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Abstract

We conclude that the expression ε0E×A describes the intrinsic angular
momentum density of classical electromagnetic field. We also conclude that
the mainstream physics community has made a mistake, when failing to
recognize this classical quantity.

We study a system that has been defined by a Lagrangian functional

L(A, ∂tA) = − 1

4µ0

∫
R3

(
∂µAν(x)− ∂νAµ(x)

)(
∂µAν(x)− ∂νAµ(x)

)
d3x

=
1

2µ0

∫
R3

(∥∥∥1

c
∂tA(x) + ∇xA

0(x)
∥∥∥2 − ∥∥∇x ×A(x)

∥∥2)d3x,
where µ0 ≈ 4π · 10−7kg ·m/C2 is the vacuum magnetic permeability. The
functional derivatives of this functional are

δL

δA0(x)
= − 1

µ0
∇x ·

(1

c
∂tA(x) + ∇xA

0(x)
)
,

δL

δAi(x)
= − 1

µ0

(
∂i
(
∇x ·A(x)

)
+ ∇2

xAi(x)
)
,

δL

δ(∂tA0(x))
= 0

and
δL

δ(∂tAi(x))
=

1

µ0c

(
− 1

c
∂tAi(x) + ∂iA

0(x)
)
.

Euler-Lagrange equations are

Dt
δL(A(t, •))
δ(∂tA0(x))

=
δL(A(t, •))
δA0(x)

⇐⇒ 0 = ∇x ·
(1

c
∂tA(t,x) + ∇xA

0(t,x)
)
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and

Dt
δL(A(t, •))
δ(∂tAi(x))

=
δL(A(t, •))
δAi(x)

⇐⇒ 1

c
∂t

(
− 1

c
∂tAi(t,x) + ∂iA

0(t,x)
)

= −∂i
(
∇x ·A(t,x)

)
− ∇2

xAi(t,x).

We can also write the last three equations as

1

c
∂t

(1

c
∂tA(t,x) + ∇xA

0(t,x)
)

= −∇x

(
∇x ·A(t,x)

)
+ ∇2

xA(t,x)

= −∇x ×
(
∇x ×A(t,x)

)
.

In this model the electric and magnetic fields can be considered to have
been defined by formulas

E(t,x) = −∂tA(t,x) − c∇xA
0(t,x) and

B(t,x) = ∇x ×A(t,x).

Euler-Lagrange equations can be written in forms

∇x ·E(t,x) = 0

and
1

c2
∂tE(t,x) = ∇x ×B(t,x)

that are two of the Maxwell’s equations.
The energy of this system is given by the expression∫

R3

δL

δ(∂tAµ(x))
∂tA

µ(x)d3x − L

=
1

2µ0

∫
R3

(∥∥∥1

c
∂tA(x) +∇xA

0(x)
∥∥∥2 +

∥∥∇x ×A(x)
∥∥2)d3x

+
1

µ0

∫
R3

(1

c
∂tA(x) +∇xA

0(x)
)
· ∇xA

0(x)d3x

that also gives the values of Hamiltonian functional. The energy can be
written in a form

E(t) =
1

2

∫
R3

(
ε0
∥∥E(t,x)

∥∥2 +
1

µ0

∥∥B(t,x)
∥∥2)d3x

+
1

µ0c

∫
R3

E(t,x) · ∇xA
0(t,x)d3x.
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Here we used the vacuum permittivity ε0 = 1
µ0c2

. This means that if we
want, we can define an energy density

Ea(t,x) =
1

2

(
ε0
∥∥E(t,x)

∥∥2 +
1

µ0

∥∥B(t,x)
∥∥2) +

1

µ0c
E(t,x) · ∇xA

0(t,x)

and then the total energy can be written in a form

E(t) =

∫
R3

Ea(t,x)d3x.

Mainstream physicists believe that this quantity Ea(t,x) is not an acceptable
energy density, because it depends directly on the vector potential Aµ that
doesn’t have a physical meaning due to the gauge transformation issue.
Then they conclude that we must modify the formula for energy density
with the integration by parts technique, which after using ∇x · E(t,x) = 0
gives us another energy density

Eb(t,x) =
1

2

(
ε0
∥∥E(t,x)

∥∥2 +
1

µ0

∥∥B(t,x)
∥∥2).

The pointwise values of these Ea and Eb are different, but their integrals are
the same.

Let’s have a look at the momentum of this system. In order to apply
Noether’s theorem, we must fix some vector u, and then define a translation
transformation Tα according to formula(

Tα(Aµ)
)
(x) = Aµ(x− αu).

The derivative of the transformed vector potential at α = 0 is(
DαT0(A

µ)
)
(x) = −u · ∇xA

µ(x).

According to Noether’s theorem the momentum of the system in the direc-
tion u is the quantity∫

R3

(
DαT0(A)

)µ
(x)

δL

δ(∂tAµ(x))
d3x

= −uj 1

µ0c

∫
R3

(
∂jA

i(x)
)(
− 1

c
∂tAi(x) + ∂iA

0(x)
)
d3x.

We can remove u and conclude that the momentum vector is

P(t) = − 1

µ0c

∫
R3

(
∇xA

i(t,x)
)(
− 1

c
∂tAi(t,x) + ∂iA

0(t,x)
)
d3x

= ε0

∫
R3

3∑
i=1

(
∇xA

i(t,x)
)
Ei(t,x)d3x.
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This means that if we want, we can define a momentum density

Pa(t,x) = ε0

3∑
i=1

(
∇xA

i(t,x)
)
Ei(t,x),

and then the total momentum can be written in a form

P(t) =

∫
R3

Pa(t,x)d3x.

Equation

(
E(t,x)×B(t,x)

)j
=

3∑
i=1

Ei(t,x)
(
∂jA

i(t,x)
)
− E(t,x) · ∇xA

j(t,x)

is true for all j ∈ {1, 2, 3}. This means that the momentum density can
alternatively be written as

Pa(t,x) = ε0E(t,x)×B(t,x) + ε0(E(t,x) · ∇x)A(t,x).

Similarly as with the energy density, here too mainstream physicists believe
that this Pa is not acceptable, because it depends directly on the vector
potential. The depence can again be removed with the integration by parts
technique, and if we define a new momentum density as

Pb(t,x) = ε0E(t,x)×B(t,x),

the equation

P(t) =

∫
R3

Pb(t,x)d3x

is true again. The pointwise values of Pa and Pb are different, but their
integrals are the same.

The integration by parts technique simplifies the formulas for energy and
momentum densities, so the mainstream reasoning seems to make sense.
However, the reasoning can be criticized too. One way of seeing this thing
is that:

There is nothing wrong with the energy and momentum
densities depending directly on the vector potential Aµ, because
there does not exist a measurement technique for measuring the
pointwise values of the densities anyway; only the integrals can

be measured by humans.
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Doesn’t this reasoning seem to make sense too? The quantities Ea and
Pa are the ones that come directly from the generic formulas for Hamilto-
nian functional and Noether’s theorem without extra modifications, so these
quantities are simple in that way.

Let’s have a look at the angular momentum of this system. In order
to apply Noether’s theorem, we must fix some vector u, and then define a
rotation transformation Rα according to formulas(

Rα(A0)
)
(x) = A0(e−αu×x) and(

Rα(A)
)
(x) = eαu×A(e−αu×x).

These formulas actively rotate Aµ around the axis u with an angle α. The
derivative of the transformed vector potential at α = 0 is(

DαR0(A
0)
)
(x) = −u · (x×∇x)A0(x) and(

DαR0(A)
)
(x) = u×A(x) −

(
u · (x×∇x)

)
A(x).

According to Noether’s theorem the angular momentum of the system in
the direction u is the quantity∫

R3

(
DαR0(A)

)µ
(x)

δL

δ(∂tAµ(x))
d3x

= −ε0
∫
R3

3∑
i=1

((
u×A(x)

)i − (u · (x×∇x)
)
Ai(x)

)
Ei(x)d3x.

Equation

3∑
i=1

(
(x×∇x)jAi(x)

)
Ei(x) =

(
x×

(
E(x)×B(x)

))j
+
(
x×

(
E(x) · ∇x

)
A(x)

)j
is true. This is probably not obvious at a glance, but if one studies the right
side carefully, many terms cancel, and what remains is the same as that on
the left side. Using this identity the angular momentum in direction u can
be written as

u · L(t) = ε0u ·
∫
R3

(
E(t,x)×A(t,x)

+ x×
(
E(t,x)×B(t,x) + (E(t,x) · ∇x)A(t,x)

))
d3x

This means that the angular momentum vector is

L(t) =

∫
R3

(
ε0E(t,x)×A(t,x) + x×Pa(t,x)

)
d3x.
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Figure 1: A simplified representation of the R. A. Beth’s experiment from 1936.
Circularly polarized light hits a solid object, and the solid object turns a little,
revealing that the circularly polarized light carries intrinsic angular momentum.

The term x×Pa(t,x) describes the orbital angular momentum density, and
this term was obviously expected. The term ε0E(t,x) ×A(t,x) may have
come as a surprise, but now when we see it, it is natural to interpret it as
the intrinsic angular momentum density. If we denote it as

S(t,x) = ε0E(t,x)×A(t,x),

the angular momentum density can then be written as

L(t,x) = S(t,x) + x×Pa(t,x),

and the angular momentum vector as

L(t) =

∫
R3

L(t,x)d3x.

Notice: If we had been using the mainstream momentum density
Pb(t,x), we would not have discovered the intrinsic angular mo-
mentum density S(t,x). This is why J. D. Jackson does not mention
S(t,x) in any way in the famous book Classical Electrodynamics.

Now it makes sense to take a closer look at this expression ε0E × A,
and check whether it works or not. Let’s define an electromagnetic field by
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formulas

E(t,x) = E0

 cos
(
k(ct− x3)

)
0
0


and

B(t,x) =
E0

c

 0
cos
(
k(ct− x3)

)
0

 ,

where E0 and k > 0 are some constants. These formulas describe a linearly
polarized plane wave that travels in the direction of z-axis. A natural choice
for a vector potential that generates this electromagnetic field is

A0(t,x) = 0 and A(t,x) =
E0

ck

 − sin
(
k(ct− x3)

)
0
0

 .

Now
ε0E(t,x)×A(t,x) = 0,

so according to our formula there is no intrinsic angular momentum present.
What happens if we instead define an electromagnetic field by formulas

E(t,x) = E0

 cos
(
k(ct− x3)

)
sin
(
k(ct− x3)

)
0


and

B(t,x) =
E0

c

 − sin
(
k(ct− x3)

)
cos
(
k(ct− x3)

)
0

?

These formulas describe a circularly polarized plane wave that travels in the
direction of z-axis. A natural choice for a vector potential that generates
this electromagnetic field is

A0(t,x) = 0 and A(t,x) =
E0

kc

 − sin
(
k(ct− x3)

)
cos
(
k(ct− x3)

)
0

 .

Now

ε0E(t,x)×A(t,x) =
ε0E

2
0

kc

 0
0
1

 ,

so according to our formula there is a non-trivial intrinsic angular momen-
tum present. We see that the expression ε0E ×A assigns intrinsic angular
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momentum correctly to circularly polarized light and not to linearly polar-
ized, and we can conclude that our formula agrees with the Beth’s experi-
mental result.

The situation with the integration by parts technique is this: It is pos-
sible to remove the direct dependence on vector potential Aµ out of energy,
momentum and total angular momentum densities, but it is not possible
to remove it out of the intrinsic angular momentum density. So if you be-
lieve that the dependence must always be removed with some trick, then
the intrinsic angular momentum density becomes a nuisance. This explains
why mainstream physicists avoid this quantity. Our conclusion is that the
expression ε0E × A describes the intrinsic angular momentum density of
the classical electromagnetic field, and that there is nothing wrong with
the direct dependence on the vector potential. We should notice that this
quantity is not related to quantum mechanics in any special way. We can
also conclude that the mainstream physics community has made a mistake,
when failing to recognize this classical quantity.
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