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Abstract: 

    This paper is based on a relativistic classical spinning particle described by an internal stress-

energy tensor.  It is found that if the mechanical momentum is set to zero in the rest frame, then 

as the size of the particle is reduced and as the center of mass is set to the center of rotation, 

2g =  is required.   In this derivation some of the electromagnetic self-field terms are neglected. 

                                                                                        

I. Introduction 

  The g-factor1  is one if an object’s charge distribution is proportional to its mass distribution, 

neglecting electromagnetic self-field terms. However, for the electron the g-factor is two as 

predicted by the Dirac equation, and in that regard appears to be a result of relativistic quantum 

mechanics (for example see Sakauri2).  However Sakauri2  also shows a derivation, based on 
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Feynman, of the non-relativistic Pauli spin equation that also leads to 2g = .  Levy-Leblond3 and 

Greiner4 also derive 2g =  using a linearized version of the Schrodinger equation. 

     The g-factor is also two for a Kerr-Newman black hole (for example see Misner, Thorne and 

Wheeler (herein MTW) 5 ).   Kramers6 derives the relation 2g =  by extending the spin 3-vector 

to a relativistically invariant complex 3-vector, but as shown by Bargmann, Michel, and Telegdi7 

his argument is questionable.   Heslot8 and Corben9 also obtain the relation 2g =  by using 

equations of a spinning point particle.   Rivas, Aguirregabiria and Hernandez10 obtain 2g =  by 

analyzing the structure of the spin operator for a point particle. 

     We start with the equations of an extended particle in flat space-time.  We show that for an 

extended particle with the requirements of zero mechanical momentum in the rest frame and the 

center of  rotation equal to the center of mass, a constraint condition is required.   As the size of 

the particle is reduced, and if we ignore some of the  

electromagnetic self-field contributions, this constraint condition reduces to the condition 2g = .   

      We set up equations of motion for an extended charged particle using a mechanical stress-

energy tensor and a general charge-current distribution.  Norvik11 and Appel and Kiessling12  use 

a rigid charge-current distribution, but base the equations of motion on a variational principle 

rather than a stress-energy tensor.   

     Dixon13 and Harte14 use a mechanical stress-energy tensor and expand the stress-energy 

tensor and the charge-current distribution in terms of multiple moments.  We consider only the 

total mass, momentum, and first moments of the stress-energy tensor. 

If we ignore the self-field terms we find g=2 for a general charge-current distribution, and 

to include the self-field terms consider a non-relativistic rigid charge distribution.        



     We denote the mechanical stress-energy tensor by S  and 4-current density by j  so that, 

following MTW5 and requiring local energy-momentum conservation 
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where 
F  is the electromagnetic field tensor, commas represent partial derivatives, and 

repeated indices indicate a summation.  Greek indices represent space-time coordinates, Latin 

indices represent 3-space coordinates, and a zero index represents time.  The metric 

is defined such that 1g00 −=  and ijijg = , and the speed of light is set equal to one.      

   Associate a world line with the particle defined by )(x 0   where   is the proper time along the 

world line.  To include the angular momentum, again following MTW5, define 
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which obeys the relation 
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Eq. (2) is based on Eq. (1) and the fact that  = SS .   

                                                                     

II. Equations of Motion 

     Now consider the object to be confined spatially so that a 2-d surface can be taken  



around it such that S  is zero outside the surface and the world line is inside the surface.   Then 

consider a  series of these 2-d surfaces in the rest frames of the object so as to make up a 3-d 

space-time surface.  To make the 3-d surface closed cap the top and bottom with 

flat 3-d spatial surfaces which include the object and are bounded by the top and bottom 2-d 

surfaces.  Both the top and bottom surfaces are in the rest frame of the object, with the rest frame 

defined by the world line.  The rest of the 3-d surface is outside the object.   The bottom surface 

is at time   and the top surface at time + .    

     Integrating eq. (1) over the 4-space within this surface, and again following MTW5, eq. (1) 

becomes 
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If we multiply eq. (3) by )(u   it takes the form 
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where 
 = ugu  and u  is the 4-velocity along the world line. 

     Considering the two rest frames, call the bottom frame the unprimed frame and the top frame 

the primed frame. Look at the first term in eq. (4) in terms of the primed coordinates, and the 

second and third terms in terms of the unprimed coordinates, so that eq. (4) becomes 
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Using a Lorentz transformation we then have, to order  , 
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where ia  is the acceleration along the world line in the bottom rest frame.  Equation (5) then 

becomes 

 

     
 −=+−− jFxddSdSadS 04300

bottom
3'0'i

topi
3'0'0

top .                                (6) 

   

   Again using a Lorentz transformation, the top surface can be defined by += )ra1(t i
i                                                                  

where we have set )(xxr 0
iii −= .   The 4-space integral on the left of  eq. (6) thus takes the 

form 
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to order  .  Dividing by   and taking the limit as   goes to zero, eq. (6) becomes 

 

   +=+





30k
k

i
i

0 djF)ra1(pa
d

md
                                                                             (7) 

 

 where 



 

       = 300
0 dSm         = 30ii dSp . 

                                                        

In deriving eq. (7) we are assuming that the spatial integrals on the top and bottom slices are 

different by the order of   .       

     Then multiplying Eq. (3) by unit spatial vectors in the bottom rest frame, a similar 

calculation yields the equation 
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Using similar methods with the rotation eq. (2) we obtain 
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where 
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and   
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A derivation of eq. (9) is given in the appendix since this equation is needed for the 

g = 2 derivation. 

      Thus, given a particular world line )(x 0
i   and 4-current distribution j , there are four 

equations (7), (8), (9), and (10) for the four rest frame relations, the mass 0m , momentum ip ,  

angular momentum ijL , and mass moment im , with the acceleration being determined by the 

world line.   Given the 4-current distribution j ,  the field tensor 
F  can be determined by 

Maxwell’s equations. 

     To impose a restriction on the world line, require that the rest frame mechanical momentum pi 

be zero.  Some authors, for example Garcia and Uson15, impose this restriction, but it is not 

necessarily the case.   For a stationary situation in which the mechanical and electromagnetic 

stress-energy tensors do not change in time, the total mechanical and electromagnetic momentum 

must be zero in the rest frame (for example see Hnizdo16, 17).  In this case, if the electromagnetic 

momentum is not zero neither can the mechanical momentum be zero.  However, here we take 

the electromagnetic momentum to be zero in the rest frame of a stationary situation. 

     Taking the mechanical momentum to be zero, eqs. (7) and (8) become 
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Eqs. (11) and (12) taken together can be written in a relativistic form in the rest frame as 
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    Kaup18 comes up with a similar equation based on an equation by Dixon19.  He also uses a 

mechanical stress-energy tensor, but defines the particle 4-momentum as  − 
 3duS   rather 

than 
um0 .                                                               

  We can put another restriction on the world line such that it goes through the center of mass so 

that 0mi =  at some point, but by eq. (9) it will not necessarily stay on the center of mass.   If we 

require that the center of mass coincide with the world line, we need 0
d

dm i

=


.  Eq. (9) then 

becomes the constraint equation 
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and eq. (10) for the angular momentum becomes 
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There are possible definitions of the center of mass other than 0
i m/m  in the rest frame (see for 

example Pryce20), but we take that as the definition here.  

 

III. g = 2 ignoring Self-Field Contributions 

 

  Now ignore the self-field terms, and assume that the charge distribution is such that there is no 

net current in the rest frame, that is  0dj 3i = .    

    Take the external fields to be of the same order as the acceleration, so that, ignoring second 

order acceleration effects, eqs. (12) and (13) take the form 
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where we have ignored the self-field terms and have taken the external fields to be constant over 

the size of the particle.   Multiplying eq. (15) by ji and noting that j
0

0
i

ji FF = , we can 

substitute eq. (15) into eq. (16) to obtain 
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Then noting that k
k

ijij LL = , where kL  is the angular momentum, for arbitrary j
0F  we need 
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Multiplying eq. (18) by ij
k'  it becomes 
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Then noting that the magnetic moment is  = 3ji
ij

k'k' djr
2

1
, eq. (19) takes the form 
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where we have replaced the index 'k  by i.   This is the relation for 2g = . 

 

IV. Non-Relativistic Rigid Charge Distribution and Self-Field Contribution 

   To see the effect of the constraint eq. (13) using a specific current distribution, consider a non-

relativistic rigid current distribution of the form  

    )r)(vr(σ)x(j kj
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where )r(σ  is the charge distribution, iv  the velocity and j  the angular velocity.  In the rest 

frame the charge and current distributions are  
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     We have set 0x  equal to zero, |r|r i= , and have neglected non-linear terms in the 

acceleration.   We have also neglected derivatives of the acceleration and derivatives of the 

angular velocity. 

     If we insert the rigid charge and current distributions into eqs. (12) and (13), they become 
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     To include the self-field terms,  consider the self-fields of the particle.  From Jackson21 and 

Crisp22 for a general charge distribution, the electric and magnetic fields take the form 
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with 'rrR iii −= , and |R|R i= . 

     Using eqs. (23) and (24) in the right side of  eqs. (21) and (22) and using the time derivatives 

of the current density, we find 
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where we have used 
i

0
i EF = , k
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i BF = , the spherical symmetry of the charge distribution, 



and have neglected non-linear terms in the acceleration.   Since we are not including the 

derivatives of the acceleration, eqs. (25) and (26) do not include the radiation reaction terms. 

     Using eqs. (25) and (26) in eqs. (21) and (22) and including the external fields, eqs. (21) and 

(22) become 

                                                   
 

}
R

'xx
a{)'r('dv)r(dv

3

1
a)

R

1
)'r('dv)r(dv

2

1
m(

j

jm

m

ii

0    −=+  

 

  
+++ 

3lk
kl

j
j

i
0

im

m d}rFF){ra1)(r(                                                                       (27) 

 

    
+−

−=+ }
R

xx'xx3
){'r('dv)r(dva

6

1
}

R

'xx
)'r('dv)r(dv

3

2
I{a

m

m

m

mjk
jk

i
m

m
0

k
k

ij

j   

 

   
++ 

3lj
jl

k
k

0im
m drFr)ra1)(r(                                                                          (28) 

                                            

where now 0
iF  and j

iF  are the external fields, and we have set 
k
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mechanical moment of inertia.   From Crisp22 the electromagnetic contribution to the moment of 

inertia of a spherically symmetric rotating object is 
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and rotational electromagnetic contribution to the mass is 2
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the electrostatic contribution to the mass is   
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which we obtain for the case of ia  in the same direction as i , but not in general.   We also 

obtain the electromagnetic moment of inertia plus the term 
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which is zero in the case of a spherically symmetric charged shell since 

in that case we have 
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IV. g=2 Calculation 

     Now reduce the size of the particle and take the external fields to be slowly varying so that 

they can be considered as constant over the size of the particle.   Also take the electric and 

magnetic fields to be of the same order as the acceleration, ignoring second order acceleration 

terms and using the spherical symmetry of the charge. eqs. (27) and (28) then become 
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where now 
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again using the spherical symmetry of the charge distribution.  Thus 
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If we have a spherical shell of charge this becomes 
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For other charge distributions if the mechanical angular momentum is much greater than the 

electromagnetic angular momentum we can approximate I by 0I  in the eq. (32).  Also, if the 

angular velocity is small, m will approximate the total electromagnetic and mechanical mass.  In 

this case, multiplying eq. (32) by 
i  yields 
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where 
iL  is the angular momentum.  The magnetic moment is 
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using our relation for the current and the spherical symmetry of the charge distribution.   So we 

have 
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which is the relation for 2g =  (for example see Singh and Raghuvanshi1) 

 

V. Conclusions 

    The center of rotation and center of mass are taken to be on the world line of the particle.   

That requirement together with the requirement that the mechanical momentum be zero in the 

rest frame leads to a constraint equation which, as the size of the particle is reduced and the self-

fields due to rotation are neglected, reduces to the requirement that 2g = . 

     We have neglected some of the self-field terms in this derivation, and neglected nonlinear 

terms in the acceleration and some higher order derivatives.     In spite of this it appears that in 

certain situations 2g =  is a requirement for a classical spinning charged particle when relativity 

is taken into account.  This fact along with the fact that 2g =
 
for a spinning black hole appear to 

indicate that 2g =
 
is a classical effect due to relativity and not an effect due to quantum 

mechanics. 

     



 

 

Appendix 

   This is a derivation of eq. (9).   If we integrate eq. (2) over the 4-space within the 3-surface,  

eq. (2) takes the form 

 

    

∫ 𝑑4𝑥𝑀𝛼𝛽𝛾 ,𝛾 =  −𝑢𝛾(𝜏 + 𝛿𝜏) ∫ 𝑀𝛼𝛽𝛾

𝑡𝑜𝑝

𝑑3∑ + 𝑢𝛾(𝜏) ∫ 𝑀𝛼𝛽𝛾

𝑏𝑜𝑡𝑡𝑜𝑚

𝑑3∑ 

= ∫ 𝑑4𝑥{(𝑥𝛼 − 𝑥   0
𝛼 (𝜏))𝐹   𝛾

𝛽
𝑗𝛾 − (𝑥𝛽 − 𝑥   0

𝛽 (𝜏)) 𝐹   𝛾
𝛼 𝑗𝛾}                                                        (A1) 

 

Multiply eq. (A1) by 𝑢𝛼(𝜏)𝑒 𝛽
𝑖 (𝜏) where 𝑒 𝛽

𝑖 (𝜏) are the spatial vectors normal to 𝑢𝛼(𝜏) at the 

bottom rest frame.  Eq. (A1) then becomes 

 

      

−𝑢𝛼(𝜏)𝑒 𝛽
𝑖 (𝜏)𝑢𝛾(𝜏 + 𝛿𝜏) ∫ 𝑀𝛼𝛽𝛾

𝑡𝑜𝑝

𝑑3∑ + 𝑢𝛼(𝜏)𝑒 𝛽
𝑖 (𝜏)𝑢𝛾(𝜏) ∫ 𝑀𝛼𝛽𝛾

𝑏𝑜𝑡𝑡𝑜𝑚

𝑑3∑ 

                = 𝑢𝛼(𝜏)𝑒 𝛽
𝑖 (𝜏) ∫ 𝑑4𝑥{(𝑥𝛼 − 𝑥   0

𝛼 (𝜏))𝐹   𝛾
𝛽

𝑗𝛾 − (𝑥𝛽 − 𝑥   0
𝛽 (𝜏)) 𝐹   𝛾

𝛼 𝑗𝛾}                    (A2) 

 

Consider the two rest frames, the bottom frame the unprimed frame and the top frame the primed 

frame.   Look at the first term in eq. (A2) in terms of the primed coordinates and the second and  

third terms in the unprimed coordinates so that eq. (A2) becomes 

 

     

𝑢𝛼′(𝜏)𝑒 𝛽′
𝑖 (𝜏) ∫ 𝑀𝛼′𝛽′0′

𝑡𝑜𝑝

𝑑3∑ + 𝑒 𝛽
𝑖 (𝜏) ∫ 𝑀0𝛽0

𝑏𝑜𝑡𝑡𝑜𝑚

𝑑3∑ 

                              = −𝑒 𝛽
𝑖 (𝜏) ∫ 𝑑4𝑥{(𝑥0 − 𝑥   0

0 (𝜏))𝐹   𝛾
𝛽

𝑗𝛾 − (𝑥𝛽 − 𝑥   0
𝛽 (𝜏)) 𝐹   𝛾

0 𝑗𝛾}                (A3) 

 



where a primed subscript indicates it is in the primed system. 

     Then using a Lorentz transformation we have to order 𝛿𝜏 

 

         𝑢0′(𝜏) = −1 ,     𝑢𝑖′(𝜏) = −𝑎𝑖𝛿𝜏 ,      𝑒   0′
𝑙 (𝜏) = 𝑎𝑙𝛿𝜏 ,    𝑒   𝑘′

𝑙 (𝜏) = 𝛿   𝑘
𝑙  

 

along with 𝑒   0
𝑙 (𝜏) = 0 and 𝑒   𝑘

𝑙 (𝜏) = 𝛿   𝑘
𝑙 .      Using these in eq. (A3) it becomes 

 

    

− ∫ 𝑀0′𝑖′0′

𝑡𝑜𝑝

𝑑3∑ − 𝑎𝑗𝛿𝜏 ∫ 𝑀𝑗′𝑖′0′

𝑡𝑜𝑝

𝑑3∑ + ∫ 𝑀0𝑖0

𝑏𝑜𝑡𝑡𝑜𝑚

𝑑3∑ 

                              = − ∫ 𝑑4𝑥{(𝑥0 − 𝑥   0
0 (𝜏))𝐹   𝛾

𝑖 𝑗𝛾 − (𝑥𝑖 − 𝑥   0
𝑖 (𝜏)) 𝐹   𝛾

0 𝑗𝛾}                               (A4) 

 

using 𝑀00𝛾 = 0 and ignoring second order 𝛿𝜏 terms.     The 4-space integral on the left takes the 

form 

 

     ∫ 𝑑4𝑥 {(𝑥0 − 𝑥   0
0 (𝜏))𝐹   𝛾

𝑖 𝑗𝛾 − (𝑥𝑖 − 𝑥   0
𝑖 (𝜏)) 𝐹   𝛾

0 𝑗𝛾} 

           = 𝛿𝜏 ∫ (1 + 𝑎𝑘𝑟𝑘)𝑟𝑖𝐹   𝛾
0 𝑗𝛾

𝑏𝑜𝑡𝑡𝑜𝑚
𝑑3∑                                                                               (A5) 

 

Ignoring second order 𝛿𝜏 terms, using 𝑟𝑖 = 𝑥𝑖 − 𝑥   0
𝑖 (𝜏), and the fact that to first order in 𝛿𝜏  

 

∫ 𝑑4𝑥 = 𝛿𝜏 ∫ (1 + 𝑎𝑘𝑟𝑘)
𝑏𝑜𝑡𝑡𝑜𝑚

𝑑3∑ 

 

 Now on the bottom slice 

 

    𝑀0𝑖0 = (𝑥0 − 𝑥   0
0 (𝜏))𝑆𝑖0 − (𝑥𝑖−𝑥   0

𝑖 (𝜏)) 𝑆00 = − (𝑥𝑖 − 𝑥   0
𝑖 (𝜏)) 𝑆00 = −𝑟𝑖𝑆00        (A6) 

 



and on the top slice 

 

   𝑀0′𝑖′0′
= (𝑥0′

− 𝑥   0
0′

(𝜏)) 𝑆𝑖′0′
− (𝑥𝑖′

−𝑥   0
𝑖′

(𝜏)) 𝑆0′0′
 

 

                  = 𝑢0′
(𝜏)𝛿𝜏𝑆𝑖′0′

− (𝑥𝑖′
− 𝑥   0

𝑖′
(𝜏 + 𝛿𝜏) + 𝑢𝑖′

(𝜏)𝛿𝜏)𝑆0′0′
   

 

                 = 𝛿𝜏𝑆𝑖′0′ − (𝑟𝑖′
− 𝑎𝑖𝛿𝜏𝛿𝜏)𝑆0′0′                                                                         (A7) 

 

using 𝑥   0
𝛼′

(𝜏 + 𝛿𝜏) = 𝑥   0
𝛼′

(𝜏)  + 𝑢𝛼′
(𝜏)𝛿𝜏. 

    Using  𝐿𝑖𝑗 = ∫ 𝑀𝑖𝑗0𝑑3∑  and eqs. (A5-A7) eq. (A4) becomes 

 

− ∫ {𝛿𝜏𝑆𝑖′0′

𝑡𝑜𝑝

−𝑟𝑖′
𝑆0′0′

}𝑑3∑ − 𝑎𝑗𝛿𝜏𝐿𝑗𝑖 − ∫ 𝑟𝑖𝑆00

𝑏𝑜𝑡𝑡𝑜𝑚

𝑑3∑ 

                                = 𝛿𝜏 ∫ (1 + 𝑎𝑘𝑟𝑘)𝑟𝑖𝐹   𝛾
0 𝑗𝛾

𝑏𝑜𝑡𝑡𝑜𝑚
𝑑3∑                                                (A8) 

 

Ignoring second order 𝛿𝜏  terms. 

   Dividing by 𝛿𝜏 and taking the limit as 𝛿𝜏 goes to zero, eq. (A8) becomes eq. (9) using the 

fact that 𝐿𝑗𝑖 =  −𝐿𝑖𝑗  and that ∫ 𝑆𝑖′0′

𝑡𝑜𝑝
𝑑3∑ = ∫ 𝑆𝑖0

𝑏𝑜𝑡𝑡𝑜𝑚
𝑑3∑ to order 𝛿𝜏. 
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