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Kinematics of moving a point along an ellipse 

Abstract 

The vectors of velocity and acceleration of various ways of moving a point along an ellipse are 

investigated. 

Keywords 

ellipse, vector, velocity, acceleration. 

Note the property of collinear vectors on the plane - Rectangles built on vectors, figure 1, should 

be similar: 

𝐵𝐷

𝐴𝐷
=

𝐵1𝐷1

𝐴1𝐷1
            (1) 

 

Figure 1 

There is a system of equations for a parametric pendulum (2) 

The parameter is the angle of rotation, independent of time. 

{
𝑥 = 𝑟(𝜑)·𝑐𝑜𝑠(𝜑)

𝑦 = 𝑟(𝜑)·𝑠𝑖𝑛(𝜑)
           (2) 

Option 1. Point C moves along an ellipse relative to the center, figure 2 
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. 

Figure 2 

Let us substitute into system (2) the radius of the ellipse relative to the center 

𝑟(𝜑) =
𝑏

√1−𝑒2𝑐𝑜𝑠2𝜑
           (3) 

{
𝑥 =

𝑏

√1−𝑒2𝑐𝑜𝑠2𝜑
 ·𝑐𝑜𝑠(𝜑)

𝒚 =
𝑏

√1−𝑒2𝑐𝑜𝑠2𝜑
·𝑠𝑖𝑛(𝜑)

          (4) 

Let's differentiate twice. We get the coordinates of speed and acceleration: 

𝑑𝑥

𝑑𝜑
=

𝑑

𝑑𝜑
(

𝑏∗𝑐𝑜𝑠(𝜑)

√1−𝑒2∗𝑐𝑜𝑠2𝜑
) = −

𝑏∗𝑠𝑖𝑛(𝜑)

(1−𝑒2∗𝑐𝑜𝑠2𝜑)3/2       (5) 

𝑑𝑦

𝑑𝜑
=

𝑑

𝑑𝜑
(

𝑏𝑠𝑖𝑛(𝜑)

√1−𝑒2𝑐𝑜𝑠2𝜑
) =

𝑏(1−𝑒2)𝑐𝑜𝑠(𝜑)

(1−𝑒2∗𝑐𝑜𝑠2𝜑)3/2
        (6) 

𝑑2𝑥

𝑑𝜑
=

𝑑2

𝑑𝜑
(

𝑏𝑐𝑜𝑠(𝜑)

√1−𝑒2𝑐𝑜𝑠2𝜑
) = −

𝑏∗𝑐𝑜𝑠(𝜑)(2𝑒2𝑐𝑜𝑠2𝜑−3𝑒2+1)

(1−𝑒2∗𝑐𝑜𝑠2𝜑)5/2       (7)  

𝑑2𝑦

𝑑𝜑
=

𝑑2

𝑑𝜑
(

𝑏𝑠𝑖𝑛(𝜑)

√1−𝑒2𝑐𝑜𝑠2𝜑
) =

𝑏∗𝑠𝑖𝑛(𝜑)(𝑒2−1)(2𝑒2𝑐𝑜𝑠2𝜑+1)

(1−𝑒2∗𝑐𝑜𝑠2𝜑)5/2       (8) 

Let's compare the ratio of the coordinates of the radius and acceleration: 

𝑥

𝑦
=

cos 𝜑

sin 𝜑
            (9) 

 
𝑑2𝑥

𝑑𝜑

𝑑2𝑦

𝑑𝜑

=
(−2𝑒2𝑐𝑜𝑠2𝜑+3𝑒2−1)𝑐𝑜𝑠(𝜑)

𝑠𝑖𝑛(𝜑)(𝑒2−1)(2𝑒2𝑐𝑜𝑠2𝜑+1)
         (10) 

If 𝑒 = 0, then 

𝑑2𝑥

𝑑𝜑

𝑑2𝑦

𝑑𝜑

=
𝑥

𝑦
=

cos 𝜑

sin 𝜑
        (11) 
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We got a circle, a special case of an ellipse, figure 3. 

In figures 2 - 5 are marked with red lines for speed, green for acceleration. 

 

Figure 3 

If 𝑒 ≠ 0, then 

𝑑2𝑥

𝑑𝜑

𝑑2𝑦

𝑑𝜑

≠
𝑥

𝑦
, figure 4.         (12) 
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Figure 4 

Option 2. Point C moves along an ellipse relative to the focus, figure 5. 

 

Figure 5 
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Let us substitute into system (2) the radius of the ellipse with respect to the focus: 

𝑟(𝜑) =
𝑏2

𝑎(1−𝑒∗𝑐𝑜𝑠(𝜑))
           (13) 

{
𝑥 =

𝑏2

𝑎(1−𝑒∗𝑐𝑜𝑠(𝜑))
·𝑐𝑜𝑠(𝜑)

𝒚 =
𝑏2

𝑎(1−𝑒∗𝑐𝑜𝑠(𝜑))
·𝑠𝑖𝑛(𝜑)

          (14) 

Let's differentiate twice. We get the coordinates of speed and acceleration: 

𝑑𝑥

𝑑𝜑
=

𝑑

𝑑𝜑
(

𝑏2∗𝑐𝑜𝑠(𝜑)

𝑎(1−𝑒∗𝑐𝑜𝑠(𝜑))
) =

−𝑏2∗𝑠𝑖𝑛(𝜑)

𝑎(𝑒∗𝑐𝑜𝑠(𝜑)−1)2         (15) 

𝑑𝑦

𝑑𝜑
=

𝑑

𝑑𝜑
(

𝑏2∗𝑠𝑖𝑛(𝜑)

𝑎(1−𝑒∗𝑐𝑜𝑠(𝜑))
) =

𝑏2(𝑐𝑜𝑠(𝜑)−𝑒)

𝑎(𝑒∗𝑐𝑜𝑠(𝜑)−1)2         (16) 

𝑑2𝑥

𝑑𝜑
=

𝑑2

𝑑𝜑
(

𝑏2∗𝑠𝑖𝑛(𝜑)

𝑎(1−𝑒∗𝑐𝑜𝑠(𝜑))
) =

𝑏2(𝑒∗(cos 𝜑)2+cos 𝜑−2𝑒)

𝑎(𝑒∗𝑐𝑜𝑠(𝜑)−1)3
       (17) 

𝑑2𝑦

𝑑𝜑
=

𝑑2

𝑑𝜑
(

𝑏2∗𝑠𝑖𝑛(𝜑)

𝑎(1−𝑒∗𝑐𝑜𝑠(𝜑))
) =

𝑏2𝑠𝑖𝑛(𝜑)∗(𝑒∗(cos 𝜑)2−2𝑒2+1)

𝑎(𝑒∗𝑐𝑜𝑠(𝜑)−1)3       (18) 

Let's compare the ratio of the coordinates of the radius and acceleration: 

𝑥

𝑦
=

cos 𝜑

sin 𝜑
            (19) 

 
𝑑2𝑥

𝑑𝜑

𝑑2𝑦

𝑑𝜑

=
𝑒∗(cos 𝜑)2+cos 𝜑−2𝑒

𝑠𝑖𝑛(𝜑)∗(𝑒∗cos 𝜑−2𝑒2+1)
          (20) 

If 𝑒 = 0, then 

𝑑2𝑥

𝑑𝜑

𝑑2𝑦

𝑑𝜑

=
𝑥

𝑦
=

cos 𝜑

sin 𝜑
        (21) 

We get a circle, a special case of an ellipse, figure 6. 



6 
 

 
Figure 6 

If 𝑒 ≠ 0, then 

𝑑2𝑥

𝑑𝜑

𝑑2𝑦

𝑑𝜑

≠
𝑥

𝑦
, figure 7.         (22) 

 

Figure 7 



7 
 

From the point of view of mathematics, all these examples are logical. 

Contradictions arise when these calculations are applied to real experiments. This is especially 

clearly seen in figure 7. Velocities and accelerations at aphelion are greater than at perihelion. 

Let us introduce time (t) into system (2). 

{
𝑥 = 𝑟(𝜑(𝑡))·𝑐𝑜𝑠(𝜑(𝑡))

𝒚 = 𝑟(𝜑(𝑡))·𝑠𝑖𝑛(𝜑(𝑡))
          (23) 

We calculate the first and second time derivatives from the system of equations. 

Option 1a. Point C moves along an ellipse relative to the center, figure 1. 

𝑟(𝜑(𝑡)) =
𝑏

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
          (24) 

𝑥̇ =
𝑑

𝑑𝑡
(

𝑏∗𝑐𝑜𝑠(𝜑(𝑡))

√1−𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2
) = −

𝑏∗sin(𝜑)∗𝜑̇

√(1−𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2

)
3
         (25) 

𝑦̇ =
𝑑

𝑑𝑡
(

𝑏∗𝑠𝑖𝑛(𝜑(𝑡))

√1−𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2
) = −

𝑏∗(𝑒2−1)∗𝑐𝑜𝑠(𝜑(𝑡))∗𝜑̇

√(1−𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2

)
3
       (26) 

𝑥̈ =
𝑑2

𝑑𝑡2 (
𝑏∗𝑐𝑜𝑠(𝜑(𝑡))

√1−𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2
) =

−𝑏

√(1−𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2

)
5

(𝜑̇2
(2𝑐𝑜𝑠(𝜑(𝑡))

3
∗ 𝑒2 − 3𝑒2 ∗ 𝑐𝑜𝑠(𝜑(𝑡)) + 𝑐𝑜𝑠(𝜑(𝑡))) +

𝜑̈ ∗ 𝑠𝑖𝑛(𝜑(𝑡)) (1 − 𝑒2 ∗ 𝑐𝑜𝑠(𝜑(𝑡))
2

))         (27) 

𝑦̈ =
𝑑2

𝑑𝑡2
(

𝑏∗𝑠𝑖𝑛(𝜑(𝑡))

√1−𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2
) =

𝑏

√(1−𝑒2𝑐𝑜𝑠(𝜑(𝑡))
2
)

5
(𝜑̈ (𝑐𝑜𝑠(𝜑(𝑡)) − 𝑒2𝑐𝑜𝑠(𝜑(𝑡))

3
− 𝑒2𝑐𝑜𝑠(𝜑(𝑡))) +

𝜑̇
2 (−𝑠𝑖𝑛(𝜑(𝑡)) − 2𝑒2𝑠𝑖𝑛(𝜑(𝑡))𝑐𝑜𝑠(𝜑(𝑡))

2
+ 2𝑠𝑖𝑛(𝜑(𝑡))𝑒4𝑐𝑜𝑠(𝜑(𝑡))

2
+ 𝑠𝑖𝑛(𝜑(𝑡))𝑒2))  (28) 

Next, the kinematic equation is derived 𝜑̈ =
2∗𝑒2∗𝑐𝑜𝑠(𝜑)∗𝑠𝑖𝑛(𝜑)∗𝜑̇2

1−𝑒2∗𝑐𝑜𝑠(𝜑)2
, [1]   (29) 

Compare the coordinates of radius and acceleration: 

𝑥

𝑦
=

cos 𝜑(𝑡)

sin 𝜑(𝑡)
               

𝑥̈

𝑦̈
=

𝜑̇2(2𝑐𝑜𝑠(𝜑(𝑡))
3

∗𝑒2−3𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))+𝑐𝑜𝑠(𝜑(𝑡)))+𝜑̈∗𝑠𝑖𝑛(𝜑(𝑡))(1−𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2

)

𝜑̈(𝑐𝑜𝑠(𝜑(𝑡))−𝑒2𝑐𝑜𝑠(𝜑(𝑡))
3

−𝑒2𝑐𝑜𝑠(𝜑(𝑡)))+𝜑̇2(−𝑠𝑖𝑛(𝜑(𝑡))−2𝑒2𝑠𝑖𝑛(𝜑(𝑡))𝑐𝑜𝑠(𝜑(𝑡))
2

+2𝑠𝑖𝑛(𝜑(𝑡))𝑒4𝑐𝑜𝑠(𝜑(𝑡))
2

+𝑠𝑖𝑛(𝜑(𝑡))𝑒2)

         (30) 
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If e = 0, then by formula (29) 𝜑̈ = 0,  𝜑̇ = 𝑐𝑜𝑛𝑠𝑡  

We got a circle, a special case of an ellipse, figure 8.  

                    
𝑥̈

𝑦̈
=

−𝜑̈𝑠𝑖𝑛(𝜑(𝑡))−𝜑̇2𝑐𝑜𝑠(𝜑(𝑡))

𝜑̈𝑐𝑜𝑠(𝜑(𝑡))−𝜑̇2𝑠𝑖𝑛(𝜑(𝑡))
=

−𝜑̇2𝑐𝑜𝑠(𝜑(𝑡))

−𝜑̇2𝑠𝑖𝑛(𝜑(𝑡))
=

𝑐𝑜𝑠(𝜑(𝑡))

𝑠𝑖𝑛(𝜑(𝑡))
=

𝑥

𝑦
         (31)                   

 

Figure 8 

If 𝑒 ≠ 0, then  
𝑥̈

𝑦̈
≠

𝑥

𝑦
, figure 9.   

  
     Figure 9 
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Option 2a. Point C moves along an ellipse relative to the focus, figure 5. 

Let us substitute into system (23) the radius of the ellipse with respect to the focus: 

𝑟(𝜑(𝑡)) =
𝑏2

𝑎(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
          (32) 

{

𝑥 =
𝑏2

𝑎(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
·𝑐𝑜𝑠(𝜑(𝑡))

𝑦 =
𝑏2

𝑎(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
·𝑠𝑖𝑛(𝜑(𝑡))

         (33) 

Let's differentiate twice. We get the coordinates of speed and acceleration: 

𝑥̇ =
𝑑

𝑑𝑡
(𝑟(𝜑(𝑡))𝑐𝑜𝑠(𝜑(𝑡))) =

𝑎∗𝑟2∗𝜑̇∗sin(𝜑)

𝑏2
        (34)  

𝑦̇ =
𝑑

𝑑𝑡
(

𝑝

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
𝑠𝑖𝑛(𝜑(𝑡))) =

𝑎∗𝑟2∗𝜑̇∗(𝑐𝑜𝑠(𝜑(𝑡))+𝑒)

𝑏2
     (35)  

𝑥̈ =
𝑏2((−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))∗𝑠𝑖𝑛(𝜑(𝑡))+𝑠𝑖𝑛(𝜑(𝑡)))𝜑̈+𝜑̇2(𝑒∗𝑐𝑜𝑠(𝜑(𝑡))

2
−2𝑒+𝑐𝑜𝑠(𝜑(𝑡))))

𝑎(𝑒∗𝑐𝑜𝑠(𝜑(𝑡))−1)
3   (36) 

𝑦̈ =
−𝑏

2
((−𝑐𝑜𝑠(𝜑(𝑡))(𝑒∗𝑐𝑜𝑠(𝜑(𝑡))−1)+𝑒)𝜑̈+2𝜑̇2

(𝑒2−
𝑒∗𝑐𝑜𝑠(𝜑(𝑡))+1

2
)𝑠𝑖𝑛(𝜑(𝑡)))

𝑎(𝑒∗𝑐𝑜𝑠(𝜑(𝑡))−1)
3     (37) 

Next, the kinematic equation is derived 𝜑̈ =
2∗𝑒∗sin(𝜑)∗𝜑̇2

1−𝑒∗cos (𝜑)
, [1]     (38) 

Let's compare the ratio of the coordinates of the radius and acceleration: 

𝑥

𝑦
=

cos 𝜑(𝑡)

sin 𝜑(𝑡)
   

𝑥̈

𝑦̈
=

𝜑̈∗𝑠𝑖𝑛(𝜑(𝑡))(𝑒∗𝑐𝑜𝑠(𝜑(𝑡))−1)−𝜑̇2(𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
2

−2𝑒+𝑐𝑜𝑠(𝜑(𝑡)))

−𝜑̈∗𝑐𝑜𝑠(𝜑(𝑡))(𝑒∗𝑐𝑜𝑠(𝜑(𝑡))−1)+2𝜑̇2∗𝑠𝑖𝑛(𝜑(𝑡))(𝑒2−
𝑒∗𝑐𝑜𝑠(𝜑(𝑡))+1

2
)
    (39) 

        

If 𝑒 = 0, then by formula (38) 𝜑̈ = 0,  𝜑̇ = 𝑐𝑜𝑛𝑠𝑡   

                    
𝑥̈

𝑦̈
=

−𝜑̈𝑠𝑖𝑛(𝜑(𝑡))−𝜑̇2𝑐𝑜𝑠(𝜑(𝑡))

𝜑̈𝑐𝑜𝑠(𝜑(𝑡))−𝜑̇2𝑠𝑖𝑛(𝜑(𝑡))
=

−𝜑̇2𝑐𝑜𝑠(𝜑(𝑡))

−𝜑̇2𝑠𝑖𝑛(𝜑(𝑡))
=

𝑐𝑜𝑠(𝜑(𝑡))

𝑠𝑖𝑛(𝜑(𝑡))
=

𝑥

𝑦
   (40)  

       (40)                   

We got a circle, a special case of an ellipse, figure 8. 

If 𝑒 ≠ 0, then 
𝑥̈

𝑦̈
≠

𝑥

𝑦
, figure 10. 
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Figure 10 

Option 3. Movement of the ellipsograph ruler with different speeds 

Article [2] considers uniform, uniformly accelerated, elliptical motion. Velocity and acceleration 

vectors are calculated. We present the graphical results of the movement of a point along an 

ellipse at different speeds. 

3.1 uniform movement, figure 11. 
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Figure 11 

3.2 uniformly accelerated motion, figure 12. 

 

Figure 12 

3.2 elliptical movement, figure 13. 
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Figure 13 

Conclusions 

Newton's second law states that the directions of the force and acceleration vectors coincide. 

Here, kinematic methods for calculating acceleration are considered. In the general case, the 

directions of the acceleration vectors are not directed to the point of the center of rotation. 

Note 

The article used materials from textbooks on mechanics. Perhaps, the derivation of the kinematic 

equation in the form of formulas [29, 38] is rarely given, so the article [1] is proposed. Velocity 

and acceleration hodographs, figures 3, 4, 6 – 10 were obtained by the program [1], link in the 

appendix. Velocity and acceleration hodographs of the ellipsograph, figures 11 - 13, obtained by 

the program [2], link in the appendix. 

Literature 

1. Viktor Strohm, Kepler's laws as properties of the kinematic equations of motion of a 

point along curves of the second order, 

https://www.academia.edu/60717349/Keplers_laws_as_properties_of_the_kinematic_equations_of_motion

_of_a_point_along_curves_of_the_second_order 

2. Viktor Strohm, Movement of the ellipsograph ruler with different speeds, 

https://www.academia.edu/91690243/Movement_of_the_ellipsograph_ruler_with_different_speeds 

Applications 

1. Viktor Strohm, program for calculating linear velocity and acceleration, 

Linear_acceleration_at_an_exe, 

https://drive.google.com/file/d/1t5aVI9ZqZ1jTQbnhxjEnIiDkr0qE7uee/view?usp=sharing 

https://www.academia.edu/60717349/Keplers_laws_as_properties_of_the_kinematic_equations_of_motion_of_a_point_along_curves_of_the_second_order
https://www.academia.edu/60717349/Keplers_laws_as_properties_of_the_kinematic_equations_of_motion_of_a_point_along_curves_of_the_second_order
https://www.academia.edu/91690243/Movement_of_the_ellipsograph_ruler_with_different_speeds
https://drive.google.com/file/d/1t5aVI9ZqZ1jTQbnhxjEnIiDkr0qE7uee/view?usp=sharing


13 
 

 

2. Viktor Strohm, программа вычисления линейной скорости и ускорения, 

Ellipsograph_exe, https://drive.google.com/file/d/1GgPfxHKfp8ewlC6PT-

5W_LP1xmWG5mpG/view?usp=sharing 

 

https://drive.google.com/file/d/1GgPfxHKfp8ewlC6PT-5W_LP1xmWG5mpG/view?usp=sharing
https://drive.google.com/file/d/1GgPfxHKfp8ewlC6PT-5W_LP1xmWG5mpG/view?usp=sharing

