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Abstract With the use of local dependency of probability density of local6

hidden variables on the instrument settings, it is demonstrated that Bell’s7

correlation formulation is incomplete. This result concurs with a previous com-8

putational violation close to quantum correlation with a computer model based9

on Einstein locality principles.10
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1 Introduction12

Einstein Podolsky and Rosen started a discussion about the foundation of13

quantum theory in 1935 [1]. Their work established what later has been called14

entanglement. Don Howard [2] wrote an interesting history of the discussion15

that followed from the publication of what we now know as the EPR paradox16

[1]. Here we will concentrate on Bell’s approach to the problem.17

In his famous paper, John Bell wrote down [3] a correlation that is based on18

(local) hidden variables. The experiment where Bell referred to is a spin-spin19

entanglement experiment. It was based on ideas of David Bohm [4]. Schemat-20

ically one can formulate it thus21

[A(â)]←∼ · · · ∼←∼ [S] ∼→∼ · · · ∼→ [B(b̂)] (1)

Here, the [A(â)] and [B(b̂)] represent the two distant measuring instruments.22

The â and b̂ are the unitary vector setting parameters. The [S] represents the23

source of an entangled pair of particles.24
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Einstein uncovered a correlation between distant measurements. Bell’s cor-25

relation formula between the setting parameters is presented in equation num-26

ber (2) of Bell’s paper. It is:27

P (â, b̂) =

∫
ρ(λ)A(â, λ)B(b̂, λ)dλ (2)28

The λ represent hidden variables and ρ(λ) represents the propbability density29

of those variables. The A(â, λ) represents the measurement at [A(â)] in (1)30

given the setting â. For spins, A(â, λ) = ±1 with 1 a spin-up and −1 a sin-31

down measurement. From equation (2) a number of inequalities were derived.32

The CHSH inequality is a very famous inequality and was turned into an33

experiment by Aspect [5].34

2 Thoughts about correlation and locality35

Considering the fact that people are awarded Nobelprizes for their work on36

the inequalities, we will nevertheless argue that the research is incomplete.37

One cannot conclude from their research that Einstein locality is ruled out38

in physical ”reality”. Let us start with noting a work together with Nagata39

and Nakamura, [6]. Here the mathematics of CHSH is inspected critically and40

a valid counter example is construed. In [7] a statistical way is construed to41

locally violate the CHSH with probability nonzero. The criticism on [7] did42

not touch its conclusion; it is possible locally violate the CHSH with prob-43

ability nonzero. The following result i.e. a computer program, supports that44

conclusion.45

Then, Geurdes [8] constructed a computer program based on local princi-46

ples. This program:47

– Substantially violates, i.e. ≈ 2.37, the CHSH inequality for 2-dim angular48

settings at A, ϕâj
∈ {97.39957, 113.48717} and at B, ϕb̂k

∈ {−82.32930,−26.37997}.49

With, j, k here 1, 2.50

– Has results which are close to quantum correlation for all four combinations51

of ϕâj and ϕb̂k
.52

If the CHSH really is mathematically solid, i.e. waterproof for local variable53

models, then the first breach would not be possible. If the local models are in54

no way able to reproduce quantum correlation, then, the second breach would55

not have been possible.56

Furthermore, we could set up the following analysis. Let us suppose that57

locality is not violated by allowing that the setting â influences a probability58

density at [A(â)]. Similarly for b̂ at [B(b̂)]. This makes sense in an Einsteinian59

way when â does not influence [B(b̂)] and vice versa. Furthermore, in 3 dimen-60

sional Euclidian space three orthonormal base vectors are defined by, {êk}3k=161

with components, (êk)n = δk,n. Here δk,n = 1, when k = n and δk,n = 0, when62
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k ̸= n and k, n = 1, 2, 3. With this definition we are able to write63

ω̂(φ, θ) =

3∑
j=1

ωj(φ, θ)êj , and, (3)64

ω1 = cos(φ) sin(θ), ω2 = sin(φ) sin(θ), ω3 = cos(θ)65

And, ωj = ωj(φ, θ). The ranges are Φ = {x ∈ R : 0 ≤ x ≤ 2π} and Θ = {x ∈66

R : 0 ≤ x ≤ π}. With || · || the Euclidean norm we have ω̂T · ω̂ = ||ω̂||2 = 167

for all (φ, θ) ∈ Φ×Θ. The upper T indicates the transpose of the vector.68

Subsequently, with (3), we are able to define â = ω̂(φAa, θAa) and b̂ =69

ω̂(φBb, θBb). Both (φAa, θAa) and (φBb, θBb) in Φ × Θ. The [A(â)] associated70

hidden variables are denoted by (φA, θA) ∈ Φ×Θ. The [B(b̂)] associated hidden71

variables are (φB , θB) ∈ Φ×Θ. If we then, in the language of Pettis integration72

measure theory [9] write for the A side variables73

µâ(dφAdθA) = δ(φAa − φA)δ(θAa − θA)dφAdθA (4)74

While for the B side variables the measure is75

µb̂(dφBdθB) = δ(φBb − φB)δ(θBb − θB)dφBdθB (5)76

The δ(y − x) is a Dirac delta function. This is a non-zero ”function”.77

Then, it follows that
∫
Φ×Θ

µâ(dφAdθA) =
∫
Φ×Θ

µb̂(dφBdθB) = 1. Hence,78

the measures in (4) and (5) are valid short hands for a Bell-form correlation79

formula. However, the influence of the setting is placed on the density. There80

is no nonlocality, i.e. [A(â)] is not influenced by the setting b̂ and vice versa,81

[B(b̂)] is not influenced by â. I.e. the values (φAa, θAa) are not influenced by82

(φBb, θBb) and vice versa. The effects are local as one can see from (4) and83

(5). If people think otherwise they have to come with proof of violation of84

Einstein locality here. If this proof is not possible -the present author thinks85

it obviously is not possible- then (4) and (5) are Einstein valid.86

Subsequently, let us per pair of entangled particles under investigation -87

here photons- define a r0 ∈ the interval (0, 1). The r0 is randomly selected.88

Then a measure ν0(dr) is defined by89

ν0(dr) = δ(r0 − r)dr (6)90

Here, δ, is again Dirac’s delta function and the variable r is in the interval91

(0, 1) as well. Hence, ν0(dr) ≥ 0 and
∫ 1

−1
ν0(dr) = 1 and is allowed as density.92

Let us then define two functions gA and gB with ΩA = (φA, θA), ΩB =93

(φB , θB) and94

gA(ΩA, ΩB , r0) =

{
1, 0 < r0 < 1

2
cos [∠ {ω̂ (ΩA) , ω̂ (ΩB)}] , 1

2 ≤ r0 < 1
(7)95

The function gB is defined as follows96

gB(ΩA, ΩB , r0) =

{
1, 1

2 ≤ r0 < 1
cos [∠ {ω̂ (ΩA) , ω̂ (ΩB)}] , 0 < r0 < 1

2

(8)97
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The ∠ {ω̂ (ΩA) , ω̂ (ΩB)} is the angle between unit length vectors ω̂ (ΩA) and98

ω̂ (ΩB). Note that |gA| ≤ 1 and |gB | ≤ 1. Note also that if λ = (ΩA, ΩB , r),99

the Bell correlation would then be equivalent to100

P (â, b̂) =

∫
ρâ(λ)ρb̂(λ)ρr0(λ)A(λ)B(λ)dλ (9)101

We note that the dependence on the settings (which are by definition a local102

phenomenon) is shifted to the densities. In the next section the integration103

will be performed in our set of variables and notation.104

If we for the moment concentrate on the selection A(λ) = gA(ΩA, ΩB , r)105

and B(λ) = gB(ΩA, ΩB , r), the following integral expression for P (â, b̂), with106

d2ΩA = dφAdθA similar B, can be obtained.107

P (â, b̂) =

∫
Φ×Θ

µâ(d
2ΩA)

∫
Φ×Θ

µb̂(d
2ΩB) (10)108

×
∫ 1

−1

ν0(dr)gA(ΩA, ΩB , r)gB(ΩA, ΩB , r)109

From the definition of ν0(dr) it follows110

P (â, b̂) =

∫
Φ×Θ

µâ(d
2ΩA)

∫
Φ×Θ

µb̂(d
2ΩB)gA(ΩA, ΩB , r0)gB(ΩA, ΩB , r0)(11)111

and r0 randomly from interval (0, 1) for each pair. Looking at the definition112

of gA and gB in (7) and (8), we arrive from the previous equation at113

P (â, b̂) =

∫
Φ×Θ

µâ(d
2ΩA)

∫
Φ×Θ

µb̂(d
2ΩB) cos [∠ {ω̂ (ΩA) , ω̂ (ΩB)}] (12)114

The subsequent step is to observe that115

cos [∠ {ω̂ (ΩA) , ω̂ (ΩB)}] = ω̂ (ΩA)
T · ω̂ (ΩB)116

Therefore, the separation in the integration can be performed as117

P (â, b̂) =

∫
Φ×Θ

µâ(d
2ΩA)

∫
Φ×Θ

µb̂(d
2ΩB)ω̂ (ΩA)

T · ω̂ (ΩB) = (13)118 [∫
Φ×Θ

µâ(d
2ΩA)ω̂ (ΩA)

]T
·
[∫

Φ×Θ

µb̂(d
2ΩB)ω̂ (ΩB)

]
119

Note that, ΩA = (φA, θA) hence by definition of µâ(d
2ΩA) = µâ(dφAdθA) in120

(4) and of µb̂(d
2ΩB) = µb̂(dφBdθB) in (5)121 ∫

Φ×Θ

µâ(d
2ΩA)ω̂ (ΩA) = (14)122 ∫ 2π

0

∫ π

0

δ(φAa − φA)δ(θAa − θA)ω̂ (φA, θA) dφAdθA =123

ω̂ (φAa, θAa) = â124
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and similar for b̂ on B variables. This implies from (13) that our P (â, b̂) = âT ·b̂.125

In other words, the quantum correlation has been reproduced from a Bell-126

type hidden variables model. Why could this not be prevented? The CHSH127

inequality suggests that this is impossible.128

3 An inequality129

In this section we will investigate the possibility of a Bell inequality based on130

our approach. This excercise will teach us something about the usefulness of131

inequalities and the fact that they can be violated by Bell hidden variables132

models despite people think otherwise. The equation we base ourselves on133

is (11) and introduce a slight adaptation. For ease of notation the Ω· vari-134

ables will be numbered and we note also that for a third vector ĉ, we have,135 ∫
Φ×Θ

µĉ(d
2Ω3) = 1. Therefore136

P (â, b̂) =

∫
Φ×Θ

µâ(d
2Ω1)

∫
Φ×Θ

µb̂(d
2Ω2)

∫
Φ×Θ

µĉ(d
2Ω3)AB(Ω1, Ω2) (15)137

Here, AB(Ω1, Ω2) is a short-hand for gA(Ω1, Ω2)gB(Ω1, Ω2), etc. And for com-138

pleteness, d2Ωn = dφndθn with n = 1, 2, 3. Take α from the real interval139

(−1, 1). And so we can write down the triviality140

AB(Ω1, Ω2) = AB(Ω1, Ω2) [1 + αAB(Ω2, Ω3)] (16)141

−αAB(Ω1, Ω2)AB(Ω2, Ω3)142

Then we may note that 1 + αAB(Ω2, Ω3) ≥ 0. Moreover {−AB(Ω1, Ω2)} ≤143

1 and AB(Ω2, Ω3) ≤ 1, so that {−AB(Ω1, Ω2)}AB(Ω2, Ω3) ≤ 1. With an144

integration procedure like in (15) we then arrive at145

P (â, b̂) =

∫
µâ(d

2Ω1)µb̂(d
2Ω2)µĉ(d

2Ω3)AB(Ω1, Ω2) [1 + αAB(Ω2, Ω3)](17)146

+α

∫
µâ(d

2Ω1)µb̂(d
2Ω2)µĉ(d

2Ω3){−AB(Ω1, Ω2)}AB(Ω2, Ω3)147

Here we have used a somewhat simplified write-up for three integration pro-148

cedures in (15). I.e.149 ∫
µâ(d

2Ω1)µb̂(d
2Ω2)µĉ(d

2Ω3)150

≡
∫
Φ×Θ

µâ(d
2Ω1)

∫
Φ×Θ

µb̂(d
2Ω2)

∫
Φ×Θ

µĉ(d
2Ω3)151

Subsequently,152

P (â, b̂) ≤
∫

µâ(d
2Ω1)µb̂(d

2Ω2)µĉ(d
2Ω3) [1 + αAB(Ω2, Ω3)] (18)153

+α

∫
µâ(d

2Ω1)µb̂(d
2Ω2)µĉ(d

2Ω3)154
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Because155 ∫
µâ(d

2Ω1)µb̂(d
2Ω2)µĉ(d

2Ω3)AB(Ω1, Ω2) [1 + αAB(Ω2, Ω3)] ≤156 ∫
µâ(d

2Ω1)µb̂(d
2Ω2)µĉ(d

2Ω3) [1 + αAB(Ω2, Ω3)]157

we find that158

P (â, b̂)− αP (b̂, ĉ) ≤ 1 + α (19)159

If then we substitue α = −|α| and â =
(
1
2

√
2, 1

2

√
2, 0

)
and b̂ = ĉ = (1, 0, 0),160

the inequality is161

1

2

√
2 + |α| ≤ 1− |α|162

Hence, |α| ≤ 1
2

(
1− 1

2

√
2
)
≈ 0.14645. This implies that if −1 < α < −0.14645,163

the inequality (19) will be violated by the Bell-like expression of (15). Note164

that 1 + αAB(Ω2, Ω3) = 1− |α|AB(Ω2, Ω3) ≥ 0 as required.165

This result tells us that from (15) a Bell-like inequality can be derived.166

And that the same expression can violate the inequality and reproduce the167

quantum correlation. What does this tell us about a big inequality such as168

CHSH? To be more specific, is an inequality like CHSH sufficient to exclude169

that Bell’s formula reproduces the quantum correlation. For (15) this is not a170

restriction such as given in (19) for α in the real interval
(
−1,− 1

2

(
1− 1

2

√
2
))
.171

Finally, perhaps trivial but when â =
(
0, 1

2

√
2, 1

2

√
2
)
, then with the same172

b̂ = ĉ = (1, 0, 0), there is no violation. What is the value of violation vs no173

violation of an inequality looking at a hidden variables model?174

4 Conclusion and discussion175

Because of the weight of the matter, one first must acknowledge that our176

P (â, b̂) is within the concept of what Bell intended with his correlation. To be177

more specific. Why would a selection of a setting that only affects the density of178

one associated variable, not be Bell? Secondly, there is no breach of locality as179

we have already argued in this paper. I.e. selection of â does not influence the B180

variables and vice versa. The settings are Einstein local and settings influence181

the density of only one variable and gagB = cos [∠ {ω̂ (ΩA) , ω̂ (ΩB)}] without182

the necessity to know ΩAa and ΩBb and the A integration occurs encapsulated183

at [A(â)] and the B integrations encapsulated at [B(b̂)]. The ν0(dr) integration184

occurs in [S]. Note also the possibility of other ga, gB with r0 ∈ (0, 1)\
{

1
2

}
185

random selection. E.g.186

gA(ΩA, ΩB , r0) =

(
H

(
−1

2
+ r0

)
+H

(
1

2
− r0

)
sgn [CA,B ]

)√
|CA,B |187

gB(ΩA, ΩB , r0) =

(
H

(
1

2
− r0

)
+H

(
−1

2
+ r0

)
sgn [CA,B ]

)√
|CA,B |188
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and CA,B = cos [∠ {ω̂ (ΩA) , ω̂ (ΩB)}], and sgn the sign function. The H(x) =189

1⇔ x > 0 and H(x) = 0⇔ x < 0. And, sgn [CA,B ]
√
|CA,B |

√
|CA,B | = CA,B .190

Hence, AB = gAgB = CA,B . This means, the A and B then both simultane-191

ously depend on λ as in Bell’s (2). Thirdly, therefore, the use of λ is similar to192

Bell’s. If λ = (ΩA, ΩB , r) = (φA, θa, φB , θB , r) are somehow violating locality193

principles, then, so does Bell’s ”settings in measurement functions” formula-194

tion of the correlation where a product of A and B occur as well. In that case,195

local hidden variable models would not stand a chance in any experimental test196

derived from (2). If readers object to the use of ν0(dr) then, obviously, the r0197

can be introduced as a [S] viz. (1), parameter without integration procedure.198

If readers use prejudice to claim that in this case nonlocal hidden variables199

are employed then they should precisely demonstrate where my locality claim200

is wrong.201

Finally, the result that a quantum correlation reproducing local formulation202

of Bell’s correlation, e.g. (15), violates an associated inequality (19), supports203

the result where a local computer model violates the CHSH for particular204

settings [8]. It is justified to claim that the worries of Einstein about the nature205

of quantum mechanics have not been rightfully addressed in Bell’s theorem.206
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