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Abstract

In this paper, we give an elliptic curve (E) given by the equation:

y2 = φ(x) = x3 + px + q

with p, q ∈ Z not null simultaneous. We study the conditions verified by (p, q)
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1 Introduction

Elliptic curves are related to number theory, geometry, cryptography, string theory,
data transmission,... We consider an elliptic curve (E) given by the equation:

y2 = φ(x) = x3 + px+ q (1)
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where p and q are two integers and we assume in this article that p, q are not
simultaneous equal to zero. For our proof, we consider the equation :

φ(x)− y2 = x3 + px+ q − y2 = 0 (2)

of the unknown the parameter x, and p, q, y given with the condition that y ∈ Z+.
We resolve the equation (2) and we discuss so that x is an integer.

2 Proof

Proof. We suppose that y > 0 is an integer, to resolve (2), let:

x = u+ v (3)

where u, v are two complexes numbers. Equation (2) becomes:

u3 + v3 + q − y2 + (u+ v)(3uv + p) = 0 (4)

With the choose of:
3uv + p = 0 =⇒ uv = −p

3
(5)

then, we obtain the two conditions:

uv = −p

3
(6)

u3 + v3 = y2 − q (7)

Hence, u3, v3 are solutions of the equation of second order:

X2 − (y2 − q)X − p3

27
= 0 (8)

Let ∆ the discriminant of the above equation, it is given by:

∆ = (y2 − q)2 +
4p3

27
(9)

2.1 Case ∆ = 0

In this case, the equation (8) has one double root :

X1 = X2 =
y2 − q

2
(10)

As ∆ = 0 =⇒ 4p3

27
= −(y2 − q)2 =⇒ p < 0. As y, q are integers then 3|p =⇒ p =

3p1, p1 < 0 and 4p31 = −(y2 − q)2 =⇒ p1 = −p22 =⇒ y2 − q = ±2p32 and p = −3p22. As
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y2 = q ± 2p32, it exists solutions if:

q ± 2p32 is a square (11)

We suppose that q ± 2p32 is a square. The solution X = X1 = X2 =
y2 − q

2
= ±p32.

Using the unknowns u, v, we have two cases:
1 - u3 = v3 = p32,
2 - u3 = v3 = −p32.

2.1.1 Case: u3 = v3 = p3
2

The solutions of u3 = p32 are :
a - u1 = p2,

b - u2 = j.p2 with j =
−1 + i

√
3

2
is the unitary cubic complex root,

c - u3 = j2.p2 = j.p2.

Case a: u1 = v1 = p2 =⇒ x = u1+v1 = 2p2 ⇒ u1.v1 = p22 = −p/3. Then the condition
(6) uv = u1.v1 = −p/3 is verified. The integers coordinates of the elliptic curve (E)
are :

(2p2,+α), (2p2,−α) andα =
√

φ(2p2) (12)

Case b: u2 = j.p2, v2 = j2.p2 = j.p2 =⇒ x = u2 + v2 = p2(j + j) = −p2 and the
condition (6) is verified. In this case, the integers coordinates of the elliptic curve (E)
are :

(−p2,+α), (−p2,−α) andα = +
√

φ(−p2) (13)

Case c: u3 = j2.p2 = j.p2, v3 = j.p2, then x = u3 + v3 = −p2 and u3.v3 = −p/3. It is
the same as case b above.

2.1.2 Case: u3 = v3 = −p3
2

The solutions of u3 = −p32 are :
d - u1 = −p2;
e - u2 = −j.p2;
f - u3 = −j2.p2 = −j.p2.

Case d: u1 = v1 = −p2 =⇒ x = −2p2. The condition u1.v1 = −p/3 is verified. The
integers coordinates of the elliptic curve (E) are :

(−2p2,+α), (−2p2,−α) andα = φ(−2p2) (14)

Case e: u2 = −j.p2, v2 = −j2.p2 = −j.p2 =⇒ x = u2 + v2 = −p2(j + j) = +p2 and
the condition (6) is verified. In this case, the integers coordinates of the elliptic curve
(E) are :

(p2,+α), (p2,−α) andα = φ(p2) (15)

Case f: u2 = −j2.p2, v2 = −j.p2. It gives the same of case e above.
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2.2 Case ∆ > 0

We suppose that ∆ > 0 and ∆ = m2 where m ∈ R∗ is a positive real number.

∆ = (y2 − q)2 +
4p3

27
=

27(y2 − q)2 + 4p3

27
= m2 (16)

27(y2 − q)2 + 4p3 = 27m2 =⇒ 27(m2 − (y2 − q)2) = 4p3 (17)

2.2.1 We suppose that 3|p
We suppose that 3|p =⇒ p = 3p1. We consider firstly that |p1| = 1.

Case p1 = 1 ⇒ p = 3. The equation (17) is written as:

m2 − (y2 − q)2 = 4 =⇒ m2 = 4 + (y2 − q)2 ⇒ m2 is an integer (18)

We consider the case m is a positive integer: m > 0. From the last equation above, we
obtain :

(m+ y2 − q)(m− y2 + q) = 2× 2 (19)

That gives 3 systems of equations (with m > 0) :{
m+ y2 − q = 1
m− y2 + q = 4

=⇒ m = 5/2 not an integer (20){
m+ y2 − q = 2
m− y2 + q = 2

=⇒ m = 2 and y2 − q = 0 (21){
m+ y2 − q = 4
m− y2 + q = 1

=⇒ m = 5/2 not an integer (22)

As y2 − q = 0 from the case (21), if q = q′2 with q′ a positive integer, we obtain the
integer coordinates of the elliptic curve (E):

y2 = x3 + 3x+ q′2 (23)

(0, q′); (0,−q′) (24)

If q is not a square, then m can not be an integer.

Case p1 = −1 ⇒ p = −3. Using the same method as above, we arrive to the accept-
able value m = 0, then it is a particular case of ∆ = 0 studied above.

Now, we consider that |p1| > 1.

We suppose that p1 > 1

The equation (17) is written as:

m2 − (y2 − q)2 = 4p31 =⇒ m2 − (y2 − q)2 = 4p31 (25)
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We consider that m > 0 is an integer. From the last equation (25), (m, y2−q) (respec-
tively in the case y2 − q ≤ 0, (m, q − y2)) are solutions of the Diophantine equation
:

X2 − Y 2 = N X > 0, Y > 0 (26)

where N is a positive integer equal to 4p31.

For the general solutions of the equation (26), let Q(N) the number of solutions of
(26) and τ(N) the number of factorization of N , then we give the following result
concerning the solutions of (26) (see theorem 27.3 of [1]):

- if N≡2(mod 4), then Q(N) = 0;
- if N≡1 or N≡3(mod 4), then Q(N) = [τ(N)/2];
- if N≡0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the largest integer less or equal to x.

As N = 4p31 =⇒ N≡0(mod 4), then Q(N) = [τ(N/4)/2] = [τ(p31)/2] > 1. A solution
(X ′, Y ′) of (26) is used if Y ′ = y2 − q =⇒ q + Y ′ is a square (respectively if Y ′ =
q − y2 =⇒ q − Y ′ is a square), then X ′ = m > 0 and ±y = ±

√
q + Y ′ (respectively

±y = ±
√
q − Y ′). The roots of (8) are :

X1 =
y2 − q +m

2
=

Y ′ +m

2
> 0 (27)

X2 =
y2 + q −m

2
=

Y ′ −m

2
< 0 (28)

(Respectively, the roots of (8) are :

X1 =
y2 − q +m

2
=

−Y ′ +m

2
> 0 (29)

X2 =
y2 + q −m

2
=

−Y ′ −m

2
< 0 (30)

). From X ′2 − Y ′2 = 4p31 = N , 2|(Y ′ −m) and 2|(Y ′ −m + 2m) =⇒ 2|(Y ′ +m) =⇒
X1, X2 ∈ Z, and we obtain the equations:

u3 = X1 =⇒ u1 = 3
√

X1;u2 = j 3
√

X1;u3 = j2 3
√

X1 (31)

v3 = X2 =⇒ v1 = 3
√

X2; v2 = j 3
√

X2; v3 = j2 3
√

X2 (32)

A real x is obtained if x = u1 + v1 = 3
√
X1 + 3

√
X2. If X1, X2 are cubic integers :

X1 = t31, X2 = t32, then we obtain an integer solution :

x = t1 + t2, ±y = ±
√

Y ′ + q respectively ± y = ±
√

q − Y ′ (33)

If not, there are no integer coordinates of the elliptic curve (E).
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We suppose that p < 0 =⇒ p1 < −1 :

in this case, (y2 − q,m) (respectively (q − y2,m)) is a solution of the Diophantine
equation :

X2 − Y 2 = N ′ X > 0, Y > 0 (34)

and N ′ is a positive integer equal to −4p31 > 0. As seen above, a solution (X ′, Y ′) of
(34) is used if X ′ = y2 − q =⇒ q +X ′ is a square (respectively X ′ = q − y2 ⇒ q −X ′

is a square), then ±y′ = ±
√
q +X ′ (respectively ±y′ = ±

√
q −X ′) and Y ′ = m > 0.

The roots of (8) are :

X ′
1 =

y2 − q +m

2
=

X ′ +m

2
> 0 (35)

X ′
2 =

y2 + q −m

2
=

X ′ −m

2
> 0 (36)

(Respectively the roots of (8) are :

X ′
1 =

y2 − q +m

2
=

−X ′ +m

2
> 0 (37)

X ′
2 =

y2 + q −m

2
=

−X ′ −m

2
< 0 (38)

) From X ′2 − Y ′2 = −4p31 = N ′, 2|(X ′ −m) and 2|(X ′ +m) =⇒ X ′
1, X

′
2 ∈ Z, and we

obtain the equations:

u′3 = X ′
1 =⇒ u′

1 = 3
√

X ′
1;u

′
2 = j 3

√
X ′

1;u
′
3 = j2 3

√
X ′

1 (39)

v′3 = X ′
2 =⇒ v′1 = 3

√
X ′

2; v
′
2 = j 3

√
X ′

2; v
′
3 = j2 3

√
X ′

2 (40)

A real x′ is obtained if x′ = u′
1 + v′1 = 3

√
X ′

1 +
3
√

X ′
2. If X

′
1, X

′
2 are cubic integers :

X ′
1 = t′31 , X

′
2 = t′32 then we obtain an integer solution :

x′ = t′1 + t′2, ±y′ = ±
√

X ′ + q (respectively ± y′ = ±
√

q −X ′) (41)

If not, there are no integer coordinates of the elliptic curve (E).

2.2.2 We suppose that 3 ∤ p
We rewrite the equations (8) and (17):

X2 − (y2 − q)X − p3

27
= 0

∆ = (y2 − q)2 +
4p3

27
=

27(y2 − q)2 + 4p3

27
= m2

with m2 > 0 is a rational number, then m is not an integer. It follows there are no
integer coordinates of the elliptic curve (E).
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2.3 Case ∆ < 0

The expression of ∆ is given by (71) :

∆ = (y2 − q)2 +
4p3

27

We suppose that ∆ < 0 =⇒ (y2 − q)2 +
4p3

27
< 0 =⇒ (y2 − q)2 < −4p3

27
, then p < 0.

Let p′ = −p > 0 =⇒ ∆ = (y2 − q)2 − 4p′3

27
.

2.3.1 We suppose 3|p′:

We suppose that 3|p′ =⇒ p′ = 3p1. ∆ becomes:

∆ = (y2 − q)2 − 4p31 (42)

Case p1 = 1. We obtain ∆ = (y2 − q)2 − 4. ∆ = −m2 with m integer, then
m2 = 4− (y2 − q)2 ⇒ m2 + (y2 − q)2 = 22, the solutions are:
** m2 = 4, y2 − q = 0 ⇒ y2 = q. If q is a square, let q = q21 , then y = ±q1. We have
also x3 − 3x = 0. The only integer coordinates of the elliptic curve are:

(0, q1), (0,−q1) (43)

** m2 = 1, y2 − q =
√
3 or y2 − q = −

√
3

**-1- y2 − q =
√
3, If q =

√
3, we have the equation y2 = x3 − 3x +

√
3 and X2 −√

3X + 1 = 0 and :

X1 =

√
3 + i

2
= e

iπ

6 (44)

X2 =

√
3− i

2
= e

−
iπ

6 (45)

u, v verify u3 = e

iπ

6 ; v3 = e
− iπ

6 =⇒ |ui| = 1 and |vj | = 1, |xk| = |ui + vk| =

|2cos π

18
| < 2 =⇒ no integer coordinates if q =

√
3.

**-2- y2 − q = −
√
3, we suppose that q = −

√
3 then X2 +

√
3X + 1 = 0. We obtain :

X1 =
−
√
3 + i

2
= e

i5π

6 (46)

X2 =
−
√
3− i

2
= e

− i5π

6 (47)
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Using the same remark as above, we arrive to |xk| < 2, with |xk| ̸= 1, then there are
no integer coordinates when q = −

√
3.

Case p1 > 1. We obtain m2 = 4p31 − (y2 − q)2 =⇒ m2 + (y2 − q)2 = 4p31, then
±m,±(y2 − q) are solutions of the Diophantine equation :

A2 +B2 = N (48)

with N = 4p31. The following theorem (theorem 36.3,[2]) gives the conditions to be
verified by N :

Theorem 1. The Diophantine equation:

A2 +B2 = N (49)

has a solution if and only if :

N = 2αp′h1
1 ...p′hk

k .q2β1

1 ...q2βn
n (50)

where the p′i are primes congruent to 1 modulo 4, and the qj are prime congruent to
3 modulo 4. When N is of this form, equation (49) has :

NS =

[
(h1 + 1) · · · (hk + 1) + 1

2

]
(51)

inequivalent solutions ([x] is the largest integer less or equal to x.)

From the conditions given by the theorem above, 2 ∤ p1 and p1 must be written as:

p1 = p′3h1
1 ...p′3hk

k .q6β1

1 ...q6βn
n (52)

and p1 ≡ 1(mod4) (53)

We suppose in the following, that equation (52) is true. We obtain:
X1l =

y2l − q + iml

2

X2l =
y2l − q − iml

2

l = 1, 2, .., NS (54)

To simplify the notation, we remove the indices l. The roots of the equation (8) are :
X1 =

y2 − q + im

2

X2 =
y2 − q − im

2

(55)
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We have to resolve: 
u3 = X1 =

y2 − q + im

2

v3 = X2 = X1 =
y2 − q − im

2

(56)

We write X1 as X1 = ρeiθ with:

ρ =

√
(y2 − q)2 +m2

2
= p1

√
p1; sinθ =

√
−∆

2ρ
=

m

2ρ
> 0; cosθ =

y2 − q

2ρ

If y2 − q > 0 =⇒ cosθ > 0 =⇒ 0 < θ <
π

2
[2π] =⇒ 1

4
< cos2

θ

3
< 1.

If y2 − q < 0 =⇒ cosθ < 0, then :

π

2
< θ < π[2π] =⇒ 1

4
< cos2

θ

3
<

3

4
(57)

A. We suppose that y2 − q > 0 =⇒ 0 <
θ

3
<

π

6
[2π] =⇒ 1

4
< cos2

θ

3
< 1.

Then the expression of X2: X2 = ρe−iθ. Let :

u = reiψ, and j =
−1 + i

√
3

2
= ei

2π
3

The parameters u and v are:
u1 = reiψ1 = 3

√
ρei

θ
3

u2 = reiψ2 = 3
√
ρjei

θ
3 = 3

√
ρei

θ+2π
3

u3 = reiψ3 = 3
√
ρj2ei

θ
3 = 3

√
ρei

4π
3 e+i

θ
3 = 3

√
ρei

θ+4π
3

v1 = re−iψ1 = 3
√
ρe−i

θ
3

v2 = re−iψ2 = 3
√
ρj2e−i

θ
3 = 3

√
ρei

4π
3 e−i

θ
3 = 3

√
ρei

4π−θ
3

v3 = re−iψ3 = 3
√
ρje−i

θ
3 = 3

√
ρei

2π−θ
3

We choose uk and vh so that uk + vh is real. In this case, we have necessary :

v1 = u1; v2 = u2; v3 = u3
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Then, the three real solutions of the equation (2) are:

x1 = u1 + v1 = 2 3
√
ρcos

θ

3

x2 = u2 + v2 = 2 3
√
ρcos

θ + 2π

3
= − 3

√
ρ

(
cos

θ

3
+
√
3sin

θ

3

)

x3 = u3 + v3 = 2 3
√
ρcos

θ + 4π

3
= 3

√
ρ

(
−cos

θ

3
+
√
3sin

θ

3

)
(58)

The discussion of the integrity of x1, x2, x3:

We suppose that x1 is an integer, then x2
1 is an integer. We obtain:

x2
1 = 4 3

√
ρ2cos2

θ

3
= 4p1cos

2 θ

3
(59)

We write cos2
θ

3
as :

cos2
θ

3
=

1

a
or

a

b
(60)

where a, b are relatively coprime integers.

** cos2
θ

3
=

1

a
. In this case,

1

4
<

1

a
< 1 =⇒ 1 < a < 4 =⇒ a = 2 or a = 3.

Case a = 2, we obtain x2
1 = 4 3

√
ρ2cos2

θ

3
= 2p1 =⇒ 2|p1, but from (53) 2 ∤ p1, then

the contradiction. We verify easily that x2 and x3 are irrationals.

Case a = 4, we obtain x2
1 = 4 3

√
ρ2cos2

θ

3
= 4p1.

1

3
. If 3 ∤ p1 =⇒ x2

1 is a rational.

We suppose that 3|p1, then p1 must be written as p1 = 3ω2. From the equation
(52), p1≡1(mod4), we deduce that ω2≡3(mod4), as ω2 is a square, ω2≡0(mod4) or
ω2≡1(mod4), then x1 can not be an integer. We verify easily that x2, x3 are also not
integers.

** cos2
θ

3
=

a

b
, a, b coprime with a > 1. We obtain :

x2
1 = 4p1cos

2 θ

3
=

4p1a

b

where b verifies the condition:
b|4p1 (61)

and using the (57), we obtain a second condition:

b < 4a < 3b (62)
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A-1- b = 2 =⇒ a = 1 =⇒ x2
1 = 2p1 =⇒ 2|p1, but p1≡1(mod4) then case to reject.

A-2- b = 4 =⇒ a = 2, a, b no coprime. Case to reject.

A-3- b = 2b′ avec 2 ∤ b′, then we obtain:

x2
1 =

4p1a

b
=

2p1a

b′
⇒ b′|p1 (63)

then p1 = b′αp2 with α ≥ 1 and b′ ∤ p2, we obtain x2
1 = 2b′α−1.p2.a ⇒ 2|(p2.a), but

from (52) 2 ∤ p1 ⇒ 2 ∤ p2 and 2 ∤ a, if not a, b are not coprime. Then x2
1 cannot be an

square integer, the case b = 2b′ is to reject.

A-4- b = 4b′ avec 4 ∤ b′, then we obtain:

x2
1 =

4p1a

b
=

p1a

b′
⇒ b′|p1 (64)

then p1 = b′αp2 with α ≥ 1 and b′ ∤ p2, we obtain x2
1 = b′α−1.p2.a.

* if b′α−1.p2.a = f2 a square then x1 = ±f , if not x1 is not an integer. We consider
that x1 = ϵf is an integer with ϵ = ±1. As x1 +x2 +x3 = 0 =⇒ x2 +x3 = −x1. From
the equations given by (58) the product x2.x3 = f2 − 3p1, then x2, x3 are solutions of
the equation:

λ2 − ϵfλ+ f2 − 3p1 = 0 (65)

The discriminant of (65) is:

δ = f2 − 4(f2 − 3p1) = 12p1 − 3f2 = 3(4p1 − f2) = 3p2b
′α−1(b− a) > 0

If δ is not a square, then x2, x3 are not integers. We suppose that δ = g2 a square.
The real roots of (65) are:

λ1 =
ϵf + g

2
(66)

λ2 =
ϵf − g

2
(67)

From the expressions of f and g, we deduce that 2|f and 2|g, then λ1, λ2 are integers.
We recall that y2 − q is supposed > 0 and are determined by the equations (48-

49-51), we obtain the integer coordinates ∈ to the elliptic curve (E) :

For l = 1, 2, ..., NS

(f, yl), (−f, yl), (f,−yl), (−f,−yl),

(λ1, yl), (λ2, yl), (λ1,−yl), (λ2,−yl),

(−λ1, yl), (−λ2, yl), (−λ1,−yl), (−λ2,−yl) (68)
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B. We suppose that y2 − q < 0 =⇒ π

6
<

θ

3
<

π

3
[2π]

that gives :
1

2
< cos

θ

3
<

√
3

2
=⇒ 1

4
< cos2

θ

3
<

3

4

cos2
θ

3
=

1

a
. In this case,

3

4
<

1

a
< 1 =⇒ 3a < 4 which is impossible case to reject.

cos2
θ

3
=

a

b
. In this case,

3

4
<

a

b
< 1 =⇒ 3b < 4a. Then we obtain:

x2
1 = 4 3

√
ρ2cos2

θ

3
= 4p1cos

2 θ

3
=

4p1a

b
⇒ b|(4p1) (69)

B-1- b = 2 =⇒ a = 1 =⇒ 8 < 4 case to reject.

B-2- b = 4 =⇒ 3 < a < 4 case to reject.

B-3- b = 2b′ avec 2 ∤ b′, then we obtain:

x2
1 =

4p1a

b
=

2p1a

b′
⇒ b′|p1 (70)

then p1 = b′αp2 with α ≥ 1 and b′ ∤ p2, we obtain x2
1 = 2b′α−1.p2.a.

* if 2b′α−1.p2.a = f2 a square then x1 = ±f , if not x1 is not an integer. We consider
that x1 = ϵf is an integer with ϵ = ±1. As x1 + x2 + x3 = 0 =⇒ x2 + x3 = −x1. The
product x2.x3 = f2 − 3p1, then x2, x3 are solutions of the equation:

λ2 − ϵfλ+ f2 − 3p1 = 0 (71)

The discriminant of (71) is:

δ = f2 − 4(f2 − 3p1) = 12p1 − 3f2 = 3(4p1 − f2) = 2p2b
′α−1(b− a) > 0

If δ is not a square, then x2, x3 are not integers. We suppose that δ = g2 a square.
The real roots of (71) are:

λ1 =
ϵf + g

2
(72)

λ2 =
ϵf − g

2
(73)

From the expressions of f and g, we deduce that 2|f and 2|g, then λ1, λ2 are integers.
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B-4- b = 4b′ avec 4 ∤ b′, then we obtain:

x2
1 =

4p1a

b
=

p1a

b′
⇒ b′|p1 (74)

then p1 = b′αp2 with α ≥ 1 and b′ ∤ p2, we obtain x2
1 = b′α−1.p2.a.

* if b′α−1.p2.a = f2 a square then x1 = ±f , if not x1 is not an integer. We consider
that x1 = ϵf is an integer with ϵ = ±1. As x1 + x2 + x3 = 0 =⇒ x2 + x3 = −x1. The
product x2.x3 = f2 − 3p1, then x2, x3 are solutions of the equation:

λ2 − ϵfλ+ f2 − 3p1 = 0 (75)

The discriminant of (75) is:

δ = f2 − 4(f2 − 3p1) = 12p1 − 3f2 = 3(4p1 − f2) = 2p2b
′α−1(b− a) > 0

If δ is not a square, then x2, x3 are not integers. We suppose that δ = g2 a square.
The real roots of (75) are:

λ1 =
ϵf + g

2
(76)

λ2 =
ϵf − g

2
(77)

From the expressions of f and g, we deduce that 2|f and 2|g, then λ1, λ2 are integers.

We recall that y2 − q is supposed < 0 and are determined by the equations (48-
49-51), we obtain the integer coordinates ∈ to the elliptic curve (E) :

For l = 1, 2, ..., NS

(f, yl), (−f, yl), (f,−yl), (−f,−yl),

(λ1, yl), (λ2, yl), (λ1,−yl), (λ2,−yl),

(−λ1, yl), (−λ2, yl), (−λ1,−yl), (−λ2,−yl) (78)

2.3.2 We suppose 3 ∤ p′:

Then ∆ = (y2−q)2− 4p′3

27
= −m2 where m > 0 is a real. As in paragraph 2.2.2 above,

we find the same results there are no integers coordinates of the elliptic curve (E).
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