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Abstract

In this paper, we give an elliptic curve (E) given by the equation:

¥’ =¢(z) =2+ pr+q
with p, ¢ € Z not null simultaneous. We study the conditions verified by (p, q)
so that 3 (x,y) € Z* the coordinates of a point of the elliptic curve (E) given
by the equation above.
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1 Introduction

Elliptic curves are related to number theory, geometry, cryptography, string theory,
data transmission,... We consider an elliptic curve (E) given by the equation:

=) =2"+pr+q (1)



where p and ¢ are two integers and we assume in this article that p,q are not
simultaneous equal to zero. For our proof, we consider the equation :

px)—y =2 +pr+q—y*=0 (2)

of the unknown the parameter x, and p,q,y given with the condition that y € Z¥.
We resolve the equation (2) and we discuss so that x is an integer.

2 Proof

Proof. We suppose that y > 0 is an integer, to resolve (2), let:
r=u+v (3)
where u, v are two complexes numbers. Equation (2) becomes:
w? + v+ g -y + (u+v)(Buv +p) =0 (4)
With the choose of:

3uv+p:0:>uv:f§ (5)

then, we obtain the two conditions:

3

Hence, u3,v3 are solutions of the equation of second order:

X2 - (2 —gx - ¢ ®)
27

Let A the discriminant of the above equation, it is given by:

4p3
AZ(yQ—Q)2+§ 9)

2.1 Case A =0

In this case, the equation (8) has one double root :

¥’ —q
2

X; =X, = (10)

43
As A =0= 2—p7 = —(y* — q)> = p < 0. As y, ¢ are integers then 3|p = p =

2

3p1, p1 <0 and 4p} = —(y? — q)? = p1 = —p3 = y? — q = +2p3 and p = —3p3. As



y? = q & 2p3, it exists solutions if:

q & 2p3 is a square (11)
, ¥’ —q
We suppose that ¢ & 2p3 is a square. The solution X = X; = Xy = 5 = :I:pg.
Using the unknowns u, v, we have two cases:
1-ud =0 =pj,
2-ud =3 = _pd
e 3 — 23 — 3
2.1.1 Case: u® = v° = pj
The solutions of u?® = p3 are :
a- Uy = p2,
—1+iv3
b - ug = j.ps with j = l is the unitary cubic complex root,
c-uz=j>ps=7jp2
Casea: u; = v =po — & = u1+v1 = 2P = U1 = p% = —p/3. Then the condition
(6) uv = uy.v1 = —p/3 is verified. The integers coordinates of the elliptic curve (FE)
are :
(2p2,+a), (2p2, —a)anda = +/p(2p2) (12)

Case b: ug = j.pa,va = j2po = j.po => * = ug +v2 = p2(j +j) = —p2 and the
condition (6) is verified. In this case, the integers coordinates of the elliptic curve (E)
are :

(=p2,+a),  (=p2,—a)anda = ++/¢(—p2) (13)
Case ¢: ug = j2.ps = j.p2, V3 = j.p2, then = uz + v3 = —po and uz.v3 = —p/3. It is
the same as case b above.

e g3 — 23 — 3
2.1.2 Case: u° = v° = —p,
The solutions of u® = —p3 are :
d-up = —pa;
e - Uy = —J.p2;

f-uz=—5%ps = —j.pa.

Case d: u1 = v1 = —ps = & = —2p,. The condition u;.v; = —p/3 is verified. The
integers coordinates of the elliptic curve (E) are :

(—2pa, +a), (—2p2, —a)anda = p(—2p2) (14)

Case e: uy = —j.p2,v2 = —j>.p2 = —j.ps => & = ug +vg = —pa(j +j) = +p2 and
the condition (6) is verified. In this case, the integers coordinates of the elliptic curve
(E) are :

(P2, +a), (p2, —a)anda = ¢(p2) (15)
Case f: uy = —j2.pa, V9 = —j.po. It gives the same of case e above.



2.2 Case A >0

We suppose that A > 0 and A = m? where m € R* is a positive real number.

43 2 2 \2 43
Pt _ 21y —g) 4" o

e R A (16)
27(y° — q)° + 4p® = 2Tm® = 27(m* — (y* — ¢)*) = 4p° (17)
2.2.1 We suppose that 3|p
We suppose that 3|p = p = 3p;. We consider firstly that |p;| = 1.
Case p; = 1= p = 3. The equation (17) is written as:
m? — (y* —q)? =4 = m? =4+ (y* — ¢)> = m?is an integer (18)

We consider the case m is a positive integer: m > 0. From the last equation above, we
obtain :

(m+y? —q)(m—y*+q) =2 x2 (19)
That gives 3 systems of equations (with m > 0) :

2— =
{Zi—zz+gzi = m = 5/2 not an integer (20)
m+y?—q=2 B .
2_ =
{ztl&-ﬁ-g:? = m = 5/2 not an integer (22)

As y? — ¢ = 0 from the case (21), if ¢ = ¢/*> with ¢’ a positive integer, we obtain the
integer coordinates of the elliptic curve (E):

y? =23+ 3z +¢"? (23)

If ¢ is not a square, then m can not be an integer.

Case py = —1 = p = —3. Using the same method as above, we arrive to the accept-
able value m = 0, then it is a particular case of A = 0 studied above.

Now, we consider that |p;| > 1.

We suppose that p; > 1

The equation (17) is written as:

m? — (y* — q)* = 4p} = m’® — (y* — q)* = 4p} (25)



We consider that m > 0 is an integer. From the last equation (25), (m, y? — q) (respec-
tively in the case y? — ¢ < 0, (m,q — 3?)) are solutions of the Diophantine equation

X?2-Y?=N X>0,Y>0 (26)

where N is a positive integer equal to 4p3.

For the general solutions of the equation (26), let Q(NN) the number of solutions of
(26) and 7(N) the number of factorization of N, then we give the following result
concerning the solutions of (26) (see theorem 27.3 of [1]):

- if N=2(mod 4), then Q(N) = 0;

- if N=1 or N=3(mod 4), then Q(N) = [7(N)/2];

- if N=0(mod 4), then Q(N) = [7(N/4)/2].

[x] is the largest integer less or equal to x.

As N = 4p} = N=0(mod 4), then Q(N) = [7(N/4)/2] = [r(p3})/2] > 1. A solution
(X', Y") of (26) is used if Y/ = y? — ¢ = ¢+ Y’ is a square (respectively if Y’ =
q—1y? = q—Y'is a square), then X' =m > 0 and +y = ++/q + Y’ (respectively
+y = £/¢ — Y7). The roots of (8) are :

Y —q+m _ Y'+m

X = 0 27
! 2 > 27)
2 _ Y/ _

X, = yLamm _rom (28)
2 2
(Respectively, the roots of (8) are :
2 7}//
x, = yoatm v am (29)
2 2
2 _ Y’ —
ngy+g e (30)

). From X2 —Y"? =4p? = N, 2|/(Y' —m) and 2|(Y' —m + 2m) = 2|(Y' + m) =
X1, X5 € Z, and we obtain the equations:

w = X1 = u = Y Xisue =5V Xsus = 52V Xa (31)
V3 =Xy = v) = v/ Xo; 03 = j¥/ Xo;u3 = 52/ X (32)

A real z is obtained if x = u; +v; = VX1 + Xs. If X1, X are cubic integers :
X, =t3, Xy = t3, then we obtain an integer solution :

x=1t1 +ty, Fy==+Y' +¢q respectively +y==+/q—Y’ (33)

If not, there are no integer coordinates of the elliptic curve (E).



We suppose that p <0 = p; < —1 :

in this case, (y2 — q,m) (respectively (¢ — y?,m)) is a solution of the Diophantine
equation :

X?-Y?=N" X>0Y>0 (34)
and N’ is a positive integer equal to —4p$ > 0. As seen above, a solution (X', Y”’) of
(34) is used if X' = y? — ¢ = ¢+ X’ is a square (respectively X’ = ¢ —y? = q— X'
is a square), then +y’ = +1/q + X’ (respectively +y' = +/g— X’) and Y' = m > 0.
The roots of (8) are :

P —q+m  X'+m

X = 0 35
1 5 5 (35)
2 _ X/ _
xy=¥ra-m_ >0 (36)
2 2
(Respectively the roots of (8) are :
2 —-X'
xp =y oatm_ZA Am (37)
2 2
2 _ _x!'_
x,=¥ra-m_ ™o (38)

) From X2 —Y"? = —4p = N, 2|(X’ —m) and 2|(X’ +m) = X/, X} € Z, and we
obtain the equations:

u = X] = = /Xy = /X = YK (39)
VP = Xy =) = X0 = /X0 = P Y/XG (40)

A real 2 is obtained if «' = v} +v] = ¢/ X| + /X, If X{, X} are cubic integers :
X| =3, X} = t5 then we obtain an integer solution :

=ty +th, +y =+V/X +q (respectively +y' =4+/q— X’) (41)
If not, there are no integer coordinates of the elliptic curve (E).

2.2.2 We suppose that 31 p
We rewrite the equations (8) and (17):

X = -9X -55=0

4p® _ 27(y* — q)* + 4p°
A = 2 — 2 _— = = 2
(v —a)" + - o7 m
with m? > 0 is a rational number, then m is not an integer. It follows there are no
integer coordinates of the elliptic curve (E).



2.3 Case A KO
The expression of A is given by (71) :

4p3
A= 2 2 Y
(y" —a)" + -
2 5, 4p° 2 2 4p?
We suppose that A < 0 = (y° — q) +2—7 <0= (y* —¢q)° < 72—7,thenp<().
4 /3
Letp = —p>0= A= (y> —q)? - 57 :
2.3.1 We suppose 3|p’:
We suppose that 3|p’ = p’ = 3p;. A becomes:
A=(y>—q) - 4p} (42)
Case p; = 1. We obtain A = (3> — ¢)> — 4. A = —m? with m integer, then

m? =4— (y* — q)? = m? + (y* — q)? = 22, the solutions are:
o2 =4,9% —q=0=y? = q. If ¢ is a square, let ¢ = ¢?, then y = 4¢;. We have
also 22 — 3z = 0. The only integer coordinates of the elliptic curve are:

(07(]1)’ (07 _QI) (43)

mP=1 y?—q=V3ory’—q=-V3
**_1- 92 — g = /3, If ¢ = /3, we have the equation 32> = 2° — 3z + v/3 and X? —
V3X+1=0and:

i

341 -
lexf;z: 6 (44)

T

CREpE—
X2—f2 LG (45)

i i

u,v verify u? = e6 ;03 = e 6 = |u;| = 1 and |vj| = 1, |zg] = |u; + vk] =

|2coslﬂ—8| < 2 = no integer coordinates if ¢ = v/3.

#*.9- 42 — ¢ = —+/3, we suppose that ¢ = —v/3 then X2+ v/3X + 1 = 0. We obtain :

1O
—/3+i _

X, = % —¢ 6 (46)
5%

Xo "/gﬂ, 6 (47)



Using the same remark as above, we arrive to |zx| < 2, with |xy| # 1, then there are
no integer coordinates when ¢ = —+/3.

Case p; > 1. We obtain m? = 4p? — (y? — q)? = m? + (y* — ¢)? = 4p3, then
+m, +(y? — q) are solutions of the Diophantine equation :

A+ B?*=N (48)

with N = 4p3. The following theorem (theorem 36.3,[2]) gives the conditions to be
verified by N:

Theorem 1. The Diophantine equation:
A2+ B*=N (49)
has a solution if and only if :
N = 2“p'1h1...p;ch’“.qfﬂl...qiﬂ" (50)

where the p) are primes congruent to 1 modulo 4, and the q; are prime congruent to
3 modulo 4. When N is of this form, equation (49) has :

(i +1) (bt 1) +1
2

Ng = (51)

inequivalent solutions ([x] is the largest integer less or equal to x.)

From the conditions given by the theorem above, 24 p; and p; must be written as:

p1 = pl ..-p;c3hk.q$51 g (52)
and p; = 1(mod4) (53)

We suppose in the following, that equation (52) is true. We obtain:

2 .
Xll = yl q2+ Zml
l=1,2,..,Ng (54)
2 _ g —
XQl = yl q2 Zml

To simplify the notation, we remove the indices [. The roots of the equation (8) are :

X1:7y2—q+im
2
(55)
X2:y2—q—im

2



We have to resolve:

W= x, = LT

2
(56)

27 7.

vngQZley C]2 m

We write X1 as X; = pe’? with:
2 2 2 Ny 2
p= (y ;Z) tm :pl\/]Tl; sin9=7=?>0, cost) = 2pq

1 6
Ify2—q>0:>cosﬂ>0:>o<9<g[27r]2>1<0082§<1.

If 42 — ¢ < 0 = cosf) < 0, then :

] w

1 6
g<9<7r[27r]:>1<0052§<

0 1 0
A. We suppose that y* —q>0=0< 3 < %[%] — 1< c052§ <1.

Then the expression of Xo: X5 = pe’w. Let :

; . —1+1iv3 on
uw=re¥, and j= % = eiF
The parameters u and v are:
up = ret¥t = \B/,Beig
Uy = re¥2 = \3/5‘7@12 = e/ﬁeiﬂ%

, 5 ;0 an 0 .
U3:T€Zw3:Wj€3:3p€l3€+l3:\3/ﬁ€l 3

v =re” W = \‘J/E(fi§
vy = re” W2 = \3/ﬁj26_i§ = \S’fpei%ﬂe_i% = \3fpe"47r376
vy = re”Ws = wjeﬂ‘% _ 3 peizw;e

We choose uy, and vy, so that ug + vy is real. In this case, we have necessary :

vl =U1; V2 =TUg; V3 = U3



Then, the three real solutions of the equation (2) are:

0
T1=ul +v = 2%0055

Ty = U2 + V2 = 2\3/50059 4—327r =—p (cosg + ﬁszni) (58)

x3 = us + vz = 2/pcos

i —&—347r = ¥p <—cos§ + ﬁszni)

The discussion of the integrity of x1,x2,3:

We suppose that x; is an integer, then 27 is an integer. We obtain:

0 0
2 =47y p20052§ = 4p100325 (59)
. 20
We write cos 3 as :
0 a
2
—— el 60
cos"z=~— or o (60)
where a, b are relatively coprime integers.

0 1 1 1
**coszng, Inthiscase,1<7<1=>1<a<4:>a:20ra:3.
a a

, 6
Case a = 2, we obtain 27 = 41/ pzcoszg = 2p; = 2|p1, but from (53) 2t p1, then
the contradiction. We verify easily that xo and x3 are irrationals.

0 1
Case a = 4, we obtain 27 = 43/ p2c032§ = 4p1.§. If 34 p; = 2? is a rational.
We suppose that 3|p;, then p; must be written as p; = 3w?. From the equation

(52), p1=1(mod4), we deduce that w?=3(mod4), as w? is a square, w?>=0(mod4) or
w?=1(mod4), then z; can not be an integer. We verify easily that xo, 3 are also not
integers.

0

** 0052§ = %, a,b coprime with a > 1. We obtain :

0  4pra

2 2
—4 7 _
Ty prcos”y 5
where b verifies the condition:
bl4p, (61)

and using the (57), we obtain a second condition:

b < 4a < 3b (62)

10



A-1-b=2= a=1= 27 = 2p; = 2|p1, but py=1(mod4) then case to reject.
A-2-b=4= a =2, a,b no coprime. Case to reject.
A-3- b= 2b" avec 21V, then we obtain:

o 4pia 2pra
T T

= V|ps (63)

then p; = b'py with a > 1 and V' | p2, we obtain 22 = 20'“~!.py.a = 2|(p2.a), but
from (52) 21 p; = 24 ps and 2 1 a, if not a, b are not coprime. Then x? cannot be an
square integer, the case b = 2’ is to reject.

A-4- b =4V avec 41V, then we obtain:

dpra  pia

then p; = b'®py with a > 1 and V' { pa, we obtain 22 = b'*~1.p,.a.

*if '~ 1.py.a = f? asquare then z; = £ f, if not 1 is not an integer. We consider
that z1 = €f is an integer with e = +1. As 1 + 22+ 23 =0 = x5+ x3 = —x1. From
the equations given by (58) the product xo.73 = f2 — 3p, then a9, r3 are solutions of
the equation:

M —efA+f2=3p =0 (65)
The discriminant of (65) is:

8= f2—4(f%—3p1) =12p1 — 3f% = 3(4p1 — f2) = 3pb* H(b—a) >0

If § is not a square, then x5, 3 are not integers. We suppose that § = ¢ a square.
The real roots of (65) are:

o ;g (66)
p =L (67)

From the expressions of f and g, we deduce that 2|f and 2|g, then A1, A2 are integers.
We recall that y? — ¢ is supposed > 0 and are determined by the equations (48-
49-51), we obtain the integer coordinates € to the elliptic curve (E) :

Forl=1,2,...,Ng

(fry)s (=f,u), (f, —w), (= f, —w1),

(At 91)s A25wn)s (A1, =), (A2s =),
(A1, 90, (=A2,w1), (A1, =), (= A2, —w) (68)

11



0
B. We suppose that > — q < 0 = T2« E[Qﬂ-]

6 3 3
that gives :
1 0 3 1 6 3
§<cos§<§:>1<cos2§<1
20 1 . 3 1 L . .
cos 354 In this case, 1 < — <1 = 3a < 4 which is impossible case to reject.
a
2 . 3 a .
cos 353 In this case, 1 < 3 < 1= 3b < 4a. Then we obtain:
; 0 0 4
2 =47y p26082§ = 4p10032§ = pb1a = b|(4p1) (69)
B-1- b =2 = a =1 = 8 < 4 case to reject.
B-2- b =4 = 3 < a < 4 case to reject.
B-3- b =2V avec 21V, then we obtain:
4 2
2= = T = Vi (70)

b v
then p; = b'®py with a > 1 and V'  p2, we obtain 27 = 26’ 1.p,.a.

*if 20! py.a = f? a square then 1 = % f, if not ; is not an integer. We consider
that 1 = €f is an integer with e = +1. As z1 + 22 + 3 =0 = x5 + 3 = —x1. The
product zo.z3 = f2 — 3py, then xq, x3 are solutions of the equation:

AN —efA+f2=3p=0 (71)
The discriminant of (71) is:

§=f*—4(f*—3p1) = 12p1 — 32 = 3(4p1 — f?) = 2p2b/* 1 (b—a) > 0

If 6 is not a square, then x5, x3 are not integers. We suppose that § = ¢ a square.
The real roots of (71) are:

o ;9 (72)
r = L (73)

From the expressions of f and g, we deduce that 2|f and 2|g, then Aj, Ay are integers.

12



B-4- b = 4V’ avec 41V, then we obtain:

dpia  pra
t=— = = Ve (74)

x
then p; = b'®py with a > 1 and V' { pp, we obtain x? = b'*~1.p,.a.

*if '~ L.py.a = f? asquare then z; = £ f, if not ;1 is not an integer. We consider
that z1 = €f is an integer with e = 1. As z1 + 29 + 23 =0 = x5 + 23 = —x1. The
product xo.23 = f2 — 3p;, then x5, 23 are solutions of the equation:

M —efA+f2=3p =0 (75)
The discriminant of (75) is:
§=f2—4(f>—3p1) =12p1 — 3f2 = 3(4p1 — f?) = 2p2b/* (b —a) > 0

If 6 is not a square, then x»,x3 are not integers. We suppose that § = ¢ a square.
The real roots of (75) are:

n =L (76)
y =L (77)

From the expressions of f and g, we deduce that 2|f and 2|g, then A;, Ao are integers.

We recall that y? — ¢ is supposed < 0 and are determined by the equations (48-
49-51), we obtain the integer coordinates € to the elliptic curve (E) :

Forl=1,2,...,Ng

(fry)s (=f,u), (f, —w), (= f, —w1),

(AL, (A2, ), (A, —w), (A2, —w1),
(=219, (A2, 91), (A1, —w1), (A2, —w1) (78)

2.3.2 We suppose 3 1 p’:

4p/3
Then A = (y* —q)* — ETa

we find the same results there are no integers coordinates of the elliptic curve (E). 0O

= —m? where m > 0 is a real. As in paragraph 2.2.2 above,
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