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Abstract

In this paper, we will calculate a generalization of the Dirac Equation using Geometric
Algebra Clso. Apart from the partial derivatives with respect to position and time, also
partial derivatives regarding orientation (or angular momentum) will appear.

The reason that these new partial derivatives have not been considered before is probably
because their value is very small or directly zero or because they represent an oscillatory
movement or value which mean value is zero. Meaning they can influence in local effects
(helicoidal movement, rotations etc.) but not in the mean trajectory of the particles.

Two representations of the equations will be shown, being the following one, the one
that has a one-to-one map to the standard matrix algebra of the Dirac Equation. In bold
the new elements appearing:

Wy D Wy Wy By B By B
ot dx dy 0z ¥oory, or, or,, 0rg
W By Oy W B B Oy B
ot ox  0Jy 0z Y oory, o0r, 0r, o0r,
Oy Oy Mo DBy W Wb B
ot 0x dy 0z Y oor, or, O0r, 0,
W, o Wby Wy | Oy D B Oy
ot 0x dy 0z Ve ary, 0r,  0dry,,  0rg
_ al/)xy + % _ alpx all}xyz _ mlpo _ all)zx + a1I)yz a‘l’o a‘l’z =0
at 0x dy 0z or,, 0r, 0ry, 0r
_% % alpz %‘lep + alpO _ alI’xy alrl)zx + awx =0
ot ox dy 0z o 9r, or, or, or,
al/sz all}z 61/)xyz al/)x all)xy all’o alI’yz 0¢y
e ax oy Tz ™t ar, Tar, ar, Tary 0
all}xyz all}yz awzx al:[}yx a‘px alpy alpz a‘l’o
"ot Tox "oy Tz +""/’Z+aryz+arzx+arxy+ arg 0

Being the wavefunction v defined as:

Y =1+ XY, + _f’l/ly + 2y, + ﬁyl/)xy + .f’ZAlpyz + 2%, + J,C\jl\zl\l/)xyz

Which has a one-to-one map towards the standard representation of the wavefunction in
the standard matrix algebra of the Dirac Equation:
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/21 Y1 + iy
b= Yo | _ [ Yor + 1t
Y3 Y3 + i
Y, Yur + 1y

As follows:
Yy = _lpy
lpli = _wx
1p2r = 1pxyz
Yo =1,
Y3 = _lpyz
1p3i = l»bzx
Yur = lszy
Y4 = Yo
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1. Introduction

In this paper, we will calculate a generalization of the Dirac Equation using Geometric
Algebra Clsp. First, we will define the position multivector of a particle or body in Geo-
metric Algebra Clso. With that, a new definition (expanded) for the del (V) operator can be
performed. With this new definition of the del operator, we can generalize the Dirac Equa-
tion following similar steps as in [6].

2. The position multivector R

To be able to follow the mathematic framework in this paper, | recommend you read the
chapters 2 to 8 of [6] or [7] before continuing. There, you will see how to work in Geomet-
ric Algebra Clso considering the time as the 8" degree of freedom (the trivector) of the
expanded Geometric Algebra created by the three space vectors.

If you do not know what | am talking about, I strongly recommend you check the master-
piece [1] and the best collection of Geometric Algebra knowledge [3].

If we consider an orthonormal frame in Geometric Algebra Clso composed by the three
space vectors X, ¥ and Z.

N>

Fig.1 Orthonormal basis vectors in Clsg




J.Sanchez

First, as we made in the Annex Al.1 of [2], we will define the position multivector. If we
consider a particle or a rigid body as in the Figure 2:

N>

Fig.2 Representation position multivector

This multivector has 8 coordinates (8 degrees of freedom corresponding to the scalar, the
three space vectors, the three bivectors and the trivector):

R =1+ 1 X+ 1) + 1,241, X941, 92 + 1,, 2% + 11,,,29% (1)

If you know something about Geometric Algebra, you will be asking why we have reversed
the order of the trivector. You will see this in a minute.

So how this multivector correlated to the Figure 2? First, we see that the vector a corre-
sponds to the linear position of the particle or to the rigid body center of mass:

a=nrnX+ny+nz (2)

So, it corresponds to the above elements of the R position multivector. To simplify, we will
change the nomenclature of these components to the most classical in literature:

e =X
=y
=z (3)

Leading to:

a=xX+yy+zz (4)

Where the X, y and z without the hat are the spatial coordinates and the %, § and Z with
hat are the space basis vectors.
So, at the moment we are having:

R =1y + a+nry X9+1,,92 + 1,428 + 13,292 (5)

R =1y +xX +yY + 2241, XV+7,,,97 + 12X + 1, 29X (6)

Now let’s go to the bivectors. In Fig.2 you can see that there is a bivector b”c that represents
the orientation of a preferred plane in the particle/rigid body. This plane is in general the
plane where the rotation will take effect (the plane perpendicular to the rotation axis n)
when it happens.
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As we are still in a position multivector there is no rotation at this stage, so let’s say that
this bivector tells us the orientation of the particle/rigid body at a certain moment. If you
select a preferred plane solidary to the particle/rigid body, it tells us the orientation of this
plane at a certain time. So:

b"c = 1y, XY +1,,9Z + 152X (7)
Introducing in R:

R=1ry+a+b"c+rn,,29x (8)
R =1y +xX +yY + 2241, XV 47,97 + 13, 2% + 13, 29X (6)

Regarding the Z29x , as we commented in chapter 8 of [6] and [7] this corresponds to the

t vector (being instead the %92 its inverse, the £~ vector). So, the element r,,, corre-
sponds to the coordinate of time t. This is:

Tayz =t (10)
R=1ry+a+b"c+rn,,29x (8)
R=71y+a+b c+tt (11)

R =15+ x& + y9 + 2241, X9+1,,92 + 1, 2% + tE (12)
R =1y 4+ x% +yJ + 22+t + 1, X941,,92 + 1,,28(13)

So, we see that we have the four traditional dimensions (three of space and one of time)
included in the position multivector (apart form other elements). This happens even if we

have considered only the three space dimensions to start. The time has appeared naturally

A~

as the trivector Zyx.

The only pending element is ro. The meaning of this element is more obscure. As | have
commented in [5[6] the scalars in the multivectors are a kind of scalation factor that affects
all the magnitudes that are multiplied by it. So, it could be related to a kind of scalation in
the metric appearing in non-Euclidean metrics (kind of local Ricci scalar or trace of the
metric tensor).

Another simpler interpretation for ro, is that the scalars appear when we multiply or divide
vectors by themselves. So, it is a necessary degree of freedom to accommaodate these results
when they appear. For example, we will divide later the time trivector by itself leading to
a scalar. But the origin of the value would still remain related to time.

A

Coming back to the equation of R, we will use the following form (we will use Zy% in-
stead of £ ) to facilitate the operations:

AnS

R =1y +xX +yY + 2241, XV+1,,97 + 1, 2% + t29X (14)

3. The Del operator
In [13] we made the following definition for the Del (V) operator. All the partial derivatives

make reference to the coordinates defined in previous chapter.

I will keep in bold the ones are not normally standard in physics so we can follow them

separately.
L S S SIS S LA SN S A ST
Tox Ty Toz” T arg Yt Ty, Tor,,Y o, ar 9
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In paper [6] we obtained one of the representations of the Dirac Equation in Geometric
Algebra Cls as follows:

a
ay

An

.0 0
(xyza—yza—zx

Q)lQ)

)w:o (16)

_f}’}

As you can see, the Del operator, seems quite different in (16) than in (15). As the equation
is equal to zero, we could pre or post multiply with no effect in the results.

So, if we premultiply the definition of Del in (15) by the trivector, we obtain:

Xy2ZV 9 '|'a '|'a a-|'a,\-l'a’\+a’\+a'\'w17
L S L P ar Yor,  Tar, ) Ta 02 A7)

And reordering terms, we have:

/\/\Av_ /\/\Aa /\Aa AN
Xyiv= 292 yza + 2%

Which is almost the operator we needed (apart from the new elements). Only one sign in
the trivector is different. If you have seen the papers [6][7][13] that signs are a bit of a
nightmare and they are the result of not having a clear formulism, convention for this alge-
bra. The reason for this problem in the sign has to be studied and solved in the future.

Our goal in the paper is to expand as much as possible the Dirac equation with all the
parameters that could be taken into account in Geometric Algebra Clso. That normally are
considered to be zero, but the idea is to have the expanded equation with all of them, so no
information is lost if it is discovered that some are not zero, or are oscillatory with a zero
mean value for example.

So, as we know that equation (16) works (in fact another representation of that equation,
wee [6]), what we can do is just to expand the Del operator in a way that we know will
work for the Dirac Equation and at the same time add all the elements we want. So, we will
use (18) but with of change of sign in the bivectors, like this:

d d 7] 7] a

9 a
P — PR — R 2 2 9 (19
Vo Ry Ve are Yary  Yor,, Tar, ) (19

SRS

xXyz

This way, we know that using the expanded expression of the Del operator like (19) we
will be able to reproduce an equation as (16) already proved in previous paper [6].

4. Generalization of the Dirac Equation

Now, we will perform the calculations (16) done in [6]:

( d a . 0 d ) 0 16
xyzat yzax zxay xyaz mly = (16)

But using (19) as the operator to the wavefunction .

o

an

—Xy——m+Xx

Q;|Q,
Sl

~n 0 FON
—yi - —2X

+—0)1/)=0 (20)

@“|®
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We have included the m with negative sign in the operator as it was done with the previous

operator. The wavefunction was defined in [6] as:

1»[) Ebo + xwx + ywy + lebz + xyl»bxy + ylebyz + wazx + fyilpxyz (21)

So, the operation is:

sl 020 0 9 8 0 8 0
Vet T Y o T oy T Ve T T Yar,, Vo, Zory, " ar,

(Ebo + J,C\l»bx + ylpy + ZAlpz + xylpxy + yleyz + lepzx + f92\1/)3(312) 0 (22)
Operating, we get:

AnA 61/)0 PN azl}x PN ll}y A~ alpz N alszy ~ al»byz ~ alpzx aIl)xyz

xyz£+yz gztl}+zxal(?l}t xglpat —zalzt —alpat —yalpat — 6(25 —
—925—@;})6"”5— 6%2_226?pf+ a;azl,,”ya?p;XJr aw"”—
—226—;—2 ay"—f?ia—yy+£ayz+9i a;y—;r 652+ a;"+ a’;”—

_mlpo - k\mlpx - }A’mll)y - ZAmlpz - J,C\},l\rnlpxy - yzmlpyz - ch\mlpzx - J/C\:S\"Z,\n’ll/);»c;/z +

3 11)() a‘px d)y_ 1” lpy AnA wyz ,\alpzx ~a lpxyz

o, Vor, V%0, Por,, Y ar, V%%, Zor, T,
~ a¢0 ~n alpx alpy ~A all’z ~ all)xy ~ a“ijz V% 1/’ x 2% wxyz
Y or,, —x or,, * or,, +yz or,, X or,, +z or,, T xy ar or,, +
a a 7] a9y, a ", ay, -
2 ¢0 2% lpx _ ?2 1/’y d) Aj’\ﬁ d)xy ? lpy + % 1I) x ,\? wxy +
6r arxy ory,, arxy ory,, ory, ory, ory,
alpO II) all) alpz PN atpxy ~n alIJyz A a!.l)zx PN alpxyz
ar, ;vca +yao+zao+xyar0 +yzaro+zxar0 + Xyz aro
=0 (23)
Separating in equations, we get:
al/’o alpx al/)y alpz all)yz a"Ijzx al/ny a‘l’xyz _
ot ox oy oz ™=t ar,, Tor, o, T or, (24
awx al/’o 6lobxy al/)zx alI)xyz alpz awy alrl)yz
- — — — = 2
ot ox "oy oz "™t ar, Yor, Tam, Tar, 0 @)
0y 0y, 0y alpyz 0P, 0Py, 0P, 0P,
_rry_ X __TY — — = 2
ot ox oy "oz "™ Tar, Yo, Tor, Tor, 0 9
0, 0, 0y, Yy 0y, P, 0Py, 0Py,
at T Tox oy _E_ml’”‘y+aryz_arz,fr or,, or @7)
d d d 0Py s w,, o, a vy,
_ ll}xy wy lpx 1/)xy —ml,bz _ ¢ X + ¢y + ‘I’o + 1” =0 (28)
at ax 6y 0z or,, O0r, 0ry,, 0drg
61103/2 61pbxyz awz alpy all’o alI)xy al»l)zx awx
- -2 — = 2
ot T ox Tay oz ™rtar, ar, Tor, Tor, 0 Y
al/)zx all}z 61pbxyz al/)x alI)xy all’o al»l)yz alpy _
ot ox "oy Tz ™rtar, Tar, or, Tor, 0 GO
6¢xyz 6¢yz alpzx al:byx awx alpy awz alPo _
ot Tox "oy Tar  ™otar, Yo, Tor, Tor, 0 GV
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In these equations, we see that apart from the partial equations regarding linear position
and time, we gave also partial derivatives with respect to angular momentum/orientation
as defined in chapter 2 with the multivector position R.

These derivatives should be zero or oscillating with an average value of zero, so they are
not important to calculate the movement, trajectory or wavefunction (and that is the reason
they are not necessary for that) but could affect in oscillatory movements, zitterbewegung,
erratic position of it. Somehow, if known probably a more accurate definition of the posi-
tion of the particle could be done. Even, if the meaning of these parameters is not properly
known or defined, we know we have them as free parameters that can be used to define
more properly the status of the particle in case it is necessary or that they can affect or be

a variable affecting measurements even if it is not known.

Moving on, in [6] we did not use equation [16] to get a one-to-one map with standard
matrix calculations of Dirac Algebra.
Instead, we had to use the equation:
0 0 0 0

(#9253 =925~ 225 A9 )0~ Miosen? + mioaa? =0 (32)
That is another representation of the same equation but projecting in the 2 axis as a pre-
ferred direction. Something as changing the internal values Dirac Matrices but keeping
their properties (the value of their products). This type of projection is done typically in
Geometric Algebra as you can check in [3] (Chapters 8.1 and 8.3 for example).

Weven and odq are defined as following, so its sum is the complete wavefunction y:

Yeven = Yo + XYy + 2y, + 280, (33)
1»bodd = flpx + W’y + ZAI/’Z + fyZAlpxyz (34)
Y = Yeyen + Yoaa = Yo + X1hy + yl/)y + 2y, + lepxy + y\ilpyz + 2%, + X\f’ilpxyz (35)

Using (32) but expanding with (19) we have:

vopd .0 0 0 0 8 . 0 _ 8 )

Vot TV ox T 9y TV 0z arg 01y 01y, 0T ¥ = MPepen?
+ ml/)oddf = 0 (36)

a2 8 9 a+aA+aA+aA( s

Vit TV ox T 9y T V02 arg L Oryy 01y, 01 Yo + Xy

+ 9y + 29, + 29y, + 92y, + 2R0, + X92Yyy,)

- m(wo + fylpxy + 3721/)312 + 27?lpzx)ZA

+m(2Yy + I, + 29, + 292, )2 =0 (37)
Operating:

AnA 61»[)0 PN al)bx PN alpy A al/)z 5 al:bxy & al/Jyz 5 alpbzx _ al/)xyz _

xyz(g + yz g{b + ZXE + X_’;/l/)at Zalla}t ;Cl/) ot yall(?t a?/f
_,\A_O_,\,M X PR AP Z _ s Xy vz AA zX a xyzZ _
vz dx xyz dx z ox y ox 2 dx + 0x +xy Ox X Ox
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0o 0y, 0y,

alpz +5]\ZAalpxy ,\,\alpyz + alpr + ,\alpxyz

7z W_Zay —xyzW+xay dy a4 dy dy dy -
An alpo ~ alpx ~ 6¢y AAA alpz a7~»bxy An a7~»byz A A al/)zx A al»bxyz
_a E{:y 0z _axg_ ayZ 0z ; 0z +Zxaaz —yZa 0z tz aaz B

2 1I)O + 1I)x +5C\5’\ 1I)y — 3% ¢z _I_y lpxy+32?2 1»l}yz_2 l)bzx_i_:,y\2 lpxyz_i_
or,, 0ry, ary, ary, ary, ary, ary, ar,,

~ al/)o PN all)x all)y ~A a]gbz ~ alI)xy ~ alﬁbyz PPN a‘lpzx A alrbxyz
or,, —xy ar,, * or,, tyz or,, - or,, tz or,, +Ayz ar,, +x or,, *
a a a a a a a 7]

2 ¢0 + 2% ¢x _y,\ Ipy + wz +fj’\2 wxy_,\ 1IJyz_i_i ¢zx+i,\ ¢xyz+
ory, ory, ory, O0r,, ory, ory, ory, ory,
all}O PN alpx PN all}y 5 alpz PN alIny a5 aIlJyz PN alIjzx PN a1l)xyz
ar, T ar, +y ar, +Zar0 Xy ary, e ar, +2x ar, +AyE ar,
_ZAmwO - ZAjC\ml»bx + }72m¢y + mlpz - x\j\lz\mlpxy - ymlpyz + k\mlpzx + k\j}\mlpxyz

=0 (38)

And dividing in equations according to the element they are multiplying (scalar, vector,
bivector or trivector):

alpo alpx all}y alpz a‘(l)yz a‘(ljzx a‘lljxy awxyz _
ot ox oy oz " ter, VYo, Tor, tor, 0 GY
alpx alpo alpxy alnl}zx a‘(ljxyz all}z alpy a1/}}12 _
ot ox "oy oz T ar,, or, ory ' or, (40)
a 0 0 0Py, oy, P, 9 an,
Wy _Oby o Oy O Oy Oy W
at Ox ady 0z ar,, 0r, 0r,, 0r
alzbz alpzx alzbyz a¢0 alpy a!px alpxyz alpxy
x_ Dy~ — = 42
ot Tox Ty oz Tt o T, Yar, tar, 0 (Y
all}xy al/)y alpx al/)xyz alpzx alpyz all’() alpz _
ot Yox "oy "oz ™~ ar,, T or,, Tory, Tor, 0 (43)
all}yz all}xyz al/)z al/)y 01/)0 atpxy al/sz all’x _
ot TTax oy oz Tt ar,, or,, ory or, 0 (44
al/)zx al/)z alszyz a¢x alpxy 31/’0 a‘l’yz a‘l’y
— — — — = 4
ot ox oy Tz ™t o, Yar, ar, Tar, 0+
0y, O, O, 0 9 d ap, 0
_ l»bxy_l_ lpy_l_ lpx_l_ wyx-l—mll)z-l- Ipx+ ¢y+ IIJ + ¢0=0(46)

at 0x dy 0z dary, 0r, 0r,, 0dr,

When again, regarding the partial derivatives with respect to rij or ro it applies the same as
commented for equations (24) to (31) above.

The difference between equations (24) to (31) and (39) to (46) is that for the latter there is
a one-to-one map to the standard Dirac Equation.

Considering the standard representation of the wavefunction in standard Algebra of Dirac
Equation:

L2 Y + 1:1/)11‘
o=l )= v ] @
Yy Yar + 1y
And for the Geometric Algebra Cls defining y as commented:
Y=o + Xy + Iy + 2, + XYYy + J2Py, + 2R,y + X2y,

In [6] it was shown that the following one-to-one map existed:

Yy = _lpby (48)
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Y=Y, (49
Yo = lpxyz (50)
You=v¢, (51)

1p37’ = _lpyz (52)
Y3 =i (53)
Yoy = wxy (54)
Yai = Yo (55)

You can check [6] for more information.

But the idea of this paper was to show the expanded version of the Dirac Equation. This,
you can see both in equations (24) to (31) and (39) to (46) in the bold elements that did not
exist originally in the Dirac Equation and which possible meaning has been explained along
the chapter.

5. Conclusions
In this paper, we have calculated a generalization of the Dirac Equation using Geometric
Algebra Clso. Apart from the partial derivatives with respect to position and time, also

partial derivatives regarding orientation (or angular momentum) have appeared.

The reason that they have not been considered is probably because their value is very small
or directly zero or because they represent an oscillatory movement or value which mean
value is zero. Meaning they can influence in local effects (helicoidal movement, rotations

etc.) but not in the mean trajectory of the particles.

Two representations of the equations have been shown, being the following one, the one
that has a one-to-one map to Standard Matrix Dirac Algebra. In bold the new elements

appearing:
G b e g e G 0
TR e SR ottt LA
O e e =0 O
S T b s LR T 0
S g =0 )
B az;)tyz s alf;;ccyz s 66152 _ % 4 g:ﬂ/’; _ ‘;‘fx: + ‘;‘fx: N ‘;‘f: — 0 (44)
Y20, azg;yz FITS——— Zlfyy . gzi _ ‘;‘fYy " ‘;‘f: =0 (45)
T e S i e e S S0

yz

Being the wavefunction y defined as:
Y =Po + Xy + Yy + 2P, + XYy + 2y, + 2Ky + XY 21y, (21)
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