
Efficient Integration of Perceptual VAE

Into Dynamic Latent Scale GAN

Jeongik Cho

jeongik.jo.01@gmail.com

Abstract

Dynamic latent scale GAN is a learning-based GAN

inversion method. In this paper, we propose a method

to improve the performance of dynamic latent scale

GAN by integrating perceptual VAE loss into dynamic

latent scale GAN efficiently. When training dynamic

latent scale with normal i.i.d. latent random variable,

and latent encoder is integrated into discriminator, a

sum of predicted latent random variable of real data

and scaled normal random variable follows normal

i.i.d. random variable. We can consider this random

variable as VAE latent random variable and use it for

VAE training since there are real data corresponding

to latent codes. Considering the intermediate layer

output of the discriminator as a feature encoder, we

can train the generator with VAE latent random

variable to minimize the perceptual distance between

generated data and corresponding real data.

Furthermore, we can use VAE latent random variable

for adversarial training since it has the same

distribution as GAN latent random variable. Both

generated data and corresponding real data are used

during adversarial training with VAE latent random

variable, inference & backpropagation for VAE

training can be integrated into those of adversarial

training. Therefore, training the generator to minimize

the perceptual VAE loss does not require additional

computation. Perceptual VAE loss is only added to the

generator because the encoder is naturally trained with

encoder loss of dynamic latent scale GAN.

1. Introduction

Training encoder that inverts the generator is called

GAN inversion [1]. Dynamic latent scale GAN [2]

(DLSGAN) proposed a method of training an encoder

that inverts the generator of GAN [3] through

maximum likelihood estimation. When the entropy of

the latent random variable is too high, it is difficult for

the encoder to recover latent code from generated data

point because the generator maps different latent

codes to the same or similar generated data point.

DLSGAN makes it easy for the encoder to invert the

generator by appropriately adjusting the entropy of the

latent random variable.

 There were several works to improve the

performance of GAN by utilizing GAN inversion and

data reconstruction loss [5, 6, 7].

2. Perceptual VAE DLSGAN

The following equations show the loss function for

training DLSGAN’s encoder.

𝑠 =
√𝑑𝑧𝑣𝑓

∘1/2

‖𝑣
𝑓
∘1/2

‖
2

 (1)

𝐿𝑒𝑛𝑐 = 𝔼𝑧~𝑍 ‖(𝑧 − 𝐸𝑙(𝐺(𝑧 ∘ 𝑠))) ∘ 𝑠‖
2

2

 (2)

 In Eq. 1 and 2, 𝑑𝑧 represents a dimension of latent

random variable 𝑍 . 𝐸𝑙 and 𝐺 represent the latent

encoder and generator, respectively. 𝑣𝑓 and 𝑠

represent fake latent variance vector and latent scale

vector, respectively. DLSGAN uses the moving

average of the predicted fake latent vector 𝐸𝑙(𝐺(𝑧 ∘

𝑠)) to approximate the fake latent variance vector 𝑣𝑓.

Operation “ ∘ is the element-wise multiplication.

𝑣𝑒𝑐∘1/2 represents the element-wise square root of

vector 𝑣𝑒𝑐. Latent encoder 𝐸𝑙 and generator 𝐺 are

trained to minimize encoder loss 𝐿𝑒𝑛𝑐 in DLSGAN.

 In this paper, we propose Perceptual VAE DLS GAN

(PVDGAN), a method to efficiently integrate

perceptual VAE [4] loss into dynamic latent scale

GAN to improve the performance of dynamic latent

scale GAN.

 When training DLSGAN, latent encoder 𝐸𝑙 of

DLSGAN is trained to predict latent random variable

𝑍 from generated data 𝐺(𝑍 ∘ 𝑠) . It is clear that

𝐸𝑙(𝑋) = 𝑍 if generator 𝐺 perfectly generates real

data random variable 𝑋 , and the latent encoder 𝐸𝑙

perfectly inverts generator 𝐺.

 During DLSGAN training (i.e., models are not

perfect), if latent encoder 𝐸𝑙 and discriminator 𝐷 is

mailto:jeongik.jo.01@gmail.com

integrated, it will be difficult to distinguish between

real data random variable 𝑋 and generated data

random variable 𝐺(𝑍 ∘ 𝑠) for latent encoder 𝐸𝑙 ,

since generator 𝐺 is trained to deceive discriminator

𝐷 that shares the hidden layers with latent encoder 𝐸𝑙 .

 Based on this intuition, when latent encoder 𝐸𝑙 and

discriminator 𝐷 is integrated, we assumed that latent

encoder 𝐸𝑙 tries to map real data random variable 𝑋

to latent random variable 𝑍 during DLSGAN

training, even without explicit loss. Under this

assumption, we can generate VAE latent random

variable 𝑍𝑋 that follows GAN latent random variable

𝑍 by adding noise to predicted real latent code 𝐸𝑙(𝑋).

 When latent random variable 𝑍~𝑁(0, 𝐼𝑑𝑧
) , each

element of predicted real data latent random variable

𝐸𝑙(𝑋) will follow 𝑁(0, 𝜎2) , where 0 ≤ 𝜎 ≤ 1 .

Given real latent variance vector 𝑣𝑟 , which is the

element-wise variance of 𝐸𝑙(𝑋), one can simply add

scaled normal distribution to 𝐸𝑙(𝑋) to get the same

distribution as GAN latent random variable 𝑍.

𝑍𝑋 = 𝐸𝑙(𝑋) + 𝑁(0, 𝐼𝑑𝑧
) ∘ (1 − 𝑣𝑟)∘1/2 (3)

 Eq. 3 shows VAE latent random variable 𝑍𝑋 . One

can easily see that 𝑍𝑋~𝑍~𝑁(0, 𝐼𝑑𝑧
). Unlike VAE, our

method does not require variance output for the

encoder since there is real latent variance vector 𝑣𝑟 .

Real latent variance vector 𝑣𝑟 is approximated

through the element-wise variance of predicted real

latent codes 𝐸𝑙(𝑥) from previous training steps like

DLSGAN.

 We can use VAE latent random variable 𝑍𝑋 for VAE

training since there is a corresponding real data

random variable 𝑋. The following equations show the

loss for VAE training.

𝑧𝑥 = 𝐸𝑙(𝑥) + 𝑁(0, 𝐼𝑑𝑧
) ∘ (1 − 𝑣𝑟)∘1/2 (4)

𝐿𝑟𝑒𝑐 = 𝔼𝑥~𝑋[𝐷𝑖𝑠𝑡(𝑥, 𝐺(𝑧𝑥 ∘ 𝑠))] (5)

 Eq. 4 is a sample version of Eq. 3. 𝑥 and 𝑧𝑥

represent the real data point and VAE data point of 𝑥,

respectively.

 Eq. 5 shows reconstruction loss to train VAE. In Eq.

5, 𝐿𝑟𝑒𝑐 represents reconstruction loss. 𝐷𝑖𝑠𝑡

represents a function that measures the distance

between two inputs. 𝐺(𝑧𝑥 ∘ 𝑠) represents

reconstructed data of real data point 𝑥. We can train

generator 𝐺 to minimize reconstruction loss 𝐿𝑟𝑒𝑐

since there are reconstructed data 𝐺(𝑧𝑥 ∘ 𝑠) and

corresponding real data 𝑥. Our method assumes that

latent encoder 𝐸𝑙 is trained with only encoder loss

𝐿𝑒𝑛𝑐 , so latent encoder 𝐸𝑙 is not trained with

reconstruction loss 𝐿𝑟𝑒𝑐 .

𝐷𝑖𝑠𝑡(𝑎, 𝑏) =
1

𝑑𝑓
‖𝐸𝑓(𝑎) − 𝐸𝑓(𝑏)‖

2

2
 (6)

 Eq. 6 shows the 𝐷𝑖𝑠𝑡 function for reconstruction

loss 𝐿𝑟𝑒𝑐 . In Eq. 6, 𝑑𝑓 and 𝐸𝑓 represents feature

vector dimension and feature encoder, respectively.

One can see that function 𝐷𝑖𝑠𝑡 measures the

perceptual distance between two data points with

feature encoder 𝐸𝑓.

 Finding a good 𝐷𝑖𝑠𝑡 function is not an easy

problem. For example, if we simply use the mean

squared error of pixel values for image VAE (i.e.,

𝐸𝑓(𝑥) = 𝑥), the generated images will be very blurry.

Pixel-level mean squared error is a good choice if we

want the minimize pixel-level distance between input

data and reconstructed data, but in most cases, we

want to minimize perceptual distance. One can simply

think of using a pre-trained model as feature encoder

𝐸𝑓. However, if we use a pre-trained model, we need

additional computations for inference &

backpropagation of the pre-trained model to minimize

𝐿𝑟𝑒𝑐 . Also, there might be no good pre-trained models

for some data domains. Furthermore, it is hard to

customize a pre-trained model (e.g., input resolution

is fixed).

 Instead of using a pre-trained model, we proposed to

use discriminator intermediate layer output as feature

encoder 𝐿𝑓 . We know that VAE latent random

variable 𝑍𝑋 is the same distribution as GAN latent

random variable 𝑍. Therefore, we can use VAE latent

random variable 𝑍𝑋 for adversarial training. During

adversarial training with VAE latent code 𝑧𝑥 , there

are inference & backpropagation on generator 𝐺 and

discriminator 𝐷 with real data 𝑥 and reconstructed

data 𝐺(𝑧𝑥 ∘ 𝑠) . Therefore, since inference &

backpropagation for minimizing reconstruction loss

𝐿𝑟𝑒𝑐 can be integrated into the inference &

backpropagation of the adversarial training step,

additional computation for minimizing reconstruction

loss 𝐿𝑟𝑒𝑐 is not required.

 If VAE latent random variable 𝑍𝑋 is different from

GAN latent random variable 𝑍 , adversarial training

with VAE latent random variable 𝑍𝑋 is not only

meaningless but rather makes GAN training more

difficult because generator 𝐺 and discriminator 𝐷

should generate and discriminate with not only for

latent distribution 𝑍 but also for unknown

distribution 𝑍𝑋.

 In short, when training DLSGAN with GAN latent

random variable 𝑍~𝑁(0, 𝐼𝑑𝑧
), and latent encoder 𝐸𝑙

is integrated into discriminator 𝐷 , since VAE latent

random variable 𝑍𝑋 = 𝐸𝑙(𝑋) + 𝑁(0, 𝐼𝑑𝑧
) ∘ (1 −

𝑣𝑟)∘1/2 follows GAN latent random variable 𝑍, VAE

latent random variable 𝑍𝑋 can be used for adversarial

training. During the adversarial training with VAE

latent random variable 𝑍𝑋, since there are inference &

backpropagation with real data 𝑥 and reconstructed

data 𝐺(𝑧𝑥), no additional computation is required for

the generator 𝐺 to minimize reconstruction loss 𝐿𝑟𝑒𝑐 .

 The following algorithm shows the algorithm to

obtain loss for PVDGAN.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑔𝑒𝑡_𝑙𝑜𝑠𝑠(𝐷∗, 𝐺, 𝑍, 𝑋, 𝑏, 𝑣𝑟, 𝑣𝑓):

1: 𝑥 ← 𝑠𝑎𝑚𝑝𝑙𝑒(𝑋, 𝑏)

2: 𝑠 ←
√𝑑𝑧𝑣𝑓

∘1/2

‖𝑣𝑓
∘1/2

‖
2

3: 𝑎𝑟, 𝑧𝑟 , 𝑦𝑟 ← 𝐷∗(𝑥)

4: 𝑧 ←

𝑐𝑜𝑛𝑐𝑎𝑡 (
𝑠𝑎𝑚𝑝𝑙𝑒(𝑍, 𝑏/2),

𝑛𝑜𝑔𝑟𝑎𝑑(𝑧𝑟[𝑏/2:]) + 𝑠𝑎𝑚𝑝𝑙𝑒(𝑍, 𝑏/2) ∘ (1 − 𝑣𝑟)∘1/2)

5: 𝑎𝑓 , 𝑧′, 𝑦𝑟
′ ← 𝐷∗(𝐺(𝑧 ∘ 𝑠))

6: 𝐿𝑒𝑛𝑐 ←
1

𝑏×𝑑𝑧
‖(𝑧 − 𝑧′) ∘ 𝑠‖2

2

7: 𝐿𝑟𝑒𝑐 ←
1

𝑏/2×𝑑𝑦
‖𝑦𝑟[𝑏/2:] − 𝑦𝑟

′[𝑏/2:]‖2
2

8: 𝐿𝑑 ← 𝑎𝑑𝑣(𝑎𝑟 , 𝑎𝑓) + 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐

9: 𝐿𝑓 ← 𝑎𝑑𝑣(𝑎𝑓) + 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐 + 𝜆𝑟𝑒𝑐𝐿𝑟𝑒𝑐

10: 𝑣𝑟 ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑣𝑟, 𝑧𝑟
∘2)

11: 𝑣𝑓 ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑣𝑓 , 𝑧′∘2
)

12: 𝑟𝑒𝑡𝑢𝑟𝑛 𝐿𝑑, 𝐿𝑓 , 𝑣𝑟, 𝑣𝑓

Algorithm 1. Algorithm to obtain loss for PVDGAN

 In Algo. 1, 𝐷∗ , 𝐺 , 𝑍 , and 𝑋 represent the

integrated discriminator, generator, latent random

variable, and data random variable, respectively. 𝑍

follows 𝑑𝑧-dimensional i.i.d. normal distribution. In

Algo. 1, it was assumed that the latent random variable

𝑍 follows 𝑁(0, 𝐼𝑑𝑧
) for convenience. 𝐷∗ is the

integrated discriminator in which discriminator 𝐷 ,

latent encoder 𝐸𝑙 , and feature encoder 𝐸𝑓 are

integrated. Therefore, integrated discriminator 𝐷∗

has 3 outputs. 𝑏 represents batch size. 𝑣𝑟 and 𝑣𝑓

represent traced real latent variance vector and traced

fake latent variance vector, respectively. 𝑣𝑓

corresponds to the traced latent variance vector of

DLSGAN.

 In line 1, 𝑠𝑎𝑚𝑝𝑙𝑒(𝐴, 𝑛) is a function that returns 𝑛

samples from random variable 𝐴 . 𝑥 represents

sampled real data points.

 In line 2, 𝑠 is the 𝑑𝑧 -dimensional latent scale

vector of DLSGAN.

 In line 3, one can see that integrated discriminator

𝐷∗ outputs 3 values. First, 𝑎𝑟 is 𝑏 × 1 shape real

data adversarial value. Second, 𝑧𝑟 is 𝑏 × 𝑑𝑧 shape

real latent code. Third, 𝑦𝑟 is 𝑏 × 𝑑𝑓 shape real

feature vector. Unlike the other two outputs, the

feature vector 𝑦𝑟 is the intermediate layer output of

the integrated discriminator 𝐷∗.

 In line 4, 𝑛𝑜𝑔𝑟𝑎𝑑(𝑘) is a function that prevents the

gradient flow to input 𝑘 . The output of 𝑛𝑜𝑔𝑟𝑎𝑑 is

the same as the input. 𝑧𝑟[𝑏/2:] represents last 𝑏/2

samples of 𝑧𝑟 . Therefore, 𝑧𝑟[𝑏/2:] is
𝑏

2
× 𝑑𝑧

matrix. One can see that 𝑛𝑜𝑔𝑟𝑎𝑑(𝑧𝑟[𝑏/2:]) +

𝑠𝑎𝑚𝑝𝑙𝑒(𝑍, 𝑏/2) ∘ (1 − 𝑣𝑟)∘1/2 follows latent

random variable 𝑍. In an ideal case, all elements of

𝑣𝑟 are less than or equal to 1, but for stability, we

recommend to use max(1 − 𝑣𝑟 , 0)∘1/2 instead of

(1 − 𝑣𝑟)∘1/2 for stability. 𝑐𝑜𝑛𝑐𝑎𝑡 represents

concatenate function. Therefore, 𝑧 is 𝑏 × 𝑑𝑧 shape

matrix, the first 𝑏/2 elements of which are latent

codes sampled from latent random variable 𝑍, and the

last 𝑏/2 elements of which are generated from

𝑧𝑟[𝑏/2:].

 In line 5, 𝑎𝑓 is 𝑏 × 1 shape fake data adversarial

value. 𝑧′ and 𝑦𝑟
′ represent predicted latent codes

and predicted feature vectors.

 In lines 6 and 7, 𝐿𝑒𝑛𝑐 and 𝐿𝑟𝑒𝑐 represent encoder

loss of DLSGAN and perceptual reconstruction loss,

respectively. One can see that 𝑦𝑟[𝑏/2:] and 𝑦𝑟
′[𝑏/

2:], which were generated from 𝑥[𝑏/2:] were used

for reconstruction loss 𝐿𝑟𝑒𝑐 .

 In lines 8 and 9, 𝐿𝑑 and 𝐿𝑓 represent discriminator

loss and generator loss, respectively. 𝜆𝑒𝑛𝑐 and 𝜆𝑟𝑒𝑐

represent encoder loss weight and perceptual

reconstruction loss weight, respectively. 𝑎𝑑𝑣

represents adversarial loss function [8, 10]. One can

see that there is no reconstruction loss 𝐿𝑟𝑒𝑐 for

integrated discriminator 𝐷∗.

 In lines 10 and 11, traced real latent variance 𝑣𝑟 and

traced fake latent variance 𝑣𝑓 are updated as

DLSGAN, respectively.

 One can see that the above algorithm requires 𝑏

generator inference & backpropagation and 2𝑏

discriminator inference & backpropagation. It is the

same as the training step of a general GAN. Therefore,

PVDGAN does not require additional computation

compared to basic GAN or DLSGAN.

3. Experiments

We compared the performance of PVDGAN and

DLSGAN.

 We used the FFHQ dataset [9] resized to 256 × 256

resolution. Among 70k images, the first 60k images

were used as a training set, and the left 10k images

were used as test images. Pixel values were

normalized from -1 to 1, and a 50% random left-right

flip was used for data augmentation.

 NSGAN with R1 regularization [10] was used as an

adversarial loss. We used a simple model architecture

consisting of only convolution layers and skip

connections. We used upsample/downsample of

SWAGAN [11] with equalized learning rate [12]. We

did not use a direct skip connection to the input in the

discriminator. It may make GAN inversion hard but

increases generative performance. Both methods used

the same architecture. The second last convolutional

block output of the discriminator was used as the

feature encoder.

 We used FID [13], Precision & Recall [14] metrics

with a pre-trained inception model for generative

performance evaluation. 10k test images and 10k

generated images were used for generative

performance evaluation. Pre-trained inception model

and size of the neighborhood 𝑘 = 3 were used for

Precision & Recall evaluation. Average PSNR and

average SSIM were used for inversion and

comprehensive performance evaluation as DLSGAN.

 The following figures show the performance of

DLSGAN and PVDGAN for each epoch.

𝜆𝑟1 = 5.0

𝜆𝑒𝑛𝑐 = 1.0

𝑑𝑧 = 1024

𝑍~𝑁(0, 𝐼𝑑𝑧
)

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚 (

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.003
𝛽1 = 0.0

𝛽2 = 0.99
)

𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑒𝑚𝑎 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 = 0.999

𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑒𝑚𝑎 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 = 0.999

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 16

𝑒𝑝𝑜𝑐ℎ𝑠 = 50

 PVDGAN used reconstruction loss weight 𝜆𝑟𝑒𝑐 =

1.0.

Figure 1. Generative performance for each epoch.

Figure 2. Inversion performance for each epoch.

Figure 3. Comprehensive performance for each epoch.

 Figs. 1-3 show the generative, inversion, and

comprehensive performance of models, respectively.

 In Fig. 1, DLSGAN shows better generative

performance with FID evaluation. However, one can

see that there is no significant difference between

DLSGAN and PVDGAN with precision & recall

evaluation.

 In Figs. 2 and 3, PVDGAN clearly shows better

inversion and comprehensive performance than

DLSGAN. The following figure shows unseen test

image reconstruction examples.

Figure 4. Test image reconstruction examples.

 In Fig. 4, one can see that PVDGAN shows better

perceptual real image reconstruction (e.g., rows 3, 4,

7 in left the part of Fig. 4)

4. Conclusion

In this paper, we propose a method to integrate the

perceptual VAE loss into the DLSGAN generator very

efficiently to improve the performance of DLSGAN.

When the discriminator and latent encoder are

integrated, and GAN latent random variable is normal

i.i.d. random variable, a sum of the predicted real

latent random variable and scaled normal random

variable also follows GAN latent random variable.

Therefore, we can use it for both adversarial training

and VAE training. Considering discriminator

intermediate layer output as a feature encoder,

perceptual VAE training of the generator does not

require additional computation. The proposed method

improved the performance of DLSGAN.

5. References

[1] W. Xia, Y. Zhang, Y. Yang, J. -H. Xue, B. Zhou

and M. -H. Yang, "GAN Inversion: A Survey," in

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2022, doi:

10.1109/TPAMI.2022.3181070.

https://ieeexplore.ieee.org/abstract/document/979220

8

[2] J. Cho, A. Krzyzak, “Dynamic Latent Scale for

GAN Inversion, in Proceedings of 11th ICPRAM,

pp. 221-228, 2022.

https://www.scitepress.org/Link.aspx?doi=10.5220/0

010816800003122

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B.

Xu, and D. Warde-Farley, S. Ozair, A. Courville, Y.

Bengio, “Generative adversarial networks, in

Communications of the ACM, Volume 63, Issue 11,

November 2020, pp. 139–144.

https://dl.acm.org/doi/abs/10.1145/3422622

[4] D. P Kingma, M. Welling, “Auto-Encoding

Variational Bayes, in arXiv preprint, Dec 2013.

https://arxiv.org/abs/1312.6114v11

[5] A. B. L. Larsen, S. K. Sønderby, H. Larochelle,

O. Winther, “Autoencoding beyond pixels using a

learned similarity metric in arXiv preprint, Dec

2015. https://arxiv.org/abs/1512.09300

[6] D. Ulyanov, A. Vedaldi, V. Lempitsky, “It takes

(only) two: adversarial generator-encoder networks,

in AAAI, 2018.

https://dl.acm.org/doi/10.5555/3504035.3504188

[7] J. Zhu, Y. Shen, D. Zhao, B. Zhou, “In-Domain

GAN Inversion for Real Image Editing, in ECCV

2020, pp. 592-608.

https://link.springer.com/chapter/10.1007/978-3-030-

58520-4_35

[8] M. Lucic, K. Kurach, M. Michalski, S. Gelly, O.

Bousquet, “Are GANs Created Equal? A Large-Scale

Study, in NIPS 2018.

https://papers.nips.cc/paper/2018/hash/e46de7e1bcaa

ced9a54f1e9d0d2f800d-Abstract.html

[9] T. Karras, S. Laine and T. Aila, "A Style-Based

Generator Architecture for Generative Adversarial

Networks," 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR),

2019, pp. 4396-4405, doi:

10.1109/CVPR.2019.00453.

https://ieeexplore.ieee.org/document/8953766

[10] L. Mescheder, A. Geiger, S. Nowozin, “Which

Training Methods for GANs do actually Converge?,

in PMLR 2018.

https://proceedings.mlr.press/v80/mescheder18a.html

[11] R. Gal, D. C. Hochberg, A. Bermano, D. Cohen-

Or, “SWAGAN: a style-based wavelet-driven

generative model, in ACM Transactions on

Graphics, Vol. 40, pp. 1-11, August 2021.

https://dl.acm.org/doi/10.1145/3450626.3459836

[12] T. Karras, T. Aila, S. Laine, J. Lehtinen,

“Progressive Growing of GANs for Improved

Quality, Stability, and Variation, in ICLR 2018.

https://openreview.net/forum?id=Hk99zCeAb

https://ieeexplore.ieee.org/abstract/document/9792208
https://ieeexplore.ieee.org/abstract/document/9792208
https://www.scitepress.org/Link.aspx?doi=10.5220/0010816800003122
https://www.scitepress.org/Link.aspx?doi=10.5220/0010816800003122
https://dl.acm.org/doi/abs/10.1145/3422622
https://arxiv.org/abs/1312.6114v11
https://arxiv.org/abs/1512.09300
https://dl.acm.org/doi/10.5555/3504035.3504188
https://link.springer.com/chapter/10.1007/978-3-030-58520-4_35
https://link.springer.com/chapter/10.1007/978-3-030-58520-4_35
https://papers.nips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
https://papers.nips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
https://ieeexplore.ieee.org/document/8953766
https://proceedings.mlr.press/v80/mescheder18a.html
https://dl.acm.org/doi/10.1145/3450626.3459836
https://openreview.net/forum?id=Hk99zCeAb

[13] M. Heusel, H. Ramsauer, T. Unterthiner, B.

Nessler, S. Hochreiter, “GANs Trained by a Two

Time-Scale Update Rule Converge to a Local Nash

Equilibrium, in NIPS 2017.

https://papers.nips.cc/paper/2017/hash/8a1d694707eb

0fefe65871369074926d-Abstract.html

[14] T. Kynkäänniemi, T. Karras, S. Laine, J.

Lehtinen, T. Aila, “Improved Precision and Recall

Metric for Assessing Generative Models, in NIPS

2019.

https://proceedings.neurips.cc/paper/2019/hash/0234

c510bc6d908b28c70ff313743079-Abstract.html

https://papers.nips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://papers.nips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html

