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Abstract

We show a Lorentz covariant gravitation does not satisfy the equivalence principle.

1 Introduction

We will restrict to a Lorentz covariant gravitation that has only constants ¢ and G with dimension.
General relativity [1] is an example. Units are chosen so that ¢ = G = 1.
Let my >0, E, >0, and 0 < v < 1 and define M), and E! by

1
My=vV1i—’my E = 1J_FZE7 (1)

Let F be a frame of reference with coordintes t,x,y,z and F' be a frame of reference with
coordinates t', 2.y, 2’. The coordinates of the frames being related by the Lorentz transformation
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With respect to F' let there be a zero rest mass particle v moving from positive 2’ infinity towards
the origin along the 2" axis. Let ¢/ (/) be the path of 7. Also let there be a point mass A such that
when v is at at infinity A is at rest at the origin. When + is at infinity let M/, be the mass of A and
E. be the energy of . When ~ is at infinity let P be the components of the energy-momentum
four-vector of A and P.* be the components of the energy-momentum four-vector of . With respect
F’ when -y is at infinity

t
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With respect to F when + is at infinity the energy of A is using (1) and (3) and the formula for
transformation of energy
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and the energy of v is
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2 Energy and momentum functions

With respect F’ let the functions p;“(:c;) be the components of the energy-momentum four-vector
of 7. The values of M}, E!, and z/ completely determines the system with respect to F'. A
component of p*(z’) is then a function of M}, £/, and z/ and no other variables. Since we are
considering Lorentz covariant graviation with only ¢ and G as constants with dimension we have
pi(«)/ ., will be a dimensionless function of the dimensionless variables M}, /z/ and E!/x!. Note

M}, /E! = (M}/x!)(1/(E] /2! )). There is then a dimensionless function C' of M, /x’ and E! /x’ such

that [2]
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Similarly for the 2’ component of momentum there is a dimsionless function D such that
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With respect to F" if v is at the point (t.,27,0,0) where ¢/ (/) then with respect to F it is at the
point (¢, z,,0,0) where
tL 4+ val xl + vt!
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and t,(z,). With respect to F let the functions p#(z,) be the components of the energy-momentum
four-vector of v at x.,. The energy of v at time ¢, is using (1), (6)-(8)
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The v — 1 limit of (9) is
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Similarily for the x component of momentum the v — 1 limit is
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Subtracting (10) and (11) gives
pg(l‘w) - p#@v) = 2FE, (12)

3 Velocity of v

We will assume, of a Lorentz covariant gravitation, that the velocity of v does not depend on its
energy. Consequently with respect to F' the velocity da’ /dt! of v will then be a function of M), and
z! and not E!. We then have dz! /dt’, will be a dimensionless function of the dimensionless variable
M}/« There is then a dimensionless function S such that
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The speed of v decreases as v moves towards the origin hence S(0) > 0. With respect to F the
velocity of 7 is using (1), (8), (13) and the velocity addition formula
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The v — 1 limit of (14) is
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Solving this differential equation gives

T, — 1
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where the point (¢,1,,1,0,0) with 2,1 —t,1 > 0 is on the path of v . There is no point (t,2, z2,0,0)
with 2,9 — t,2 = 0 on the path of v hence all points on the path x, — ¢, > 0. From (16) then

ry —ty, — 0 ast, — co. Now

Phz,) = %(xwpsw (17)

By (12), (15), and (17) we have

2mA
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Ly = Uy
4 Contradiction

Let T!" be the v — 1 limit of the energy-momentum tensor of . For points having ¢ —z aproximately
zero and t large positive we have T} will have approximately a x —t functional dependence. By (15)
and (17) we have 70 — T2' as t, — co. Also T9% = T2° = 0. Consequently 0,T2* — 0 as t, — oo.
We can then conclude pg is approximately constant in time as ¢, — oo but (18) has pg going to
infinity as ¢, — 0o. This is a contradiction. The velocity of v must then have a dependence on the
energy of . By the equivalence principal the velocity of 7 does not depend on the energy of v. We
have a contradiction. A Lorentz covariant gravitation does not satisfy the equivalence principle.
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