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Abstract

Assuming that an absolute stationary inertial frame exists in the universe and the speed of light
is constant only in the absolute stationary inertial frame, new equations for inertial mass,
momentum and kinetic energy in a moving inertial frame are derived.

In the process of deriving the new equations, an experiment was presented to obtain the
velocity of the inertial frame moving relative to the absolute stationary inertial frame. If this
experiment is successful, we could find out how fast and in which direction our Earth is moving
in space.

1.0 Introduction

Albert Einstein derived the equations for time dilation, mass increase, and kinetic energy in the
theory of special relativity published in 1905, assuming that light speed is constant in all inertial
frames and the absolute stationary inertial frame does not exist in the universe [R-1].

In this study, new equations for inertial mass, momentum, and kinetic energy in an inertial
frame moving relative to the absolute stationary inertial frame are derived by assuming that an
absolute stationary inertial frame exists and using the two assumptions for the speed of light
below.

= Assumption 1: An absolute stationary inertial frame exists in the universe

= Assumption 2: The speed of light observed in an absolute stationary inertia frame is
constant regardless of the movement of the light source. That is, light emitted from
both a moving and a stationary object have the same speed in an absolute stationary
inertial frame.

= Assumption 3: Based on Michelson-Morley’s experiment [R-2], in @ moving inertial frame,
the round-trip speed of light in all directions is the same and is equal to the speed of
light in the absolute stationary inertial frame.



2.0 Conversion Factors to Absolute Stationary Inertial Frame
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Figure 1. Observe a golf ball hit in an inertial frame flying with velocity vo in an
absolute stationary inertial frame

As shown in Figure 1, in order to calculate the kinetic energy of an object thrown from a moving
inertial frame in terms of an absolute stationary inertial frame, the following four conversion
factors are used.

= Length Conversion Factor
= Time Conversion Factor

= Velocity Conversion Factor
= Mass Conversion Factor

In the process of deriving this equation, an experiment is presented to determine the velocity
of an inertial frame moving relative to the absolute stationary inertial frame and the new
equation for the relative velocity of an object observed in a moving inertial frame to the
absolute stationary inertial frame.

2.1 Factor that converts length observed in the moving inertial frame to
length observed in the absolute stationary inertial frame

As shown in Figure 2, consider that a spaceship with a semicircular reflector flies at vo speed and
generates light at the center of the spaceship.
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Figure 2. A spaceship flying at velocity vo relative to the absolute stationary inertia frame



The path of light emitted from the source at the center of the spaceship hits point Y1. Point Y1
reflects the light back to the source. The motion of this light path is observed from the
absolute stationary inertial frame as follows:
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Figure 3. The path of light in a spaceship observed in an absolute stationary inertial frame

The path of light reflected at point Y1 and returned to the center of the spaceship

Assuming no length contraction in the Y axis, the time t3 + t4, represents the time it takes for
the emitted light to hit Y1 point and reflect back to the source. The time t3 + t4 can be
calculated as follows in the absolute stationary inertial frame.

t3: The time it takes for the light emitted from the source at center of the spaceship to
reach point Y1 of the reflector.

(Lo)? + (vot3)? = (ct3)?
t4: The time it takes for the light reflected from point Y1 back to the center of the
spaceship.
(Lo)? + (vot4)? = (ct4)?
2L,

The path of light reflected from a point on the reflector and returned to the center of the
spaceship

t3+t4 =

The time t1 + t2, represents the time it takes for the emitted light to travel from the source at
center of the spaceship to any point on the reflector, then back to the source. This can be
calculated for the absolute stationary inertial frame as follows:

(ct1)? = (L sinf)? + (L cosf + vyt1)? = L? + 2LcosOvytl + (vytl)?
0 0



1= Lvycos + /L2 (cos0)?vy? + L2(c? — vy2)
B c? — vy?

(2)

(ct2)? = (L sin)? + (L cosd — vyt2)? = L? — 2LcosOvyt2 + (vyt2)?

_ —Lvycos + JI2(c0s0)2vy2 + L2(c2 — vy?2)
B c? — vy?

t2 (3)

2L,/ (c0s0)2v42 + (c% — v42)
c? — v,y?

tl+t2 = (4)

Based on Assumption 3, the speed of light is the same in all directions, so the time for the
round-trip t1+t2 (4) for any one point, and time for the round-trip t3+t4 (1) for Y1 must be the
same as follows:

2L\ vo?(c0s0)? + (2 —vy?) 210
€z — py2 N

The length Lo in a moving inertial frame is observed to be contracted compared to L in the
absolute stationary inertial frame as follows:

Lo +Jc? —vy? Lo

L = =
V€2 — vy + vy2(cosh)? 2 2 (5)
14+ 0 (cosB)

c? — vy?

The length contraction factor R, that converts length in a moving inertial frame to length in the
absolute stationary inertial frame is defined as follows:

L 1
0 Vo2 (cos0)? (6)

2.2  Factor that converts time observed in the moving inertial frame to time
observed in the absolute stationary inertial frame

In a moving inertial frame, unit time is defined as the time for light to travel a distance Lo, back
and forth as shown in Figure 4.
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Figure 4. Unit time in an inertial frame



Unit time in an inertial frame is expressed as follows:

2L
t0=—2 (7)
C
Since the absolute stationary inertial frame observes the round-trip time of the moving inertial
frame as (1) that is always greater than time of (7), it can be inferred that the unit time in the
moving inertial frame is slower than the unit time in the absolute stationary inertial frame.

Using the time t in absolute stationary inertial frame time (1) and the time to in a moving
inertial frame time (7), the factor R, that converts the moving inertial frame time to the
absolute stationary inertial frame time is defined as follows;

2L,
2
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How to measure the velocity, Vo, of a moving inertial frame

Based on (2) and (3), the difference between the time t1 to reach a surface point and the time
t2 to return to the source can be expressed as follows in the absolute stationary inertial frame:

2Lvycosb 2Lgvgcost 2Lgvgcosf
Ataztl—t2=c2 o7 = = > T
o 2 2 4 Vo2 (sin
Vo4 (cosO 2 (120 _Zo \»tftY) (9)
(c? —voz)\/l +—%2(_ voz) ¢ \]1 c? \/1 c2

Considering time dilation, the time difference in a moving inertial frame is then
vo 2Lgvycos
-2 10
\/ v02(5m6)2 (10)

2Ly
=— (11)

Max At occurs at 0=0, so
Ats_max

If the maximum At,_max can be measured by experiment, the velocity of the moving inertial
frame can be obtained as follows:

CZ

s_max m (12)

UO =At

If this experiment is successful, one can determine the direction and velocity of the inertial
frame moving in space.



2.3  Factor that converts the velocity observed in the moving inertial frame to
the velocity observed in the absolute stationary inertial frame

Using the length conversion factor R} (6), and the time conversion factor Ry (8), the velocity
conversion factor R, can be obtained. Using this factor R, , the velocity observed in a moving
inertial frame can be converted to the velocity observed in an absolute stationary inertial frame.

R, 1 vo? 2% 1
Ry =p—= - =\1-=) .
’ \/ vy2(cosH)? ¢ ¢ \/1 _ Vo®(sin)? (13)
14202570 2

c? — vy?

2.4 Mass Increase Factor, y due to a Moving Inertial Velocity

When a bomb with at-rest mass m, in the absolute stationary inertial frame flies at a speed of
v, and explodes at a speed v,, that is relatively much slower than the speed of light in all
directions as shown in Figure 5.

RW1
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Figure 5. A bomb with at-rest mass m0 explodes with velocity v1 while flying with velocity vo

As shown in Figure 5, the velocity v, of the fragment observed in the absolute stationary
inertial frame can be expressed as follows:

v, = Vo2 + 2vvcos(6) + v2 (14)
The mass increase factor y is inferred using the following two approaches
2.4.1 Approach1

Assume that the mass increase factor y due to the velocity v of a moving inertial frame is as

follows:
2 \"
() s

Assuming that the bomb mass increases by a factor of y, in an inertial frame moving at v, , let
us assume the explosive kinetic energy as follows.




1,12\
Eipomb_m = 5MoV17¥o = 5Mo?; Z_p? (16)

Where y, : the mass increase factor y at the velocity of the moving inertial frame, v,

If v, is relatively close to 0 compared to the speed of light, the fragment kinetic energy in an

arbitrary direction can be calculated as follows, using the mass increase factor y assumed in (15).

Ek_frag = j
0

Ryvy Ryvy

mg mg Ryvq c2 n
Ubd(P) = J;) vbd (Eyvb) = E-fo vbd —C2 — ‘l]bz Vp
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The total explosive energy of the bomb for n=1/2 can be calculated by integrating Equation (17)
over all three dimensions.
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Since Equation (18) satisfies Equation (16) for n=1/2, we can infer the mass increase factor as

follows.
~ C2 1/2 ~ 1
v = c?2 — p? - 2 (19)

(18)

~
=

2 c2 —v,2




2.4.2 Approach 2

Assuming that the bomb mass increases by a factor of y; when it explodes at v; in an inertial
frame moving at v, , let us assume the explosive kinetic energy as follows.

n

1 , 1 5 c?
Ex pomp = 5MoV17Y1 = 5MoVq

(20)
2., 2
2 2 c2 — (7702 +v,2— Uocéh )

Where y, : the mass increase factor y at the velocity of square root of average v, 2 for the
fragment
sin(0)

2d0

Y
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0
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If v, is relatively close to O compared to the speed of light, the kinetic energy of the fragments
in an arbitrary direction cab be approximately expressed using the mass increase factors y, and

v, as follows:

R‘le val mo mo val
Ek frag = f v,d(P) = f v,d (Eyvb) = Ef {v,2dy + y[vocos(8) + v, ]dv}
0 0 0
21
mg [21702 + 2vyR,vicos(6) + szvlz] [Y1vocos(0) + y1R,v1 + Yovocos(0)] 21)
= e > 1 —vo) + 5 Ry,vq

Where Y, : the mass increase factor y at the velocity of the moving inertial frame, v,

By integrating Equation (21) over all three-dimensions, the total explosive energy of the bomb
can be obtained as follows:

YA
Ey_bomb =f lim Ey frqq - 21sin(6) d6

0 10
1 2vy%v,2 V21,2
=5 Mo {(21702 +2v,% - ez N~ 2v0% + 1,2 — =z )Y

Since the explosive energy calculated in (22) from the perspective of an absolute stationary

(22)

inertial frame should be equal to the assumed explosive energy in (20), Ex pomp = %movlzyl

from the perspective of a moving inertial frame, ? can be obtained as follows:
1

2v ZU 2 1% ZU 2
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Based on (23), assuming y = ;2 and directly calculating ?as (24), we get the same result as (23).
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3.0 Kinetic Energy, Momentum and Inertial Mass in an Inertial Frame Moving
Relative to an Absolutely Stationary Inertial Frame

3.1 Kinetic Energy Observed in Absolute Stationary Inertial Frame
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Figure 6. The velocity of an object m thrown with a velocity V1 in an inertial frame M
moving at a velocity Vo and the velocity change of the inertial frame M, as
observed in an absolute stationary frame

As shown in Figure 6, in an inertial frame with mass M moving with velocity v, , an object with
mass m is thrown at angle 6 with a velocity v;.

Observing this in the absolute frame, the object with mass m moves as R, v, by the velocity

conversion factor R, (13), and in order to conserve momentum, the inertial frame with mass M

. . . . mov
moves in the opposite direction at v, = 1\; L

velocity.
0



Therefore, the velocities of m and M observed in the absolute stationary inertial frame can be
expressed as:

Uy = Vo2 + 2vyvcos(6) + v2 (25)

myv

mov 2
vy = \/voz — ZvoM—Ocos(Q) + (T) (26)
0 0

Using the mass increase factor y from (19), m and M are expressed as follows:

my
m=myy =
oY o2 (27)
-

M=M Mo

- oY = Vn (28)
2
Using Equations (25) to (28), the kinetic energy observed in the absolute stationary inertial
frame can be calculated as follows:
val Ryv;
Fra@) = [ vmdOng) + [ vd (M)
0 0
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3.2 Momentum observed in Moving Inertial Frame

The moving inertial kinetic energy Exs can be calculated with the momentum P;, and velocity v
as follows:

V1

Eyo(vy) = f vd(Py) (30)

0

Since the kinetic energy Eg, calculated in the absolute stationary inertial frame, and the kinetic
energy Exs calculated in the moving inertial frame must be the same, d(Ps) can be obtained by
differentiating (30) and (29) as follows:



d(EKs(V)) = vd(Ps) = d(Ege(v))

acpy) = e

myc3 1 _ 1 _ DRy, cos(6) (31)
B z2_,2 3
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The momentum in the moving inertial frame can be obtained by integrating d(Ps) (31) as
follows:

vy V11 vy cos(8) + R,v vg cos(6)
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3.3 Inertial Mass in a Moving Inertial Frame

Using the momentum Equation (32) in the moving inertial frame, the inertial mass in the
moving inertial frame can be obtained as follows:

Ps(v m 2vy%(cos8)?
m = lim (1): 0 <1+C o ( ) )

;50 vV ,1 I 2 —py?(sind)?
YA
c

Based on (33), the inertial mass is a function of the velocity of the inertial frame and direction.

(33)



4.0 Analysis in 3-Dimensional Inertial Frame

4.1 3-Dimensional Velocity Conversion Factor
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Figure 7. The path of light in a spaceship, as observed from a 3-dimensional
absolute stationary inertial frame

Based on the method in Section 2.1, the 3D length conversion factor R 3, can be obtained as
follows.

(ct1)? = (vyt1)? + 2vyt1LcosOcose + (Lcosh)? + (Lsind)? = (vyt1)? + 2vt1Lcosfcosg + L2

(ct2)? = (vyt2)? — 2vgt2LcosBHcosp + (Lcosh)? + (Lsind)? = (vt2)? — 2vyt2LcosOcosp + L2

ZL\/(cosecosq))zvo2 + (c? — vy?)

tl1+t2 = (34)
+ c? — v,y?
Based on assumption 3, t1+t2 (34) must be the same as t3+t4 (1).
2 — vy 1
Riap = Lo 2,2 2 N
0 /(cosbcos@)2vg? + (c2 — vg?) Jl . o (cosbeosp)? (35)
c? — v,y?

The 3D velocity conversion factor R, 5, can be obtained using the time conversion factor R (8)
and the length conversion factor R; 3, (35) as follows:

R, 2 —v,’ 1
R, =-—22_ .
vsD Ry ( c Ve —vy2(1 — cos2@cos?6)

3 <1 v02> 1 [, 1 (36)
c? \/1 ~ v52(1 = cos?pcos?6) c V€2 —vg2sinZp — vy2cos?psin2
2



4.2 Maximum Velocity in a Moving Inertial Frame
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Figure 8. Velocity observed in absolute stationary inertial frame for an object
thrown by V1 in an inertial frame moving at velocity Vo

When an object is thrown at v, in an inertial frame moving at v, , it is observed as R, v, in an

absolute stationary inertial frame, so the object velocity observed in the absolute stationary
inertial frame can be expressed as follow:

Va = \/Uoz + 2VgR,, 3pV1€059C0SO + Ry 37172

) 2 2 2 (37)
c? — v,

cyJc2 — vy2(1 — cos2@cos?6)

c? — v,

= UOZ + 21]0171 > vlz
cyJc2 — vy2(1 — cos2@cos?6)

cosgcost + (

Since the velocity v, observed in an absolute stationary inertial frame cannot exceed the speed
of light, c, the maximum value of v; can be obtained by substituting v, = c in (37) as follows:
Cc

V1 max = m\/cz —v%(1 — cos?¢cos?0) - [—vocosgocos@ + \/c2 —v2(1 — cosz<pc0526)] (38)

Ddg = Ul_maxdt

Figure 9. Circular motion at the maximum velocity of the inertial system



At any ¢, the average velocity of v; .4 in 0< 6 < 2m can be obtained by dividing the
circumference of a circle with radius D, that is, 2nD by the time required for circular motion. As
shown in Figure 9, the time it takes to go around the circle, T, is obtained by integrating the

time to travel Dd6 with vy 14, that s, over 0<6<2m.

V1 _max

2T Dde D (" VoC0SQC0SH 2mD
0o Vimax CJo Je2 —vy2sinZp — vy2sin26 ¢

Since the time for circular motion at the maximum velocity is constant regardless of the
direction, the average maximum velocity, V; gpe max iS always c. This means that the circular
motion of an object in a moving inertial frame cannot exceed the speed of light, cin any
direction

2nD
V1 _ave max = m =c (40)
s

Suppose we observe the forward light, that is, the light in the direction of? <6< gand _7” <

Q< gfrom a spaceship moving at the speed of light.

When v, is close to ¢, Equation (38) converges to ¢/2 for the direction of _7” <O< %and _2—” <

¢ < as follows:

VU1_max _c_front — Jgr—l}c V1 max
_ c { —v,(1 — cos?¢cos?8)
= lim
ez = vy2(1 — cos2gcos?6)
+ \/c2 — 12 (1 — coszq)coszg)] (41)
vo(1 — cos?@pcos?0) ]}
V2 —v2(1 — cos2pcos?8)

—VyCco0S@cosO
vo—C —2170 [ 0 ¢

++/c2 —vy2(1 — cos2¢cos?h) [— cosgpcos —

C

2



4.3 3-Dimensional Kinetic Energy, Momentum and Inertial Mass in a Moving
Inertial Frame

Rv3pVi 'm

Figure 10. The velocity of an object m thrown with a velocity V1 in an inertial frame
M moving at a velocity Vo and the velocity change in the inertial frame M,
as observed from an 3D absolute stationary inertial frame

The velocity of an object m thrown in a moving inertial frame and the velocity of the inertial
frame M can be obtained as follows.

Uy = Vo2 + 2vyvcosfcosg + 12

5 myv mov\?
Uy = [Vp” — ZUOM—Ocosecosq) + (M_o)

Based on the method used in Section 3.1, the 3D kinetic energy in an inertial frame can be
obtained as follows:

Ry 3pv;

v d(mvy,) +f vy d(Mvy)
0

Ry 3pv1

Epa(v1) = f

0

1 1

(vo2 + 2vgR 0 R,%v,? _w’
1 - Wo voR,vcosOcosg + R, vl) 2

= moc

(42)
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movoR, v, cos6cose
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Based on the method used in Section 3.2, the 3D momentum in an inertial frame can be
obtained as follows.

moR R,vq + 2vycosfOcosg
Ps_3D(9'(P' V1) = OUZZ = :
( - C_z) \/1 B (vo2 + 2R, VoV, cosOcosg + R,*v,2)
2
vycosfcose
-2 ——"2- () (43)
Vo

-5

+ 1 2R, vov;cos0cosp + R,%v,2  vyR,v,c0s0coS@ +1
n _ —
CZ — UOZ CZ — UOZ

Based on the method used in Section 3.3, the 3D inertial in an inertial frame can be obtained as
follows.

msp = llm

v1-0 V1 v1-0 dvl (44)

Ps3p(vy) | dPs3p(vy) mg 2v,%cos%0cos? @
=== = — lim = = 1+ 5 > > >
Vo c? —vy%(1 — cos?Bcos? )
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4.4 Hafele-Keating Experiment

The Hafele-Keating experiments [R-3] and [R-4] were conducted in 1971 to verify special
relativity. This experiment was carried out with a cesium atomic clock. Four atomic clocks
were placed in an airport, and four atomic clocks were loaded on an airplane to circle the earth
in the east and west directions.

The results of the experiment are as follows:

nanoseconds, predicted Experiment
Result
gravitational kinematic Total nanoseconds,
(general relativity) | (special relativity) measured
Eastward +144 £14 -184 £18 -40 £23 -59 110
Westward +179 £18 +96 £10 +275 21 +273 £7

Considering the predicted time gain by general relativity, the experimental results showed the
time gain by special relativity in the eastward plane is -0.59x107 - 1.44x10”7 = -2.03x10” and



the time gain in the westward plane is 2.73x107 - 1.79x107 = 9.4x10°8. According to special
relativity, since all motion is relative, the time gain experienced in an airplane flying in both
east and west directions should be negative.

The result of this experiment is interpreted as follows according to the theory presented in this

paper.

East
DsdO
Dpd6

D ”
7 De Vs+Vp
0
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Vs-Vp
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Figure 11. Airplane travel around the Earth, which rotates in the east

Assuming the following conditions in Figure 11

Earth Radius Dg = 6371 km

Earth’s Rotation Velocity and Direction vy = 1670 km/hr, East

Airplane Altitude from the center of the Earth D, = 6381 km

Airplane Velocity relative to Earth’s surface v, = 1000 km/hr

The inner circle (radius Dg) is the Earth's surface and is rotating at a velocity v and the outer
circle (radius Dp) is the airplane's path.

The time at the center of the Earth (no Earth’s rotation) that it takes for the Earth surface to
pass Dsd@ at the Earth’s rotation velocity vy is:

dtge = 5% (a5)
BC = T
This time can be expressed as follows in the absolute inertia frame.
c D¢d6 c
dtaps gc = dtec = (46)

c2—vy2  Us \Jc2—vy?



The time at the Earth's surface, dtgs , is expressed as (47) using the time in absolute stationary
inertial frame (46) and the Earth's surface velocity v, g5 obtained based on (37).

Dsd6 ¢ 1— Vabs_ES>
vs JcZ — 2 c? @)
_ Dgdo c \/1 vo% + 2VgR,, Vscospcosh + R, 3p*vs?

Us \Jc?2 —vy?

Since an airplane traveling eastward is in the same direction as the Earth’s rotation, the time in
this airplane can be expressed as (48) using the time and airplane velocity v, p from the
absolute stationary inertial frame.

thS =

c2

Dpdf ¢ Vaps_PE”
dtPE = 1-— —_2
Vs + Vp [cZ — p,2 c )
_ Dpdf c . V% + 2VgRy,, (Vs + vp)cospcosd + Ry, 3p° (Vs + vp)?
Vs + Vp [c? — vy? c?

Since an airplane traveling westward is in the opposite direction to the Earth’s rotation, the
time in this airplane can be expressed as (49) using the time and airplane velocity v, py from
the absolute stationary inertial frame.

Dp,d@ c v 2
dtpy = p 1 _ Yabs pw

R Sk - (49)

_ Dpdb c \/1 V9% + 2vgRy, , (Vs — vp)cospcosh + Ry 3p%(vs — vp)?

c?

Since the Earth rotates, the airplane departing in the eastward direction circles the Earth twice
and meets the departing point (Airport) at 65, which circles the Earth once.

_ 2m[2Dpvs — Ds(vs + vp)]
7 Ds(vs + vp) — Dpvs

= 243.73 (50)

Assuming ¢ =0 and vy = 300km/sec, the time passed at the airport and in the plane traveling
eastward can be calculated as follows:

4t+0g

TPlane_East = f dtPE
0

Dp Vo2 + 20Ry, , (Vs + vp)cos@cosh + Ry 3p” (Vs + vp)? 4o (51)

c 4T+0F
= 1 —
(vs +vp) [c2 — vOZJ;) c?

= 40.19837554470179 hour



27T+GE

Tearth_East = f dtgs
0

5 (52)
vo? + 2vyR,,  vscospcost + R, 3p vs?

_ & c jZﬂ+BE 1 de
Vg /CZ _UOZ 0 CZ

The time gain in the plane travelling eastward is

Tpiane East — Tearth Ease = —2.39 - 1077 (Time gain measured during eastward travel, —2.03 - 1077)

Since the Earth rotates, the airplane departing in the westward direction meets the departing
point (Airport) at 8y, , which circles the earth once.

21[0 - Dpvs — Ds(vs — vp)]

6., =
v Dg(vs —vp) — Dpvs

= 240.57 (53)

The time passed at the airport and in the plane traveling westward can be calculated as follows:

Ow

TPlane_West = dtPW
0

Dp V9% + 2VgR,,,, (Vs — vp)cospcosh + Ry 3p°(vs — vp)? 4 (54)

c feW
= 1 0
(s —=vp) Jc2 —vy2 )y c?

= 39.98818631489202 hour

277.'+9W
Tearth west = f dtgs
0
Ds c f27r+9w . V9% + 2VyRy, , Vscospcosh + R, 3p*vs? 0 (55)
Us \Jc? —vy2 Jo c?
= 39.98818631484384 hour

The time gain in the plane travelling westward is

Tpiane west — Tearth wese = 1.74 - 1077 (Time gain measured during westward travel, 9.4 - 1078)

In this way, it can be predicted that time goes slower in the eastward travel than on the ground

and faster in the westward travel, which is consistent with the results of the Hafele-Keating
experiment to some extent.



4.5 Twin Paradox

\v

\

Figure 12. A twin brother travels in a spaceship to an orange star

Let's imagine that the younger twin remains on Earth, and the older twin flies to an orange star
in a spaceship and returns. The time that has passed for the younger twin on Earth is

.. . JC2-v42 . . . .
Tewin_earth, this timeis Tyyin aps = Tewin_eartn % in the absolute stationary inertial frame,

so the time that has passed for the older twin in the spaceship on the way to the star is

2 2 2,2
2 c? — (vo* + 2voRy,, v, cOS@COSO + Ry, 3p° 1y
T _ Tiwin_earth c 1 Z Ttwin_earth\/ ( 0 0% vsp v3 )
twin_space_1 — - 5 =
2 V€2 —vy? c 2 [cZ = p,2

The time elapsed in the spaceship while returning from the star to Earth can be calculated as
follows, since it flies in the opposite direction.

\/CZ — (vo? — 2vgRy, , V1 €OS@COSO + Ry, 3p°v42)

Ttwin S
_space_2
2 [c2 — Vo2

Therefore, the time thas has passed for the older twin in the spaceship during the round trip to
the orange star is estimated as follows:

_ Ttwin_earth

Ttwin earth 2
Tewin_space =~ —— \/CZ — (vo? + 2vgRy, , V1 cOSPCOSO + Ry, 3p°V12)
24/c% — v, (56)

+ ch — (vo2 — 2vgR,, , v1cOS@COSH + Rv_3D2v12)>

For example, assuming v, = 0.01c, 8 = 0, ¢ = 0, when the twin brother returns from a star 7
light years away from Earth in a spaceship flying at v; = 0.7c, 20 years have passed for the
younger twin on Earth and 14 years have passed for the older twin in the spaceship as per (56).



5.0 Conclusion

The conclusion of this study and the difference from the theory of special relativity are as follows:

Theory of
Special Relativity

Conclusion of this study

Absolute Stationary
Inertial Frame

None

Exists

Constancy of Light | Constantin all Constant only in the absolute stationary inertial frame.
Speed inertial frames In a moving inertial frame, the round-trip speed of light is constant.
Velocity of a moving | No way to Measurable by experiment
inertial frame measure c?
Vo = Ats_maxz_LO
The Speed of light c ¢
observedin a 2

spaceship flying at
the speed of light

Twin Paradox

Not explained
clearly

Ttwin earth
—_— ch — (ve2 + 2voR,, V1 cOS@COSH + R, 3p°v42)
2,/¢c? —vy?

+ \/cz — (ve2 — 2vyR,, 1 cOS@COSH + R,,_3D2v12)>

Hafele-Keating

Not explained for

Explained why the westward plane clock is faster than the clock in

Experiment westward plane earth
clock
Momentum MoVy
1 — vy ? myR, R,v; + 2v, cos(6)
2
¢ _ Vo~ 2 2., 2
2 (vo? + 2R, vy cos(B) + R,*v42)
_ —
v, cos(0
_ v cos(6) 2 — In(2)
1702
-2
2R, vy cos(8) + R,2v,2  vyR,v, cos(
+ln<J1_ ot c050) + R*ui? v, 2()+1>]
c? — v, c?z —v,
Kinetic Energy 1
myc? -1 5 1 1 myvoR,v; cos(8)
_h- Mo B 2 - e
c? \/1 B (voz + 2vR, vy czos(G) + R,,Zvlz) J — CLZ (1 _ 1%)2
C
Inertial Mass Mo mg - 2v,%(cos0)?
1— vo® 2 c? — vy?%(sinh)?
c2 1 —20_

c2
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