Primorials in Pi

Jabari Zakiya
©December 14, 2022
Email: jzakiya@gmail.com

Abstract: Since at least 1734 (when Euler solved the Basel problem), it’s been known for positive even integers s, Zeta(s)
can be written in terms of the even powers of Pi. I manipulate the Euler Zeta function form and find lurking (hidden) in it
an exquisite and elegant formula for Pi. Thus, not only does the Euler Zeta function have embedded in it Pi, Pi has
embedded in its construction the primorials of primes.

Introduction

For most people i, i.e. 3.14159..., is the most well known math constant they can recite to at least a
few digits. There are many algorithms [6] that can generate its digits, with varying speed. Using Prime
Generator Theory (PGT) we can derive an exquisite formula for its computation that’s been hiding in
plain sight (for centuries) that heretofore hadn’t been noticed, missed by even the great Euler, who
probably had the first chance (best mindset) to notice it, but didn’t. And its starts with his Zeta function.

Zeta function ((s)

In contemporary math the Euler/Riemann Zeta function expression is usually written in this form:

n=1 p
o 1 ps
But Euler wrote it like this: = — =
ut Euler wrote it like thi ¢(s) ;TLS 1;[})3_1
Written in primorial form it’s: C(s) = H P __ P nt
P ps -1 (pfl, - 1)#
2
i
For s = 2 we get: 2) =
: P = -ne

But ((2) = 72/6, and p2 # is (p,#)?, which now gives us this exquisite formula for 7.

™ (pa#)’
6 (pp—D#
o \/6 pn# — (3#)1/2 pn#

(V- D# (b7 — D)2

And now we see a simple formula for 7 hidden in the background of the Zeta function! We see we
can represent (and calculate) 7 strictly with primorials, i.e. consecutive prime factors. We’ll further see
not only does 7 lurk within the ((2k) values, but the primorials lurk within the construction of 7.



But we don’t have to stop with ¢(2), as each expression for ¢ (2k) has a factor of 72* in it.

2k
k+1 Boy2 7T2k

For s = 2k: C(2k) = (—1) 202H)]

The Bok are the 2k-th Bernoulli numbers. Here are the first 8 expressions for {(2k) [5].

7T2 7'('4 7T6 7'['8
(2) =+ C4) =55 C(6) = 55 (®) = 550
10 691712 24 3617716
¢(10) C(12) = Gagsrogrs S = Tgouzmes S(16)

~ 93555 = 325641566250

I’ll show we can compute 7 to increasing accuracy with primorials, using its generalized form:

= Cl/2k: Pn _ ~1/2k pn#f
- k ok _ 1\1/2k k
i e R e R

where the C..5, are the constant rational inverse coefficients of 72* from the  (2k) expressions.

6 90 945 9450
CZ2 prm— pr—

93555 638512875 18243225 325641566250
1y = ——— = Cog= —— = ———— Chg= —————
Cz10 1 93555 12 691 Caa 2 10 3617
With the C, 5 having form: — (_1)k+L (2k)!
Caze = (—1) 22k—11,,

What we will discover is that the C,5;. coefficients have embedded within them the value of 7, to

increasing digits of accuracy. From their starting approximations for m, the primorials boost the number
of accurate digits higher, until they max out their capacity to create more. We’ll also discover that from
the numerator factorization of the C,5;, we can reconstruct their representations as factors of primorials.

Geometric Interpretation using PGT

Let’s see how to geometrically understand this conceptually, from the perspective of PGT.

As explained in [1], [2], [3] Prime Generators break the number line into modular groups of size p,, #
integers, which contain (p,,—1)# integer residues, along which all the primes not a factor of p,,# exist.
As we increase the modular group size by p,, we increase the number of residues by (p,, — 1). This has
the effect of squeezing the primes into a smaller and smaller percentage of the integer number space.
It’s essentially the same process Euler used to squeeze out all the composites in the reciprocal integer
form of the Zeta function to create his multiplicative prime (primorial) form.



Useful for our purposes here, we can model the periodicity of the modular groups with a clock.

Using our generator clock model we can conceptualize the geometric meaning of the expression for 7.

 A1/2k DnFF
" O g
c c
From geometry: T = 7= 5

where r = ¢/27 = ¢/T, with (tau) 7 = 27r. Thus when we take generators of length p,,# integers, and fold
them into, and model them as clocks (modular circles), c = p,,# is the circumference of these circles,
which increase by factors of p,, for each larger generator. Thus we get these geometric relationships:

c=pyit q— (p2k — 1)1/2k 4 . (p2* — 1)1/2k
Pn CL/2k oC1/2k
22k 22k
2y g G D#E a0 - D
" Csz QQkCsz

Thus we see the modular diameters and radii expressions are the (principal) 2k-th roots of primorial
expressions. Thinking about this more extensively, this suggests there may be complex roots, which we
know come as complex conjugate pairs. This would be consistent with the fact that the generator
residues come as modular complement pairs. We’ll also see for the p,,, d,, ~ p,, /7.2 and 1, ~ py, /To2k-

I’ve only scratched the surface here, but I’ll suspend going further down this rabbit hole of analysis, as
it’s diverging from the principal purpose of this paper. However, it presents itself as an interesting area
of math to explore and develop, and I encourage others to vigorously pursue it if desired.

Numerical Analysis

Compared to other methods for generating 7, the presented method is much simpler to understand and
remember. And from a Number Theory point of view, it also has a conceptual and numerically pleasing
elegance, which I will show and explain. To demonstrate its utility and performance, I provide Ruby
code to generate some results of its accuracy and convergence speed for the first few C',o coefficients.



From this form of the formula: T = Ciéik H W

p

e 1/2k 2 3 5
We expand it into: T=C% - @ DU (3 U (5

In fact, this is the form of the algorithm the Ruby code uses to numerically compute it.
Notice in the factors (p,zf )1/ 2F we’re raising each p,, to a power 2k, then bringing one less than that
value back down to be almost (but less than) p,,. Using p, = 3 as an example, we can see the process.

(32 —1)Y2 = (9—1)1/2 =81/2 = 2.82842...

(3% — 1)/ = (81 — 1)/* = 80"/ = 2.990697...
(35 —1)1/6 = (729 — 1)V/6 = 728'/6 = 2.99931...

(3% —1)18 = (6561 — 1)'/® = 6560/ = 2.99994...

As 2k increases (p2* — 1)!/2¥ becomes increasingly closer to p,,, If we set p,,_ to be (p2¥ — 1)1/2

then the primorial ratios p,/p,,_ are always > 1 but can be made arbitrarily close to 1, as 2k — oc.

Pn 3 5 7
Thus as 2k — oo | | = . . -+ — 1.0000...
Pr— "~ 1.999... 2.999... 4.999... 6.999...

So if the primorial ratios are marching in unison toward 1 where do we get 7 from? Well, there’s only
one place left its digits can come from. And this is what we discover, apparently missed by even Euler.

Cl? = 61/2 = 2.449489...

Cl* =904 = 3.080070...

Cl/% = 945'/6 = 3.132602...

C[® = 9450'/8 = 3.139995...

CH10 = 935551/10 = 3.141280...

CH2? = (638512875/691)/12 = 3.141528...

We can theoretically get arbitrary convergence with a few (or just p; = 2) primes. However in the real
world, at least with using personal computers, calculators, etc, we will soon hit the wall in reaching the
limit on the number of digits floating point implementations can accurately represent. But that is an
implementation issue true for all numerical (floating point) operations performing computations with
small numbers. However, there are numerical implementations and hardware that address these issues.



Below is Ruby code to generate 7 to 15 digits (when capable) using the coefficients for C,5 —C 1.

Code:

require "primes/utils"

def pi Z2k(k2, cz2k, primes)

pi, exp 1.0,

1.0/k2

primes.each do |p|

end
pi * cz2k**exp
end

# Example inputs for Zeta(8)

nth = 18
nth prime =
n_primes
k2, cz2k

puts "\nUsing #{nth} primes up to #{nth prime}"
pi Z2k(k2, cz2k, n_primes)

pi =

nth.nthprime
nth _prime.primes
8, 9450

puts "pi Z#{k2} = #{pi} \n"

# Load primes-utils RubyGem
# To install on system do: $ gem install primes-utils

1)**exp

# Select number of primes to use
# Set prime value of nth prime

# Generate array of first n primes

# Set Zeta(8) parameters

# Using 18 primes uo to 61
# pi Z8 = 3.141592653589792

This table shows the speed of convergence up to pi z16. On my laptop using Ruby, I was able to get up
to 15 significant digits of accuracy until the fractions got too small to generate more accurate digits.

Pi digits pi_Z2 piZ4 | pi_Z6 | pi_Z8 | pi_Z10 | pi_Z12 | pi_Z14 | pi_Z16
m primes | m primes|m primes m primes|m primes| m primes| m primes m primes

3. 2
3.1 5 1
3.14 38 1
3.141 76 3
3.1415 301 5 2 1 1
3.14159 516 10 2
3.141592 16,663 14 4 3 1
3.1415926 142,215 26 6 2 1 1
3.14159265 1,534,367 51 9 4 3 2
3.141592653 80 11 5
3.1415926535 132 15 6 4 3 2
3.14159265358 240 21 8 5 2
3.141592653589 481 30 10 6 4 3
3.1415926535897 837 40 13 7 5 3
3.14159265358979 18 6 4 4

As there are an unending number of (2k) values of this form (use [7] for more), you can theoretically
generate as many accurate digits of 7 you’d want with just the first few primes. It will be interesting to
see if this method can be implemented to generate the next record number of digits for 7, or used as a
standard benchmark to test the numerical accuracy and speed of super and quantum computers, etc.




Conclusion

Since at least 1734, when Euler solved the Basel problem, it’s been known for positive even integers s
the Zeta function ((s) can be written in terms of the even powers of 7. Using Prime Generator Theory
(PGT) as my conceptual framework, I manipulated the Euler Zeta function form to show we can create
an elegant generalized formula to represent and compute 7, which apparently even Euler missed. I then
show the coefficients 2k-th roots are approximations to 7r, with increasing accuracy as s increases. They
are then boosted (increased) by primorial ratios to achieve higher accuracy. I provide software, with a
table of numerical results, to show this. Finally, I provide a list of the first 25 coefficients, also written
in their full primorial forms. Hopefully, the approach and findings presented here can serve as a starting
point for a better conceptual understanding of the odd s values of ((s), with similar revealing results.

References

[1] The Use of Prime Generators to Implement Fast Twin Primes Sieve of Zakiya (SoZ), Applications
to Number Theory, and Implications to the Riemann Hypothesis, Jabari Zakiya, 2018/19

https://vixra.org/pdf/2006.0054v1.pdf
https://www.academia.edu/37952623/
The Use of Prime Generators to Implement Fast Twin Primes Sieve of Zakiva SoZ Application

s to Number Theory and Implications for the Riemann Hypotheses

[2] On The Infinity of Twin Primes and other K-tuples, Jabari Zakiya, 2019/20
https://vixra.org/pdf/2006.0053v2.pdf

https://www.academia.edu/41024027/On_The Infinity of Twin Primes and other K tuples

[3] (Simplest) Proof of Twin Primes and Polignac’s Conjectures, Jabari Zakiya, video, 2021
https://www.voutube.com/watch?v=HCUiPknHtfY

[4] The Twin Primes Segmented Sieve of Zakiya (SSoZ) Explained, Jabari Zakiya, 2022
https://vixra.org/pdf/2206.0100v1.pdf

https://www.academia.edu/81206391/Twin_Primes Segmented Sieve of Zakiva SSoZ Explained

[5] Particular values of the Riemann Zeta Function
https://en.wikipedia.org/wiki/Particular values of the Riemann zeta function

[6] Coded different methods to Calculate PI
https://github.com/joaojcorreia/Calculate-pi

[7] WolframAlpha Compute Engine
https://www.wolframalpha.com/input/?i=mathematica

[8] primes-utils Rubygem
https://rubygems.org/gems/primes-utils

[9] PRIMES-UTILS HANDBOOK, Jabari Zakiya, 2016
https://www.academia.edu/19786419/PRIMES UTILS HANDBOOK



List of Primorials in Pi from C', 5, constants

C,o =6 =3#
Cly =90 = %

Clg = 945 = %

C.g = 9450 = %
Cl10 = 93555 = %

C’z12 -

CYzl4 =

Cii6 =

CzlS -

CYz20 =

Cioo =

C1z24 -

C1226 -

Cz28 -

638512875 _ (3#)° 5#T#13#

691 (24)6 691

18243225 (3#)* b#134#

2 (24)7
325641566250  (3#)%(5#)% TH1T#
3617 B (24#)6 3617
38079205480125  (3#)%(T#)% 19#

43867 T (24#4)9 43867

1531329465290625  (3#)*(54)3 114194

(24)° 175611

#(7#)? 233

174611
13447856940643125  (3#)° 5
155366 o (2#)

201919571963756521875 (3#)C 5H(T#)? 13#23#

10155366

236364091

(24)'T 236364091

11094481976030578125  (34)5(5#)% TH11#23#

1315862

564653660170076273671875  (34)7(54)* T#13#294

(24)11 1315862

6785560294

(2#4)14 678556094

C!/? = 2.449489742783178

C/* = 3.080070288241023
C1/% — 3.132602581012435
6 - .

z

C/® = 3.1399951412959073
C10 = 3.1412803693973714
C{1? = 3.1415282368670168
C* = 3.1415789099913694
CH10 = 3.1415896529495364
CH1® = 3.1415919871238964
C1/20 = 3.1415925037418626
C1/2% = 3.1415926195391455

C2* = 3.1415926457870995

C1/26 = 3.141592651789231

C/2® = 3.1415926531718115



O — 5660878804669082674070015625 1/30
230 = 6392673020804 C.4 = 3.141592653492265

4

= (34)% 5H(T#)? 11#13#31#/(24)" 6892673020804

o . _ 62490220571022341207266406250
=2 7709321041217

= (34)T(5#) (T#)? 1T#314/(24)™ 7709321041217

C3% = 3.141592653566935

12130454581433748587292890625 .
34 = — 3.141592
Cos 151628697551 CHI* = 3.1415926535844148

= (3#)%(5#)3 THI1#13#31#/(2#)° 151628697551

_20777977561866588586487628662044921875 1/36
Caz6 = 5631527 1553068477373 C be” = 3.141592653588523

= (34)2(5#)3(T#)3 13#19437#/(24)'® 26315271553053477373

2403467618492375776343276883984375 s
=38 = — 3.141592
Cszs 308420411983322 CHS® = 3.1415926535894925

= (3#)10(5#4)3(T#)? 11F#1TH#3TH/(24)'® 308420411983322

_ 20080431172289638326793401128390556640625 /a0
Cao = 261082718496449122051 Ciao- = 3.141592653589722

= (3#)%(5#)° TH11F13#19#441#/(24) 261082718496449122051

_ 230778918981896012771259442786466 7427734375 7
Caaz = 3040195287836141605382 Craa” = 3.1415926535897762

= (34) M (54)? (T#)* 134194434/ (2#)° 3040195287836141605382

37913679547025773526706908457776679169921875 "o
= — 3.141592
Ceaa 5060594468963822588186 C.1y = 3.141592653589789

= (345)10(54) 1 (T#)3 13#23#434 /(2#)%° 5060594468963822588186

7670102214448301053033358480610212529462890625 1/46
Cos = — 3.141592
46 103730628103289071874428 Caag = 3.1415926535897922

= (3#)12(54)1(T#)? 11#13#19#447#/(24)%2 103730628103289071874428

4093648603384274996519698921478879580162286669921875 1/48
Cors = = 3.141592 2
® 5609403368997817686249127547 Cuas” = 3.1415926535897927

= (34) 2 (54) 1 (T#)® 13#1TH#23#4T# /(24)% 5609403368997817686249127547

285258771457546764463363635252374414183254365234375 s
50 = /%0 — 3141592
G0 39604576419286371856998202 250 592653589793

= (34) 13 (54)2 (T#)3 (114)% 13#23#474#/(2#)* 39604576419286371856998202




