℏ#
$"

 

 
Arvin Ash elaborates further on the Planck time:8 
 

Planck time is the time it takes for light to travel one Planck length. It 
is the smallest measurement of time that has any meaning in 
quantum mechanics. Planck time is the closest time to the beginning 
of the universe, occurring right after the Big Bang, that we could 
theoretically model. 

 



Both time and length, which are key concepts of physics, have a corresponding 
Planck scale. In the next section we ask about the infinite, using length as an 
example. 
 
6. Infinite? 
 
Up to this point, we have discussed how anything quantifiable is finite. But what 
about the infinite, such as a hypothesized infinite length in the universe?  
 
The observable universe is finite. If such a thing as an infinite length did exist in 
the entire (observable and unobservable) universe, then it could not be quantified 
by any unit scale. Consider that there is an infinite line in the universe. Since no 
practical ruler can provide for a countable measure of this infinite line, then we 
might try to assign the infinite line itself with a unit length (say 1 “inf”) itself. Now 
suppose that there is a parallel line which also has the same 1 inf measure. 
Consider that you pinch this line and twist it to have a small loop.  
 
 
 
 
 
This line still has the same 1 inf measure, but it can be matched up to the first 
line, with a loop left over. The parallel line has 1 inf measure and a measure that 
is also larger than 1 inf. So, we have a contradiction showing that there is no 
infinite quantity which is countably measurable. 
 
This demonstration is different from the Hilbert’s Hotel, which is well-known. The 
hotel is envisioned to have an infinite number of rooms, each with a guest. The 
hotel can accommodate any number of guests, even infinitely many, by moving 
guests to other rooms such that new guests can be accommodated. Hilbert’s 
hotel does not specify a completed infinity, as 1 inf attempts to do. The idea of a 
complete infinite magnitude has been discussed before. In an oft-quoted 
statement by Gauss:9 
 

I protest against the use of infinite magnitude as something 
completed, which is never permissible in mathematics. Infinity is 
merely a way of speaking, the true meaning being a limit which 



certain ratios approach indefinitely close, while others are permitted 
to increase without restriction.  

 
We agree that a complete infinite magnitude does not exist; it is non-quantifiable. 
For example, there is no meaning in a sequence of an infinite string of 9s to 
represent an infinite magnitude or an infinite strings of 1s.  
 
7. Quantities of length and time vs numbers 
 
In this paper, we adopt the position that there is a distinction between numbers 
and the physical quantities of length and time. We have shown that all such 
quantities are countable with the Planck scale, whereas real numbers themselves 
include irrational numbers that are not ascribed to anything physical. 
 
Courant and Robbins10 reference a definition of number as “…the continuum of 
numbers, or real number system … is the totality of infinite decimals.” A real 
number may be rational or irrational, but it need not be associated with anything 
quantifiable in order to have mathematical existence. 
 
Our position about this distinction between number and quantity is similar to 
those expressed by others, including Calmet and Hsu:2 
 

Our intuitions about the existence and nature of a continuum 
arise from perceptions of space and time […]. But the existence 
of a fundamental Planck length suggests that space-time may 
not be a continuum. In that case, our intuitions originate from 
something (an idealization) that is not actually realized in 
Nature.  

 
An example of this distinction is Zeno’s well-known paradox, for which discrete 
Planck-lengths have already been proposed as a solution.11 of the tortoise and the 
hare. The tortoise and hare can only traverse a length (i.e., a countable number of 
Planck lengths) per unit time (i.e., a countable number of Planck times). 
Eventually, the faster moving tortoise will overtake the hare since only discrete 
measures from the Planck scale are involved. So, it is not necessary to discuss a 
continuum of infinitely divisible lengths in order to resolve the paradox. In other 



words, physical quantities in the universe resolve the paradox without requiring 
the notion of a continuum of numbers.  
 
Another example of the distinction between physical quantities and numbers 
emerges from calculus. In calculus, a continuous real number line is used in order 
to perform integration, etc. In the physical universe, the discrete Planck length 
unit is so small that it is practically infinitesimal (although it is really finite). We 
can imagine that this is the infinitesimal that is actually being used in calculus; any 
measurement below the Planck length is unknowable anyway. A sequence of 
these discrete infinitesimals “appears” to be continuous for any human-scale 
measurement.  
 
8. Conclusion 
 
The abstract concept of numbers is distinct from physical quantities for length and 
time in the universe. In this paper, we show that measurement requires the use 
of finite unit scales. The ultimate measurement scales for length and time in our 
universe are their corresponding Planck scales. Any other measurement scale 
which attempts to define a precision below its Planck length or Planck time 
becomes meaningless. These Planck scales are the only countable scales for 
length and time quantities. Ultimately, these quantities can only be known to a 
certain precision in the universe – the Planck scale - and it makes no sense to 
pretend otherwise. 
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