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Abstract

In this article, a simple but quite accurate model conforming to observations and solving the modified Poisson
equation is utilized in order to compute the rotation curves as well as the radial acceleration relations of spiral
galaxies being composed of several components: the central region of the bulge, the bulge, the disk, and dark
matter. With this model, flat rotation curves of spiral galaxies are obtained, because the modified Poisson
equation approximately meets the requirement of conservation of total energy in Newton’s theory of gravity,
wherefore the model contains the exact circular speeds of test particles which are caused by the dark matter
component of the respective considered spiral galaxies. The computed rotation curves are fitted to the observed
speeds in spiral galaxies taken from SPARC. It turns out, that the simple model in this article is able to explain
the observed flat rotation curves as well as the increasing rotation curves at large distances from the center of
spiral galaxies with a very good accuracy.
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1. Introduction
It has been proven in Ref. [1], that in the limit of weak gravi-
tational fields, the modified Poisson equation

AD(r) = 4nGp(r) — Ac? (1)

approximately meets the requirement of conservation of total
energy in Newton’s theory of gravity. Therein, p denotes the
baryonic mass distribution, whereas the cosmological constant

_ 87Gpa

A > )

¢
is proportional to the density of dark matter, pgm = pa < O,
or to the density of dark energy, pge = pa > 0, respectively.
It has also been shown, that the cosmological constant A
is no universal constant but a constant of integration and there-
fore a parameter, which is proportional to the total energy den-
sity with respect to the metric of the considered gravitational



system [1, 2]. With this finding, dark matter is nothing else
than a negative scalar curvature of space-time (A < 0), while
dark energy is nothing else than a positive scalar curvature
of space-time (A > 0). Initially, the cosmological constant is
unknown and has to be determined by observations.

In Sec. 2, a simple but quite accurate model is shown
in order to compute the rotation curves as well as the radial
acceleration relations (RARs) of spiral galaxies. In Sec. 3,
the results are discussed, which are obtained by fitting the
computed rotation curves by using the model in Sec. 2 to
the observed speeds taken from SPARC [3]. In Sec. 4, the
conclusions are drawn, and an outlook to a lot of future work
is given. Due to space restrictions, the figures and tables are
demonstrated in the appendix.

2. Model of spiral galaxies

In this section, a simple but quite accurate model conforming
to observations and solving the modified Poisson equation (1)
is shown in order to compute the rotation curves as well
as the RARs of spiral galaxies being composed of several
components [4]:

* the central region of the bulge (bh),
* the bulge (b),
* the disk (d),

¢ and dark matter (dm).

2.1 Baryonic matter components
The baryonic mass Myy, in the central region of the bulge is
considered to be point-like and probably containing a super-
massive black hole (bh).

The baryonic matter of the bulge is considered to be expo-
nentially and isotropically distributed,

( . r
Po(r) = poexp ")

where py is the central mass density of the bulge, and Ry, is the
bulge scale length. The mass of the exponential bulge inside
the radius r is given by

M, (r) = 47‘6/dr/r'2pb(r
My |1—e "N(1e L4
= —_— X —_—— — —
b P\ R R, 2R)]’

My = 8TpoR;

where

is its total baryonic mass.

The disk of a spiral galaxy can considered to be infinitesi-
mally thin with an exponentially mass distribution of baryonic
matter [5, 6]. Hence, its surface mass distribution is given by

E(r) =Zoexp (_RLd> :
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where ¥ is the central surface mass density of the disk, and R4
is the disk scale length. The mass of the disk inside the radius r
amounts to [6]

Mz(r):27r/0rdr/r/2(r) My [1—exp< er> <1+Rd>} :

where
= 27ZoR; 3)

is the total baryonic mass of the disk.
The gravitational potentials of the respective baryonic
matter components of a spiral galaxy are given by [4, 5, 6]

GM
Dy (r) = ®, (4a)
@b(r) ———47EG/ dr I’pb
GM,
= —Tp —4nGpyR; <1 + ITb) ; (4b)
Dq(r) = —wGZor(lo(y)Ki1 (y) — 11 (»)Ko(y)] » (4¢)
where
- r
y= 2_Rd .

Thereby, the squared circular speeds of a test particle caused
by the respective components of a spiral galaxy can be deter-
mined by using the relation

) =r
and hence read [4, 5, 6]
GMyn GM,
V%h( ) r ) V%(r): rP )

vi(r) = 4nGEoRay* [Io(y)Ko(y) — I () K1 ()]

It is important to know, that Eq. (4c) is only valid in and not
outside the disk.

2.2 Dark matter component

From the contribution of dark matter in the modified Poisson
equation (1),

A(I)dm =

10 5 0Py, - 2
r—zz (r o, ) =—Ac" = *87[Gpdm,

where because of Eq. (2)

Ac?

Pam =76

is the homogeneous mass density of dark matter, the squared
circular speed of a test particle is obtained,

0Pam  Ac*r?  87Grpgm  2GMun

2 _ _ - _
Vam (1) =7 ar 3 3 ro




where

A2 4mP DPdm
Mdm(r) = = ——
6G 3
is the amount of dark matter inside the radius r. The cen-
tripetal acceleration on a test particle caused by dark matter is

given by

Vim _ Ar _ 87Grpam _ 2GMan

gdm(r):Tzi 3 = 3 = }"2 . (5)

The gravitational potential generated by dark matter reads

A2 AnGr? GM,
By (r) = — 2 = O Pam . OMdm

6 3 r

2.3 Rotation curve and radial acceleration relation
The total baryonic mass of the spiral galaxy amounts to

Myar = Myp +My +Mjy.

The gravitational potential of the spiral galaxy in the disk
generated by baryonic matter reads

Dy (1) = Pon (r) + o (1) + Pa(r),

whereby the squared circular speed of a test particle in the
disk caused by baryonic matter is given by

3Pt
Voar(r) = 1= 2 = Vi (1) + V3 (1) + 3 (1)

The centripetal acceleration on a test particle in the disk caused
by baryonic matter is obtained by

v2 0P
gbar(r) = % = a;?ar .

The gravitational potential of the spiral galaxy in the disk
is determined by

D(r) = P (r) + Py (7) -

The squared circular speed of a test particle in the disk caused
by the spiral galaxy is obtained by

()
vz(r) = r? = vl%ar(r) +v(2]m(r)7

the square root of which is the computed rotation curve, that
can be fitted to the observed speeds vops by using the method
of least squares [7],

%2 = Z [Vobs (1) _V(ri)]2 )
o (©6)

ox* _ox’ _ox’ _ox’ _Ix’ _dx’ _,
oMy, OMy  OR, oMy ORy OJA

where n is the number of observed speeds in the respective
spiral galaxies. The standard deviation is determined by

_ |z
c, = P
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The centripetal acceleration on a test particle in the disk
is given by

v oD
g(r)ngelr(r)+gdm(r)=_=a_; @)
r r
from which the RAR
8= g(gbar) ®)

is obtained. In order to plot the RAR it is appropriate to take
the decadic logarithm of gy, and g to avoid small numbers
with decimal powers and to get a better resolution of the graph.

2.3.1 Asymptotic behavior of the rotation curve

Far away from the center of the exponential bulge the gravita-
tional potential approximately is determined by

- GM,
P (r) = — 22,

whereby the approximated squared circular speed of a test
particle amounts to

o0d, GM,
Vﬁ(r) Sl b

or r

At large distances from the center the gravitational poten-
tial generated by the disk approximately amounts to

GMy  3GMyR;

&)d] (l’) = , T . (9)

In order to obtain this result, formulas 9.7.1 and 9.7.2 of
Ref. [8] and Eq. (3) have been utilized in Eq. (4c). Thereby,
the approximated squared circular speed of a test particle in
the disk far away from its center is determined by

L) GMy 9GMyR?
2 o d; d divg
Vg, (r)=r 3 = + e

(10)

so that the approximated squared circular speed of a test parti-
cle in the disk caused by the whole spiral galaxy reads

P (r) = Vi (r) + 75(r) + 7, (r) + Vg (1) -

At huge distances from the center only the monopole
contributions in Eqs. (9) and (10) play a significant role,

GMd 2 o GMd

o)== B =2,

so that the approximated squared circular speed of a test parti-
cle caused by the whole spiral galaxy becomes

73 (r) = vin (r) + T (r) + 73, () + Vi (r).



2.3.2 Asymptotic behavior of the radial acceleration rela-
tion

As a crude method, the total baryonic mass of the spiral galaxy

can considered to be point-like far away from its center, so

that the centripetal acceleration caused by the baryonic matter

of the spiral galaxy on a test particle approximately reads

" GM,
gbar(r):r—zbar' (1D

In order to obtain the RAR, one needs to know the cen-
tripetal acceleration as a function of the centripetal accelera-
tion caused by the baryonic matter, see Eq. (8). The centripetal
acceleration caused by dark matter can be expressed by the ap-
proximated centripetal acceleration caused by baryonic matter,
which is achieved by solving Eq. (11) for the distance,

_ GMpar
r= T~
8bar

by inserting this result in Eq. (5), and finally by renaming ggm
to qm in order to show that it is being about an approximation,

. K GMpgeAc?
&im = —F—, K=——"—"—"—.
8bar 3

The positive parameter K is initially unknown and depends
on the point-like total baryonic mass as well as on the initially
unknown negative scalar curvature of the spiral galaxy’s met-
ric in matter-free space-time, R = 4A. By using Eq. (7) the
approximated RAR (aRAR) is obtained by

K
§=Gbar + —=-
7 Vabar
The expression for the aRAR can be divided by g, and be

rearranged in order to get the aRAR in its dimensionless form,
the adRAR,

8
g bar

_3
2
bar

—-1=Kg (12)
whereby the parameter K can be determined by performing
a linear regression through the origin with the method of
least squares. In order to check the accuracy of the aRAR
or the adRAR, respectively, the dimensionless RAR (dRAR)
is introduced, where g;:r/z is plotted on the abscissa and the
dimensionless quantity g/gbar — 1 is plotted on the ordinate.

3. Results and discussion

By utilizing the model shown in Sec. 2 the computed rotation
curves of different spiral galaxies are fitted to observational
data taken from SPARC [3]. Instead of using the mass mod-
els of Ref. [3] the author utilizes the model given in Sec. 2
because in the latter the exact formulas of the dark matter
component are demonstrated in contrast to the assumptions
made in the mass models of Ref. [3].
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For the computations of the model in Sec. 2 the author
neither has needed special software nor any computer source
codes, but he just has made use of the spreadsheet program
LibreOffice Calc and the tool Solver therein, the lat-
ter of which successfully has fitted the rotation curves to the
observed speeds by using Eqs. (6) and by specifying reason-
able search intervals for the six model parameters My, My,
Rb, Md, Rd, and A.

The fitted flat rotation curves of several spiral galaxies are
shown in Figs. 1-6. They are drawn as very thick gray solid
lines and mostly lie in between the error bars of the observed
speeds. Even increasing observed speeds at large distances
from the galactic center can wonderfully be explained with
the simple model in Sec. 2 as can be seen for example in case
of the fitted flat rotation curve of UGC 3205. The very thick
gray densely dotted lines show the rotation curves in case
there were no dark matter components. The horizontal yellow
thin solid lines demonstrate the circular speeds obtained by
Milgrom’s MOND theory [9]

Vit = GMugeag ap=12-10""9m/s?

which are often in good agreement with the fitted flat rotations
curves obtained by the model in Sec. 2. The deviations are
explained by the fact, that in contrast to MOND, the model in
Sec. 2 comprises the exact formulas for the dark matter com-
ponent with A as a necessarily existing parameter, which is
missing in MOND. Therefore, not all circular speeds obtained
by MOND are in agreement with the model in Sec. 2.

The thick magenta densely dashed as well as the thick
cyan densely dash-dotted lines represent the respective ap-
proximated circular speeds, which are not always reliable in
comparison to the fitted flat rotation curves. The remaining
lines show the circular speeds of the respective components
of the spiral galaxies.

It is interesting to recognize, that the circular speed of a
test particle caused by baryonic matter in NGC 3198 is almost
completely described by that one of its disk component. For
some spiral galaxies the contribution of the circular speed of
the center of the bulge is negligibly small.

The values of the fitted parameters of the spiral galax-
ies under consideration, their total baryonic mass, and the
standard deviation of the respective fits are shown in Tab. 1.

The RARs of the spiral galaxies under consideration are
plotted in Fig. 7. At small values of gp,r, which means at large
distances from the galactic center, they come close to the fit
formula from McGaugh [10]

8bar
&= Sbar ’
1—exp (—1 /a—0>

the latter of which is demonstrated by the very thick gray
solid curve. The deviations are explained by the fact, that
in contrast to McGaugh’s fit formula, the model in Sec. 2
comprises the exact formulas for the dark matter component
with A as a necessarily existing parameter, which is missing
in McGaugh’s fit formula.




The dRARs of the spiral galaxies under consideration
are plotted in Fig. 8. At first sight, they seem to be straight
lines through the origin, see upper plot in Fig. 8. However,
by creating a double-logarithmic plot of the dRARs in order
to get a better resolution — see lower plot in Fig. 8§ — one
clearly recognizes, that the dRARs in fact are no straight lines,
whereof one immediately concludes, that the formulas of the
aRAR and the adRAR are far from being precise. This is why
linear regressions through the origin are not reliable in order
to obtain the parameters K, cf. Eq. (12). Even constructing

tangents at large values of g;;r/ % in the double-logarithmic
plot of the dRARs in order to determine the parameters K is
not recommended because the dRARs need not necessarily
become linear in this region.

4. Conclusions and outlook

The flat rotation curves of spiral galaxies can be explained
by using the model in Sec. (2) solving the modified Poisson
equation (1), which approximately meets the requirement of
conservation of total energy in Newton’s theory of gravity.
All the approximated formulas of the model in Sec. 2, such as
the approximated circular speeds 7} and ¥, the aRAR and the
adRAR, are not reliable. This is why one needs to compute
the rotation curves and the RARs with the exact formulas of
the respective components of the spiral galaxies, which are
represented in Sec. 2.

Not all circular speeds obtained by MOND are in agree-
ment with the model in Sec. 2. The deviations are explained
by the fact, that in contrast to MOND, the model in Sec. 2
comprises the exact formulas for the dark matter component
with A as a necessarily existing parameter, which is missing in
MOND. The same argument applies regarding the deviations
of McGaugh'’s fit formula from the RARsS, the latter of which
are obtained by using the model in Sec. 2.

Each spiral galaxy has different parameters. Consequently,
there is a lot of work to do in future, because there are many
spiral galaxies the computed rotation curves have to be fitted
to. The model in Sec. 2 is just a simple, but nevertheless
an almost exact one, because it corresponds to the observed
circular speeds. It is of great interest to find out the precise
distribution of baryonic as well as of dark matter in spiral
galaxies. The exact formulas of the latter are given in Sec. 2.
Computer simulations of spiral galaxies can be performed by
using the equations of motion shown in Sec. 2. One can utilize
more precise models improving the fits and the computer
simulations.
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Appendix

Figures and tables
Due to space restrictions, the figures and the table are shown
on the subsequent pages.
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Figure 1. Rotation curves of NGC 801 and NGC 1090.
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Figure 2. Rotation curves of NGC 2403 and NGC 2841.
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Figure 6. Rotation curves of NGC 7814 and UGC 3205.
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spiral Mbh Mb Rb Md Rd A Mbar Oy

galaxy [10°Mo]  [10°Mo]  [kpe]  [10°M.] [kpc] [m ] [10°My]  [km/s]
NGC 801 0.0000 106.4329 1.5084 342.5265 18.0344 —1.0455-10"% 448.9594 12.23
NGC 1090 0.0000  15.1426 1.8292  74.5877  5.4653 —4.6000-10"%  89.7303 3.92
NGC 2403 0.0000 2.1175 0.3980 34.4186  4.0927 —8.1101-107%  36.5361 2.67
NGC 2841 0.0000 1155831 1.4276 321.0818  8.3421 —4.9228-107%° 436.6649 4.00
NGC 2903 0.0000  57.0214 1.1385 136.6491 10.5603 —2.2674-107>" 193.6705 6.09
NGC 3198 0.0000 0.1797 02536  80.9231 56024 —2.7621-107%  81.1028 2.85
NGC 5055 0.9688  24.7984 0.8200 1458105 7.0786 —2.0755-10"% 171.5777 3.77
NGC 5371 0.9055 250186 0.5145 237.1728  8.0744 —2.3223-107%  263.0969 4.93
NGC 6503 0.3600 11.4847 0.8955 353070 69474 —2.4306-107%  47.1517 1.30
NGC 7331 1.5500  97.4700 1.4705 222.1078 11.9685 —4.5920-10"% 321.1277 222
NGC 7814 45317  17.2839 0.3246 757871  3.5439 —2.0236-10~*  97.6027 1.17
UGC 3205 0.7889  57.4323 1.2195 1253369  7.3088 —5.8438-10~* 183.5580 4.75

Table 1. Fitted parameters of the spiral galaxies under consideration, their total baryonic mass, and the standard deviation of the
respective fits.
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Figure 7. Radial acceleration relations (RARs) of the spiral galaxies under consideration.
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Figure 8. Dimensionless radial acceleration relations (ARARs) of the spiral galaxies under consideration.



