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Abstract

We show a Lorentz covariant gravitation does not satisfy the equivalence principle.

1 Introduction

We will restrict to a Lorentz covariant gravitation that has only constants c and G with dimension.
General relativity [1] is an example. Units are chosen so that c = G = 1.

Let mA > 0, Eγ > 0, and 0 ≤ v < 1 and define M ′
A and E ′γ by

M ′
A =
√

1− v2mA E ′γ =

√
1 + v

1− v
Eγ (1)

Let F be a frame of reference with coordintes t, x, y, z and F ′ be a frame of reference with
coordinates t′, x′, y, z′. The coordinates of the frames being related by the Lorentz transformation

t =
t′ + vx′√

1− v2
x =

x′ + vt′√
1− v2

y = y′ z = z′ (2)

With respect to F ′ let there be a zero rest mass particle γ moving from positive x′ infinity towards
the origin along the x′ axis. Let t′γ(x

′
γ) be the path of γ. Also let there be a point mass A such that

when γ is at at infinity A is at rest at the origin. When γ is at infinity let M ′
A be the mass of A and

E ′γ be the energy of γ. When γ is at infinity let P ′µA be the components of the energy-momentum
four-vector of A and P ′µγ be the components of the energy-momentum four-vector of γ. With respect
F ′ when γ is at infinity

P ′0A = M ′
A P ′1A = P ′2A = P ′3A = 0 (3)

P ′0γ = E ′γ P ′1γ = −E ′γ P ′2γ = P ′3γ = 0

With respect to F when γ is at infinity the energy of A is using (1) and (3) and the formula for
transformation of energy

P 0
A =

P ′0A + vP ′1A√
1− v2

=
M ′

A√
1− v2

=

√
1− v2mA√

1− v2
= mA (4)

and the energy of γ is

P 0
γ =

P ′0γ + vP ′1γ√
1− v2

=
E ′γ + v(−E ′γ)√

1− v2
=

√
1− v
1 + v

E ′γ =

√
1− v
1 + v

√
1 + v

1− v
Eγ = Eγ (5)
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2 Energy and momentum functions

With respect F ′ let the functions p′µγ (x′γ) be the components of the energy-momentum four-vector
of γ. The values of M ′

A, E ′γ, and x′γ completely determines the system with respect to F ′. A
component of p′µγ (x′γ) is then a function of M ′

A, E
′
γ, and x′γ and no other variables. Since we are

considering Lorentz covariant graviation with only c and G as constants with dimension we have
p′µγ (x′γ)/E

′
γ will be a dimensionless function of the dimensionless variables M ′

A/x
′
γ and E ′γ/x

′
γ. Note

M ′
A/E

′
γ = (M ′

A/x
′
γ)(1/(E

′
γ/x

′
γ)). There is then a dimensionless function C of M ′

A/x
′
γ and E ′γ/x

′
γ such

that [2]

p′0γ (x′γ) = E ′γ +
M ′

AE
′
γ

x′γ
C

(
M ′

A

x′γ
,
E ′γ
x′γ

)
(6)

Similarly for the x′ component of momentum there is a dimsionless function D such that

p′1γ (x′γ) = −E ′γ +
M ′

AE
′
γ

x′γ
D

(
M ′

A

x′γ
,
E ′γ
x′γ

)
(7)

With respect to F ′ if γ is at the point (t′γ, x
′
γ, 0, 0) where t′γ(x

′
γ) then with respect to F it is at the

point (tγ, xγ, 0, 0) where

tγ =
t′γ + vx′γ√

1− v2
xγ =

x′γ + vt′γ√
1− v2

(8)

and tγ(xγ). With respect to F let the functions pµγ(xγ) be the components of the energy-momentum
four-vector of γ at xγ. The energy of γ at time tγ is using (1), (6)-(8)

p0γ(xγ) =
p′0γ (x′γ) + vp′1γ (x′γ)√

1− v2
=

E ′γ +
M ′
AE

′
γ

x′γ
C

(
M ′
A

x′γ
,
E′
γ

x′γ

)
+ v

[
− E ′γ +

M ′
AE

′′
γ

x′γ
D

(
M ′
A

x′γ
,
E′
γ

x′γ

)]
√

1− v2
(9)

=
E ′γ√

1− v2

{
1− v +

M ′
A

x′γ

[
C

(
M ′

A

x′γ
,
E ′γ
x′γ

)
+ vD

(
M ′

A

x′γ
,
E ′γ
x′γ

)]}
= Eγ +

(1 + v)mAEγ
xγ − vtγ

[
C

(
(1− v2)mA

xγ − vtγ
,
(1 + v)Eγ
xγ − vtγ

)
+ vD

(
(1− v2)mA

xγ − vtγ
,
(1 + v)Eγ
xγ − vtγ

)]
The v → 1 limit of (9) is

p0γ(xγ) = Eγ +
2mAEγ
xγ − tγ

[
C

(
0,

2Eγ
xγ − tγ

)
+D

(
0,

2Eγ
xγ − tγ

)]
(10)

Similarily for the x component of momentum the v → 1 limit is

p1γ(xγ) = −Eγ +
2mAEγ
xγ − tγ

[
C

(
0,

2Eγ
xγ − tγ

)
+D

(
0,

2Eγ
xγ − tγ

)]
(11)

Subtracting (10) and (11) gives
p0γ(xγ)− p1γ(xγ) = 2Eγ (12)

3 Velocity of γ

We will assume, of a Lorentz covariant gravitation, that the velocity of γ does not depend on its
energy. Consequently with respect to F ′ the velocity dx′γ/dt

′
γ of γ will then be a function of M ′

A and
x′γ and not E ′γ. We then have dx′γ/dt

′
γ will be a dimensionless function of the dimensionless variable

M ′
A/x

′
γ. There is then a dimensionless function S such that

dx′γ
dt′γ

= −1 +
M ′

A

x′γ
S

(
M ′

A

x′γ

)
(13)
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The speed of γ decreases as γ moves towards the origin hence S(0) > 0. With respect to F the
velocity of γ is using (1), (8), (13) and the velocity addition formula

dxγ
dtγ

=

dx′γ
dt′γ

+ v

1 + v
dx′γ
dt′γ

=

−1 +
M ′
A

x′γ
S
(
M ′
A

x′γ

)
+ v

1 + v
[
− 1 +

M ′
A

x′γ
S
(
M ′
A

x′γ

)] =
−1 + (1+v)mA

xγ−vtγ S
(

(1−v2)mA
xγ−vtγ

)
1 + v(1+v)mA

xγ−vtγ S
(

(1−v2)mA
xγ−vtγ

) (14)

The v → 1 limit of (14) is

dxγ
dtγ

=
−1 + 2mA

xγ−tγS(0)

1 + 2mA
xγ−tγS(0)

(15)

Solving this differential equation gives

(xγ − tγ)− (xγ1 − tγ1) + 2mAS(0) ln
xγ − tγ
xγ1 − tγ1

= 2(tγ1 − tγ) (16)

where the point (tγ1, xγ1, 0, 0) with xγ1− tγ1 > 0 is on the path of γ . There is no point (tγ2, xγ2, 0, 0)
with xγ2 − tγ2 = 0 on the path of γ hence all points on the path xγ − tγ > 0. From (16) then
xγ − tγ → 0 as tγ →∞. Now

p1γ(xγ) =
dxγ
dtγ

(xγ)p
0
γ(xγ) (17)

By (12), (15), and (17) we have

p0γ(xγ) =

[
1 +

2mA

xγ − tγ
S(0)

]
Eγ (18)

4 Contradiction

Let T µνγ be the v → 1 limit of the energy-momentum tensor of γ. For points having t−x aproximately
zero and t large positive we have T µνγ will have approximately a x− t functional dependence. By (15)
and (17) we have T 00

γ → T 01
γ as tγ →∞. Also T 02

γ = T 03
γ = 0. Consequently ∂µT

0µ
γ → 0 as tγ →∞.

We can then conclude p0γ is approximately constant in time as tγ → ∞ but (18) has p0γ going to
infinity as tγ → ∞. This is a contradiction. The velocity of γ must then have a dependence on the
energy of γ. By the equivalence principal the velocity of γ does not depend on the energy of γ. We
have a contradiction. A Lorentz covariant gravitation does not satisfy the equivalence principle.
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