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We will consider all policies of the agent and will prove that one of them is the best performing
policy. While that policy is not computable, computable policies do exist in its proximity. We
will define Al as a computable policy which is sufficiently proximal to the best performing
policy. Before we can define the agent’s best performing policy, we need a language for
description of the world. We will also use this language to develop a program which satisfies the
Al definition. The program will first understand the world by describing it in the selected
language. The program will then use the description in order to predict the future and select the
best possible move. While this program is extremely inefficient and practically unusable, it can
be improved by refining both the language for description of the world and the algorithm used to
predict the future. This can yield a program which is both efficient and consistent with the Al
definition.

1. Introduction

Once, | was talking to a colleague and he told me: ‘Although we may create Al someday, it will
be a grossly inefficient program as we will need an infinitely fast computer to run it’. My answer
was: ‘You just give me this inefficient program which is Al, and | will improve it so that it
becomes a true Al which can run on a real-world computer’.

Today, in this paper | will deliver the kind of program | asked my colleague to give me at that
time. 1 will set out an inefficient program which satisfies the Al definition. | will go further and
suggest some ideas and guidance on how this inefficient program can be improved to become a
real program which runs in real time. My hope is that some readers of this paper will succeed to
do this and deliver the Al we are looking for.

How inefficient is the program described here? In theory, there are only two types of programs —
ones which halt and ones which run forever. In practice however, some programs will halt
somewhere in the future, but they are so inefficient that we can consider them as programs which
run forever. This is the case with the program described here — formally it halts, but its
inefficiency makes it unusable (unless the computer is infinitely fast or the world is extremely
simple).

What is the definition of Al? We will define Al as a policy. An agent who follows this policy
will cope sufficiently well. This is true for any world, provided however that there are not any
fatal errors in that world. If a fatal error is possible in a given world, the agent may not perform
well in that particular world, but his average performance over all possible worlds will still be
sufficiently good.

Which worlds we will consider as possible? The world’s policies are continuum many. If we do
not have any clues as to what the world should be, then we cannot have a clue about what the
expected success of the agent should look like. We will assume that the world can be described
and such description is as simple as possible (this assumption is known as Occam’s razor). In



other words, we will choose a language for description of worlds and will limit our efforts only to
the worlds described by that language. The worlds whose description is simpler (shorter) will be
preferred (will carry more weight).

This paper will consider several languages for description of the world. The first language will
describe deterministic worlds. This language will describe the world by means of a computable
function, which will take the state of the world and the action of the agent as input and return the
new state of the world and the next observation as output. If we know the initial state of the world
and agent’s actions, this function will give us the life of the agent in that world.

The second language will describe non-deterministic worlds — again by a computable function,
but with one additional argument. This argument will be randomness. In this case, we will need
to know one more thing in order to obtain the agent’s life in that world. We will need to know
what that randomness has been.

We will define Al by these two languages and will make the assumption that these two
definitions are identical. We will make even the assumption that the Al definition does not
depend on our choice of language for description of worlds, and all languages produce the same
definition of Al.

On the basis of these two languages we will make two programs which satisfy the Al definition.
These two programs will calculate approximately the same policy, but their efficiency would be
dramatically different. Therefore, the choice of language for description of the world will not
affect the Al definition, but will have a strong impact on the efficiency of the Al obtained
through the chosen language.

Contributions

This paper improves the Al definition initially provided by Hernandez-Orallo et al. in 1998
(Orallo, 1998) and then substantially improved by Marcus Hutter in 2000 (Hutter, 2000). More
precisely, this paper introduces two improvements:

1. An Al definition which does not depend on the length of life. Papers (Orallo 1998 and
Hutter 2000) do provide an Al definition, however, the assumption there is that the length of life
is limited by a constant and this constant is a parameter of the definition.

2. An Al definition which does not depend on the language for description of the world. The
language in (Orallo 1998 and Hutter 2000) is fixed. Thus, these papers imply that there is only
one possible way to describe the world.

2. JluTepaTypeH 0630p

2.1 00611 MHTEJIEKT

[IbpBO 1m1e 0TOENIEKNUM, Y€ B Ta3U CTATHS KOTaToO TOBOPHM 3a ,,I3KyCTBEH MHTEIEKT, UMaMe
npensun ,,M3kycTBeH obmr nnTenekT . B muteparyparta ce pasrinexnaar asa suaa MU, xouro ca
Hape4yeHu TeceH 1 o011 (MOHsAKOora ' Hapuyar ciad u cuiieH). Cropel MeH MOo-IIPaBUITHO € Te3U
nBa Buaa UN na 6paat HapeueHu Qanmus 1 uctuacku M.

Hexka B3emeM kaTo IpuUMEp JUAMAaHTHUTE. 41 IIPpU UHTCJICKTA U IIPU JUAMAHTHTC UMaM€ JCIICHUC
Ha HAaTypaJIHU U U3KYCTBCHHU. I/ISKYCTBGHI/ITC JUaMaHTH CC€ OCJIAT Ha JBa BUAA — UICTHUHCKH



(HampaBeHU OT BBIJIEPO) U (anmuBy (HampaBeHU OT CTHKIO). [[HEC, KoraTo TOBOpUM 3a
U3KYCTBEH JMAMaHT, UMaMe IIPeBU/ TaKbB, KOMTO € HalpaBeH OT BbriiepoA. Heka cu
IpescTaBuM, ue xxuBeeM B XX Bek U Bce ollle HUKOM He MOKE J]a HallpaBU U3KYCTBEH IMaMaHT
ot BbIiIepo. [Ipe3 XIX Bek, korato xopara ca rOBOPUJIM 32 U3KYCTBEH AMAMaHT, ca UMaJlU
IIpeIBUJ AMAMAHT HAIIPaBEH OT CTHKJIO. ToBa € Helllo, KOEeTo MpUiInya Ha TMaMaHT, HO HE €
auaMaHT. JlHec AMaMaHTUTE OT CTHKJIO T Hapudame (pajiuBy AUaMaHTH.

HUctuHCcKkuAT HN3KYCTBCH AMaMaHT I10 HUIIO HC OTCThIIBA HA €CCTCCTBCHUA JUAMAaHT. Karo
TBBPAOCT U NPO3PAYHOCT TE3U ABA AMaMaHTa Ca CAHAKBH. Bce IMaK, UMaM€C pa3JjivKa B I€HaTa,
3a100TO U3KYCTBCHUAT AUAaMaHT € MHOI'O IIO-€BTHH OT €CTCCTBEHUSA, HO TOM MOXKE Jaro
MMPEBH3X0KAA 110 I'OJICMHUHA U 11O YUCTOTA.

CTJH_[OTO ccC I/I3KYCTBCHI/I$I HHTEIEKT. AKO B3€MEM UCTUHCKUS HN3KYCTBCH MHTCJICKT, TOH II0 HHUIIIO
HE OTCTHIIBA HA €CTECTBEHHSI, HO MOJXKE JIa IO MPEBB3X0XKAa B ObpP3UHA, TTAMET U
,,I/IHTCJII/IFGHTHOCT“. EctecTBeno [eHaTa Ha UBKYCTBCHUA UHTCJICKT IIC € MHOI'O ITIO-HHUCKA OT
nieHara Ha ectrectBeHus. JlHec B XX| BeK €CTECTBEHHUSIT UHTEJICKT JOPH € OC3IeHEH, 3alI0TO HEe
ce MmpojaBa.

1o ce oTHacs M0 cnabus WM TECHUS U3KYCTBEH MHTEIIEKT, TO TOW MPHJINYA Ha UHTEIICKT, HO HE
e. Koraro Beue umame MICTUHCKM M3KYCTBEH UHTENIEKT, TE3U IPOrpamH 1ie ce Hapudat Danmus
W3KYCTBEH MHTEJICKT WM [IporpaMu uMUTHpAIK HHTEIUTEHTHOCT.

JlHec B oBe4eTo cratuu, Korato ce ropopu 3a MU ce uma npensun tecen unu ¢pamuus UN. B
Ta3u cTaTus Korato ropopuM 3a M1 umame npenBua oo iy uctuacku M.

2.2 UHTyuTHUBHA AeUHULMA

Hexka na nanpaBum nutepatrypeH 0030p u Ja pasrieiaMe CTaTUUTEe, KOUTO ca MOCBETEHH Ha
nedununmsaTa Ha U, Ta3u gedunuius € MHOTO BayKHA U TOBA € OCHOBHUSAT BhIpoc B .
Bropeku ToBa, TE3W CTaTUH Ca MHOTO MAJIKO, 3aIll[0TO TTOBEYETO U3CIIEA0BATENN BhOOIIE HE CU
3amaBat BbIpoca ,,Kakso e UN?* unu manmuna ca Te3u, KOUTO cu To 3aaaBat. [Ipuunnara e, ue
HamuTe Kosieru He Bsapsat B M. Ako He BspBai B mpu3pany, He CH 3a7aBal BbIpoca ,,Kakso e
npuspak?‘‘. Hackopo nmpuchcTBax Ha JEKIMITA HA €IMH OT BOJICIIMTE CIEIUATIUCTH B 00JacTTa
na U (Solar-Lezama, 2013). Toii ka3a: ,,Konkoto u ymen na e UM, BuHaru 1ie ce HaMepH
HSIKOW YOBEK, KOMTO Ja € MO-yMeH OT Hero.* SIBHO, To3u Haml kKosera He Biapsa B UM u He moxke
J1a CM IpeJicTaBy, ye enuH aeH M e e mo-yMeH OT BCEKH YOBEK.

CraTtunre mocBeTeHU Ha AedunuimsaTa Ha MU ca Manko, HO Bce Mak ©Ma TaKMBa CTaTUU. MHOTO
100Bp 0030p Ha Te3u cratuu ¢ HarpaBeH B Wang 2019 u B cratuute Ha Hernandez-Orallo (2012,
2014a, 2014b, 2014c, 2017). Tyk 11e HapaBUM €MH MO-KPaThK 0030p KATO I CE OMHUTaME Jia
Ka)KeM Hellla, KOWTO He ca Ka3aHHW B CIIOMEHATHTE 0030PHH CTATHH.

[TepBara uaTyUTHBHA (HedopmanHa) nebunuims Ha MU e HanpaBena ot Anan Tropunr (Turing,
1950) u e uzBectHa nox uMeTO ,, TecTsT Ha Tropunr®. Ta3u nedunuIMs € neppeKTHa B CBOSITA
npocrorta. Bee nak, uMa euH chliecTBeH npo0iem B Ta3u aedununus. TectsT Ha TrOpuHT
nedunupa, 00ydeH HHTENEKT (TOeCT MHTENEKT IUTIoC oOpazoBanue). buxme nckanu na umame
neduHALS Ha HeOOyUeH MHTENEKT (TOSCT MHTENIEKTHT 0e3 00pa3oBaHueTo). JJOKOJIKOTO MU €
M3BECTHO, ITbpBaTa Ne(UHUIIMS Ha YUCT HEOOYUeH MHTEJEKT ¢ naneHa ot Pei Wang mpes 1995 r.
(Wang, 1995). HeitHoTo chabpxKaHue € CIASTHOTO:



“Intelligence is the capacity of an information-processing system to adapt to its
environment while operating with insufficient knowledge and resources.”

[To-xbeHo npe3 2000 roxuHa Gerre HarpaBeHo MogoOpeHue Ha neduuunmsaTa Ha Pei Wang. Tosa
noaobpenue e nmyonukysano B Dobrev (2000). JInec ToBa mogo0peHHe € IbPBHUAT PE3YIITaT,
koiito naBa Google 3a nepununms va UU. [pu 3asBkara “Definition of Artificial Intelligence”
mbpBUAT pesyiaTar e cratusta Dobrev (2005a), kosTo ¢ mogodpena Bepeus Ha Dobrev (2000).
Eto kak m3rinexaa nogo0peHusT BapuaHT Ha AedununusaTa Ha Pei Wang:

“Al will be such a program which in an arbitrary world will cope not worse than a human.”

B kakBo ce cherou nogodpenuero. [1spBo, Pei Wang nedbunrpa naTenekr, a mnogoopeHus
BapuaHT nepuHupa M3kycrBeH uHTenekT. ToBa mogoOpeHne He € ChIIECTBEHO, 3aII0TO
HMCTUHCKUSAT BBIpOC € ,,KakBo e unTenext?* Tosa, ue MU e mporpama ciieBa TMPEKTHO OT
te3uca Ha UYspu (Church, 1941), koiiTo Ka3Ba, 4e BCsika HHPOPMAaIMOHHA CHCTEMA MOYXKE J1a Ce
eMyJIHpa ¢ KOMITIOThPHA IIporpama.

CaImiecTBEHOTO TI0100peHue Ha neduHunusaTa Ha Pei Wang e, e TaMm ce ucka HHTEICKTHT Ja
MOJKE JIa C€ CIPaBU B €IUH KOHKPETEH CBSAT (B CBOsATA Cpelia), JOKATO B OJOOPEHUS BApUAHT Ce
ucka UM na moxxe 1a ce cripaBu 100pe BbB BCEKHU CBSAT. 3alll0 TOBA [1000PEHUE € ChIIECTBEHO?
B kpaiina cmetka 3a Hac e BaxkHo MU na ce cipaBu 100pe B CBOsITa cpefia, 3ali0TO TOBA €
Ba)KHATa cpenia, KosATo HU uHTepecyBa. Ob6aue U He TpsiOBa 1a 3aBucH OT cpeara, 3alioTo HUe
HCKaMe Jla MOXKEM JIa TO TIOCTaBsIME B Pa3JIMYHU Cpe/iv (CBETOBE) U Mckame HaBcskbiae MU na
MOJKe J1a ce crpaBu 1o0pe. Jla kaxeM, 4e 3a HaC € BaKEH PEATHUST CBAT, HO TO3H CBST HE €
enuHCTBeH. MMa rossiMo 3HaueHue KbJIe U KOTa CH €€ PO, AKO CE IPOMEHST HAKOU OT TE3U
napameTpy CBETHT HH MOXeE Jia M3IJIeXk 1A 10 ChBceM paznndeH HaunH. OgyeBuano Pei Wang e
Ch3HaBAJI, Ye CBETHT HE € CIMHCTBEH U 3aTOBa € 100aBmiI KbM nedunuimsra “while operating
with insufficient knowledge and resources”. Toect Pei Wang ucka 1 1a Mmose 1a ce CripaBu
KOTaTo € TPYJHO, KaTo HJesTa €, Ue IIOM CE CIIPaBsi KOraTo € TPYIHO, IIIe Ce CIIPaBU M KOTaTo €
necHo. Pa30upa ce, korato cu HeoOpa3oBaH U OelieH € TpyaHO. MHOT0 Mo-j1ecHo Ou OuIo, ako
pasmojarainl cbC 3HaHUS U PECYPCH.

Ome exHo mogobOpenne Ha aedunuimsaTa Ha Pei Wang e, 4e Tam He ce Ka3Ba KOJIKO J00pe TpsoBa
na ce cripasu UW. Tam ce npezanosnara, 4e WM ce CIpaBs WIM HE Ce CIpaBsi, HO 3HAEM, Y€ HIKOU
Ce CIpaBsT Mo-100pe, a Apyru mo-yomio. ToecT, BaXkKHO € KoJKo ao0pe ce crpass MU u ToBa e
HEroBOTO HUBO Ha MHTEIUICHTHOCT. B mogoOpenus BapuaHT Ha AeUHUIMATA ce Ka3Ba, ye LIe ce
CIPaBU HE M0-3JI¢ 0T YoBeK. CpaBHEHUETO € YOBEK MpaBu AePUHULIMITA HePOpMaIHa, HO TOBA
CpaBHEHHE € Ba)KHO, 3aI10TO TpsAOBa J1a OTOENIEKUM KOe € HUBOTO Ha MHTEJIMI€HTHOCT, KOETO €
JIOCTaThYHO, 32 J]a TpHeMeM, de JajieHa porpama MmoKpruBa u3uckBanusTa 3a M.

2.3 Eana auckycus

MHoro cepro3Ha auckycus okoiio nedunuiusata Ha Pei Wang e manpasena B Journal of
Artificial General Intelligence, Volume 11 (2020): Issue 2 (February 2020), Special Issue “On
Defining Artificial Intelligence” — Commentaries and Author’s Response.



2.4 EcTecTBEeH UHTEJIEKT

KoraTto roBopum 3a eCTeCTBEH WHTEIEKT UMaMe MPEABU] MHTEJICKTa Ha YoBeka. Pa3z0upa ce,
JKNUBOTHHUTC ChIIO UMAT MHTCJICKT U TO3U MHTCJICKT 110 HAKOU napaMeTpI/I HaIMHWHaBa YOBCUIKNA.
HaanMep ABJIrOCpoYHaTa rmaMeEeT Ha CJIOHOBETEC € no-z[o6pa OT Ta3u Ha Xoparta. EKCHepI/IMeHTI/I
MOKa3BaT, Y€ KPaTKOCPOUYHATa BU3YyaJlHA ITAMET MPU MaHMYyHHUTE € 3HAUUTEIHO 10-100pa OT Ta3u
[P XOpara.

YoBemKHAT MHTEICKT ce OTInYaBa ¢ MuciieHe. lMma JABa BUJa MHUCJICHE. Jlormuecko MHUCIICHE,
KOCTO € MHOI'OCTBIIKOBO M aCOIMaTUBHO MMUCIICHC (pa3n03HaBaHe), KOETO € €IHOCTHIIKOBO. B
obnacrtra Ha Pa3no3HaBaAaHETO KOMITIOTPUTE BEYEC Ca U3IIPCBAPUIIN XOpaTa. C momornra Ha
HCBPOHHUTC MPCIKU KOMITFOTPUTE BCUC PA3IIO3HABAT JIMILIA U I'TIACOBC MHOT'O Ho-n06pe OT HacC
Xopara. JlormueckoTo MHCIICHE € IMOCJICOHOTO, B KOECTO HUEC XOpaTa BOANM IIPE KOMITIOTPUTE.

CrocoOHM JIn ca JKMBOTHHUTE HA JIOTUYECKO (MHOTOCTBHIIKOBO) MucieHe? Orie MOST JI51/10, KOUTO
¢ Om1 OMOJIOT, € POBEXK ANl SKCIIEPUMEHT, B KOMTO € yumi Kokomikute 1a opost (Dobrev, 1993).
ToecT )KUBOTHHTE ca CIIOCOOHM Ha MHOTOCTBIIKOBO MHCJICHE U TOBA OTJ]aBHA € U3BECTHO.

2.5 Jloru4ecko MucJjieHe

KakBo e HyXHO, 3a J]a 3a[I0YHAT KOMITFOTPHUTE [Ia MUCIISAT MHOTOCTBITKOBO (Jtoruuecku)? HyxHo e
ckpuTO cherosinue. Toect TpsOBa na ce npemune ot Full Observability kem Partial
Observability. Korato muciaiM MHOTOCTBIIKOBO, TOBA, KOETO C€ IIPOMEHS Ha BCSKA CTHIIKA, €
BBTPENIHOTO CHCTOSIHHAE HA CBETAa. BUXME JIM MOTJIM BMECTO TOBA JIa IIPOMEHSIME HAOII00eHUemo?
ITo mpunIun 6u morio, Ho mpu Full Observability Hue Bukaame TBbpE MHOTO U OU TpsAOBaIo
112 OTJEIMM €IHa 9acT OT HAOJIFOICHUETO M Ta3H YacT Ja IPOMEHSIME B IPOIECca Ha JIOTHIECKOTO
muciene. [To-ecTecTBEHO € OT/e/IeHaTa YacT OT HAOIIOICHUETO J1a Ob/Ie MPeCTaBeHa KaTo
CKPHUTO ChCTOSTHHE Ha CBETA.

3a JIOTH4eCcKOTO MUCTIEHE € HYXKHO ,,pa3oupane’. TpsOBa ga pazdepem ,,KakBo craBa?. Toa
03HA4aBa J]a OMUIIIEM CKPUTOTO ChCTOSTHUE HA CBETA. 3a IIeNiTa HU € HY>KEH €3UK 3a OMUCaHKe Ha
CBCTOBC. CKpI/ITI/ITe CBbCTOSAHHS HAa CBETAa MOXKEM 1da CU T' MHUCJIMM KaTO HAKAKBO I/I36pOI/IMO
MHO’KECTBO, KaTO YKCciia WM KaTo IyMH HaJ| HsKakBa a30yka. CMUCHIBT Ha T€3H TyMH IIIE ce
Jane OT e3MKa 3a ONHMCaHue Ha CBETOBE.

Juemnute yatborose kato ChatGPT (OpenAl, 2022) naBat nopa3utesiHu pe3yiratu. Benpeku
BCHYKO, KOTaTO pa3roBapsiMe ¢ TAX UMaMe 4yBCTBOTO, Y€ MM JIMIICBA ,,pa30upane’. OctaBame ¢
HEMPHUATHOTO yCelllaHe, ue pasroBapsiMe ¢ namnarai. Pa3oupa ce, pasroBopa ¢ ChatGPT e
HECPaBHUMO MO-ITBJIHOLIEHEH OT Pa3roBOpa C Mararaji, HO UMa OIlle KakBo J1a ce XkeJae.

OcgeH ToBa B Te3u YaTO0TOBE MMa Maiko n3mama. Hanpumep ChatGPT cropen (Yahav, 2013)
Ce ChCTOHM OT JIBE YaCTH — HEBPOHHA MpeKa U aJITOPUTMHU HAITMCAHU OT MPOTPAMUCTH.
HeBponnara mpeska He € criocoOHa Ha MHOTOCTBITKOBO MuciieHe, Ho ChatGPT Hu 3a6my»x1aBa,
9Ye MHUCJIIM MHOTOCTBITKOBO OJIaroJlapeHue Ha JIOOABCHUTE aITOPUTMHU HAIIMCAHU OT ITPOTPAMHUCTH.
Hanpumep 3a chOupaneTo Ha 1Be YKclia € Hy)KHO TaKOBa MHOTOCTHITKOBO Pa3ChKICHUE U
CHOMPAHETO Ce U3BBPIIBA OT €IMH OT 100ABEHUTE AITOPUTMH. 3aI[0 ToBa € u3mMama? bu
tpssoBasio ChatGPT na u3mnon3Ba caMo HEBpOHHATA MpEXa WM aKo MOJI3Ba JOMbIHUTCITHH
porpamMu, Ou TpsIOBAJIO caM Jia TH Ch3/1aJIe M Jla He pa3yrTa Ha IOMOIITA Ha TIPOTpaMHUCTH. Tyk
MpoOJIeMBT HE €, Y€ MPOrPaMUCTUTE OMArar, a TOBa, 4e 3a BCEKH KOHKpPETeH MpoOJeM € HyKHa



OTJIEJTHA TTPOTpaMKa U HE € Bb3MOXKHO J]a C€ HAMUIIIAT TaKWBA MPOTPAMKH, KOUTO JIa TOKPUBAT
BCHYKH TIPOOIIEMHU.

ITpe3 2015 ce Gemre mosiBuII eauH XymanouaeH pobot. Tosa Gerre pooorsT Sophia (Retto, 2017).
[Tpu T031 POOOT ChINO MMale Masiko u3mama. OT efHa cTpana Sophia 3abay»xaaBarie ¢
BBHIIIHOCTTA CH, OT Jpyra CTpaHa Ts UMallle JUCTaHI[MOHHO yrpasieHnue. Sophia oxoTHo
pasroBapsiiiie ¢ )KypHAIHUCTH, HO He Oellle sICHO Kora TS pa3roBaps Ha 0a3aTa Ha BrpaJicHHs B Hes
WU u kora pa3ynra Ha YOBEK OIEPaTop.

Bewuku nedununun Ha MU, kouto ca Hu u3BecTHH, pasriaexaatr MM kaTo ycTpoicTBo ¢ mamer (¢
BBTPEITHO ChCTOSIHHE), IOKATO U3BECTHUTE HU peaM3alliy ca Oa3upaHyu Ha HEBPOHHU MPEXKH U
npexanoiarar, ue MU uama myxaa ot mamet (Full Observability). Toect uma pasmunaBane
MeXIy Ne(DUHUIIUNTE U peali3alinTe.

Koraro roBopuM 3a BeTpemiHoTO cheTosiHue Ha MU, TpsOBa na orbenexum, ye BaxXHOTO €
BBTPEIIHOTO ChCTOSHHUE HA CBETA, a BBTPEIIHOTO chCcTOsiHUE Ha I caMo oTpa3siBa ChCTOSHUETO
Ha cBeTa. ToecT BpTpemiHOTO cherosinne Ha U e ,,npencraBara na MU 3a cbcTOSIHUETO HA
cgeta. [IpomsiHaTa Ha BBTpEIHOTO cheTossHUE Ha MM TpsOBa a € uHaynMpaHa OT CBETA.
Hanpuwmep, ako Hammst MU ce ,,s10ca’, TO TOBA 111€ € MPOMSHA BbB BbTPEIIHOTO MY ChCTOSIHUE,
HO Ta3| NMpoMsiHa TpsiOBa 1a e uHaynrupana ot ceeta. Hammst MU ne 6u tpsibBano na ce
,»JA70cBa’ 6e3npuunHHO. bruxme rckanm fa HanpasuM M, KOHTO He TPOMEHS BBTPEIIHOTO CH
CBhCTOSIHUE OE€3NMPHUYMHHO, @ CAaMO KaTo OTPaKCHHUE Ha MOCThIIMIaTa MHPOPMAIIUs OT CTpaHa Ha
ceta. [IpoMsiHaTa Ou MOTJIA J1a HACTBITH U KaTO PE3YJITAT OT Pa3ChKIACHUA. ToecT HoBaTa
nH(popMaIus MOXe Ja He JI0iIe TUPEKTHO OT CBETa, a Jia JIOW/Ie ChC 3aKbCHEHHUE CJIC]T U3BECTHO
OOMHMCIISIHE.

2.6 ®opmasiHa sepUHULUSA

[TepBara Gpopmanna nedununms Ha MU e mybnukysana B Hernandez-Orallo (1998) u Hutter
(2000). edpunurmsra B (Orallo 1998) nma MHOTO HECHBBPIICHCTBA, KOUTO Ca OTOENISI3aHH B
Dobrev (2019Db). ITopanu Te3u HECHBBPIICHCTBA MOXKEM Jia IIPHEMEM, Y€ TbpBaTta GopMaiHa
nepununms na MU e ma Marcus Hutter.

Nmame enna npeOHa 3abenexka kbM nepununuara Ha Marcus Hutter. Toit ne¢punupa MU kato
Haii-no0Opata ctparerust AIXI (AIE). Tosa He € 100pe, Hali-MankoTo 3amoTo AlE e Hen3zuucnnma
crpaterus. bu Tpsa6Bano na ce kaxe, ue MU e uzuncnuma crpaterusi, Kosro € ,,01130% 10 Hail-
noOpata. Jlopu MoXxe J1a ce HaJIO)KU U3UCKBAHE 332 €PEKTUBHOCT, 3alI0TO aKO €Ha Iporpama €
IpeKajeHo Hee(heKTUBHA, TO TS HE BHPIIM padoTa.

B Hutter (2007) toit mpemiara eana uzurciauma ctpaterust (AlXItl). Toa e enun KoHKpeTeH
ITOPUTHM U TO3U AJITOPUTHM ChILIO HE MOke Ja Obae nedpununus Ha UU. lopu u camust
anroputbM AlXItl na 6p1e npuer 3a U, T0 TOit HsAMa 1a Obe ETUHCTBEHHUAT aJrOPUTHM
ynoBietBopsiBan] nedpununuara Ha M. Beeku npyr anroputrsM, KOMTO H34KCIsABA ChIllaTa
crparerusi, cbiio o6u oun MU, ocobeno ako padotu nmo-egpekruBHO (mo-06p30) ot AlLXItl. OcBen
TOBa, HE € HYXHO cTpaTerusra Ha UM na e cbBceM chimara kato tasu Ha AlXItl. [Joctarsuno e
CTpaTerusTa Ja € 10cTaThbuHo 100pa.



Tasu npebHa 3abenexka Baxu 3a nepuauims Ha Marcus Hutter, Ho ae Baxxu 3a Dobrev (2005b u
2019b), 3amoro tTam MU ce nedunrmnpa kato nmpousBosHa mporpama ¢ 1Q mo-BHCOKO OT
OIIpEJIEIIEHO HUBO.

Nwma nBe mogobpenust Ha popmanHara aedunums Ha M, kouto ca HarpaBeHH B HACTOSIATa
CTaTHsI U KOUTO 1MO100psBAT BCHUKU popManHu nedununmu Ha MM, KonTo ca H1 U3BECTHH 110
MOMEHTA.

2.7 II'bpBO NOAOOpPEHUE

ITepBOTO TIOKOOpEHHE € ToBa, ue B Hernandez-Orallo (1998) u Hutter (2000) ce npermonara, e
Ib/DKAHATA HA J)KUBOTA € orpannycHa. ChIOTO MpeanoiokeHue ce npasu u B Dobrev (2005b u
2019b). Ima MHOTO IPUYUHH, TTOPAJIN KOUTO TOBA MPEATIOIOKECHHUE € JKENIATEITHO Jia ce u30erHe.
JIeWiCTBUTEITHO AbDKMHATA HA )KUBOTA HA €CTECTBEHHSI MHTEIICKT UMa HAKAKBO OrpaHHUYEHHE, HO
TOBa OrpaHUYCHHE HAMA BPb3Ka C MHTEIUTeHTHOCTTa. MU ChIo MOXKe J1a MMa OrpaHuYeHHE B
IbJDKAHATA HA J)KUBOTA, 3aI[0TO BCE HAKOTA IIE PEIINM Jia TO M3KJIFOUUM, HO TOW HE 3Hae KOra IIe
T'0 U3KJIIFOYMM U O TpsiOBajo a paboTH CTaOMITHO JI0 TOCIIEAHUS MOMEHT 0e3 Ja ce cho0pa3siBa
Kora 1e Objie u3KIIto4YeH. Jlopu U 1a TOIyCcHEM, Ye IbJDKMHATA Ha )KUBOTA € OTpaHUYeHA OT
HSIKAKBA KOHCTAHTa M, TO Ta3M KOHCTAHTA € TOJIKOBA TOJIsIMa, Ye € T0-100pe /1a s IpueMeM 3a
OC3KpaHOCT.

AKo J1onycHeM, ye IbJDKMHATA Ha KHUBOTA € OrpaHudeHa, To ToraBa MU me 6b1e eqHa kpaiiHa
¢GbyHKIMsA. 3a110 € BayKHO J1a IPEMUHEM OT KpailHu KbM Oe3KpaitHu (pyHKIuu? 3aIoTo Hemara
CTaBaT MO-UHTEPECHH, KOoraro numame Oe3kpaiiHoct. Hanpumep BcUUKU KpallHU (QYHKIUH ca
M3YUCITUMH. 32 1a UMaMe HEM3YUCINMU (GYHKIMU HU TpaOBa Oe3kpaiiHocT. Benuku kpaltHu
¢byHKIMU Morat aa ObJaT onucaHu, a 0e3kpailHUTe ca KOHTHHYYM MHOTO U caMO M30porMa yact
OT TSAX Morar Ja 0bpaar onrcanu. Koraro mmame Ge3kpaifHOCT Hellara cTaBat He camo Io-
MHTEPECHO, HO U NMO-NPOCTU. ToBa € mpUuunHaTa, MOpagu KOSITO pa3riex1aMe KOMIIOTbpPa KaTo
ManirHa Ha TropuHr (kato 6e3kpaiiHa QyHKIMS) Makap ue TOM Ha MpakTHKa € KpacH aBToMarT.
MHoOro no-npocTo € 1a CM MUCIIUM, Y€ IIaMeTTa Ha KOMITIOThPa € HEOIPaHUYEHA U Y€ TOU
n3uncisiBa 0e3kpaitnu GyHkuun. AHamorndno 3a MU e € MHOro mo-nmpocTo Jja CH MUCITHM, Ye
BPEMETO MY € HEOTPAHUUEHO.

OuesuaHo Herndndez-Orallo u Marcus Hutter criogessit HaleTo *ejaHue Ja He ce OrpaHuyaBa
IBDKUHATA HA KUBOTA, 3amoTo B cratuute Hutter (2006) u Hernandez-Orallo (2011) uma
mo00peH BapuaHT Ha Ae(DUHHIIMATA, KBJCTO HIMA TOpHa rpaHuiia. TaM ToBa € MOCTUTHATO upe3
Koe(UUUEHT Ha 00e31IeHKa ).

KoedpuuuenTst Ha 00e31eHKa y onpeienst MOHATUETO ,,angyHocT*. ToBa MOHSTHE HU Ka3Ba
nokonko HamusaT MU e ce ctpemu KbM Obp3 yCIeX WM 111 peciie/iBa ycrexa B Mo-JajeuHa
nepcnekTrBa. Koraro y KIIOHM KbM HyJIa aTYHOCTTA C€ YBEIMYABA, 4 KOTaTo y KIIOHU KbM
€IMHULA ATYHOCTTA HaMaJIsBa.

Moxe na ce Kaxe, 4€ KOraTro €€ n3I10JI3Ba KOC(I)I/II_II/ICHT Ha 0663H€HK3., 3a U3YUCIIIBAHCTO Ha
ycrexa Ce U310J3Ba HCIUAT ) KUBOT, HO TOBAa € CaMO CbOpMaJ'IHO. Ha IMpaKTHKa OT €AWH MOMCHT

HAaTaThbK BJIIMAHUCTO HA )KUBOTA BbPXY OLICHKATA € npeHe6pe>1<HMo MaJKoO.

ToBa ce HWIIIOCTpHUpa OT CJIcABallara (I)opMyna:
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€ v Success(L)

3a Besiko £> 0 1 3a Besika 00€31ICHKA Y ChIIECTBYBaA IpaHuIia M(y) TakaBa ye 4yacTTa OT )KUBOTA
10 MomMeHTa M(y) onpeesst yacTTa ot ycrexa (1-£), a ocraBaiara 4act ot ycnexa (&) ce
orpezesst OT 6e3KpaifHaTa 4acT OT )KUBOTA, KOSTO € Clie]l MOMeHTa M(Y).

B Ta3u craTus cMe u3dpaiu Apyr MoaxoJ, IpHU KOMTO ce U3I10J13Ba AbKUHATA HA LEJINs )KUBOT U
TO TSI C€ U3I0JI3Ba ChllecTBeHO. [Ipy Hamms moaxo ] Haif-1o0pata cTpaTerus U3MoI3Ba
rpaHMIlaTa KbM KOSATO KJIOHHU Cpe/iHaTa OLIeHKa U u30upa Hail-noopoTto. 1o To3u HauuH Haii-
noOpaTa cTpaTerus HUKora He npaBu ¢artanau rpemk. (IIpu npenumnus moaxon gparaaHuTe
I'PEIIKH Ca Bb3MOXHH.)

3a0enesxka: ToBa, ue u3bupame cTparerusi, KosiTo He npaBu (aTaHU IPEIIKU HE O3HaYaBa, ye
aKo cjie/IBaMe Ta3u CTpaTerus Ie U3MHUHEM BT, KOUTO € C Hail-100pHs Bh3MOKEH CPEJICH yCIeX.
O3nauaBa Hewo apyro: Cren Beska CThIIKA 1€ MMa TaKbB BT, IO KOMTO 1€ MOXKEM Ja
MPOBIKUM, HO HAMA TrapaHIlus, Y€ MbTAT, KOWTO B KpaiiHa CMETKA I1€ U3MHHEM III€ € TaKbB.
Karo npumep e nam egHa nporpama 3a urpa Ha 1max. Ta3u nporpama s HaMCaxMme CbC
CTYICHTHTE KaTo ynpakHeHue. [Iporpamara n3uucisiBaiie Tpu Xo/1a Harpea u n3bupaiie Haii-
noopust xon. Koraro Bmxnaiie nodesa, ToBa Oerie Haii-qOOPHT X0/, HE3aBUCUMO JalIu
nobenaTa e ciies e/IMH, ABa WK TpU Xoa. Hamara mporpamMa 3amodHa ja ce Jbp>KH MHOTO
ctpanHo. KoraTo Buzelie, ye rneyenu TS HE MaTUpallle MIPOTUBHUKA, a 3aI10YBallIe J1a CU UTPae C
HEero KaTo KoTka ¢ muiika. Ctoenie BUHAru Ha TpU X0Ja OT 1odeaara, HO He Obp3alie aa
3aBbpiIM Urpara. JJobaBuxmMe Maliko aTyHOCT U HalpaBUXMe Mo0eaarta ciie/l eIUH X0/ J1a € 1o~
[IEHHA OT Ta3M CJIE]] IBa X0JIa ¥ TO3U CTPaHEH ePEeKT BeAHAra N34e3Ha.

BwopocskT e, ako nMame J1Be IEHCTBHSL, KOMTO H JBETE HE BOJAT J0 (aTaiHa Ipeika, TO Koe OT
nBeTe TpsiOBa J1a Ob/ie MPeANoYeTeHO OT Hal-100parta cTpaTerus? B Ta3u cratus cMe pelmiy B
TO3M CiIydail M300pBT Ja ce MPaBU ¢ MaKCUMallHa ATYHOCT (J1a KaXkeM, IpH Oe3KpaifHO MAaJKO ).
Jpyr noaxon 6u 6un, ako ¢pukcupame amaHoctra (0 < y < 7). To3u NOAXOA CHIO HE HH XapecBa,
3aI10TO JTOPH U IIPH y, KOETO € MHOTO OJIN30 70 eauHNUIa, Tak aimgHocTTa Ha U me 6b1e TBbpae
roJIsIMa, 3all0TO TBBP/IE TOJIIMO BHUMAHHUE I11e ce 00pbllla Ha TOBA KOra BbB BPEMETO CE €
TIOSIBHJT YCTIEXBT.

Enun npyr HegocTaThK Ha MOAX0Aa ¢ alyHocTTa €, ye MU 11e e ckJIoHeH U3JIMIIHO Jia MPOoTaKa,
KOraTo O4YakBa Jia MOoJTy4YHl HeraTUBHA olleHka. Hue xopata uecto nuzbupame T031 MOJIXO U
KOTaTO HH MPEJCTOU HEIIO JIOIIO Ce OMMMTBaMeE Jia TO OTIIOKHUM BBHB BpeMeTo. Bee mak, nma
ClIy4yau Koraro nmpearnoyuTaMe Ja He npotakame. Hanmpumep, Kkorato urpaem max 1 BUAUM, Ue
11e 3aryouM, HUe He JourpaBaMe JOKpai, a ce mpeaaBame.

ETo enna unes kak na nepunupame MU, koitTo He € arueH 1 He MpoTaka u3auIIHO. Heka kaxewm,
Yye aKo J1Ba MbTA BOJAT JI0 €HO U CHIIO CbCTOSIHUE, TO 1€ MPEANOYETEM TO3U BT, KOUTO HU
JaBa MoBeYe ycrex (CpaBHsBaMe ycIiexa, a He CpeHUS yCIeX, KOETO € ChIIECTBEHO, 3al0TO
JIBaTa I'bTS MOTAT J]a UMAT pa3IMYHA IbJKUHA). AKO JBaTa I'bTS HU AaBaT €IHAKBB yCHeX, 1Ie
MPEIOYETEM TO3H, KOWTO € MO-KPaThK.

ITo To3u HauwmH xKorato MU urpae max u BUaH, e I11€ 3aryow, e ce mpeaase, 3amoTo e nMa
JIBa Bb3MOKHM II'bTS BOJEIIHU 10 €AHO U CHIIO ChbCTOSIHUE U IIPU BATA TS OLIEHKATa 1IE € ,,6Ha
3aryoa‘.



2.8 lonb/IHUTE/IHH TapaMeTpy

AJIYHOCTTA € €[IMH JIONTbJIHUTEINIeH napameTsp Ha . Umame u Ipyru TONTbIHUTEITHU
napaMeTpy KaTo CMEJIOCT M JI0OOMUTCTBO. [JJOMBIHUTETHUTE MapaMeTPH HE ONIPEICIIST
€IHO3HAYHO JIaJTH YCIIEeXbT IIIe CE YBEIMYM WU Hamainu. Fima cBeToBe, B KOUTO € 1Mo-100pe aa cu
MO-aJIY€H U APYTH, B KOUTO aTYHOCTTA MIPEUH.

IIpu xopaTa CTOMHOCTUTE Ha TE3U JOIBJIHUTEIIHU IIapaMETPH He ca eqHakBu. Mma cutyanuu, B
KOUTO OLIEJIABAT CMEJIUTE U APYTU CUTYalluH, B KOUTO MEYEIIAT NO-NpeAnasIuBuTe. AKO Xopara
0s1xa eIHaKBY, TO Te OMXa OMIM 3aIUIAIlICHH OT U34YEe3BaHE, 3al0TO B OIPE/Ie/IeHa CUTYaLUs
BCUYKH T€ OMXa MMaJlu eJHaKBO MoBe/ieHHe. biarogapenue Ha ToBa, ye Xxopara ca pa3jInyHH, Te
IIOCTBIIBAT 110 Pa3JINYEH HAYWH ¥ BUHATH YacT OT ITOIYJIALUATa OLEIABA.

HMMa 1 0oCHOBHU napaMeTpHr KaTo naMeT U HHTCIIMI'CHTHOCT, KOUTO €AHO3HAYHO YBCIINYAaBaT
ycuexa Ha %1% 8! IMPOU3BOJICH CBAIT. buxme mornu JAa KOHCTpyUpaMme CIICUAJICH CBAT, KOWUTO Ja
HakKa3Ba TC€3U, KOUTO IIOMHIAT ITOBCYEC HJIM KOUTO Ca IMMO-UHTCIUMICHTHH, HO B IIOBCYCTO CBCTOBEC
naMEeTTa 1 UHTCIIMI'CHTHOCTTA I1oMarart.

ToBa e mpuumnHara, nopaau KosATo € 100pe JOIbIHUTEIHUTE TapaMeTpH Ja ObJIaT U3BaleHH KaTo
napameTpu Ha AeunumsaTa. Taka e moxeMm fa cu uzbepem nanu uckame Hamust MU na e no-
cMeJl WM no-npeanasnus. OCHOBHUTE ITapaMeTpH 1€ IIpeIoaramMme, 4€ ca MakKCUMaaHo
roJIeMH, KaTO OrpaHUYEHHE 3a TAX I111€ ObJie caMO naMeTTa U ObpP30AEHCTBUETO HA KOMITIOTHPA,
KOMTO 1€ U3I0JI3BaMe 3a Ja craptupame Hamus WL

2.9 Bropo noao6peHue

[IppBOTO MOKOOpEHME HA NEPUHHULIUATA HE € MHOTO ChIIECTBEHO. MHOI0 O-Ba)KHO € BTOPOTO
o100peHue 1 TO €, 4e eIUH OT Hail-BaKHUTE NapamMeTpu Ha aepununusgra Ha MM ToBa € e3uKbT
3a ONKMCAaHKE HA CBETA.

TpsioBa na npusHaem, ye Marcus Hutter 8 (Hutter, 2007) e otGersi3ai, ue yHuBepcaiHaTa
MamrHa Ha TIOpUHT e mapaMeThp Ha JePUHULUATA:
“It (slightly) depends on the choice of the universal Turing machine.”

Bce nak, Toii npezmnonara, 4e CBETHT CE ONKCBA OT U3UMCINMA (PYHKILUSA M TOM ci1ara 3HaK 3a
PaBEHCTBO MEXJly €3ULIUTE 3a IPOrpaMHUpaHe U €3ULUTE 32 OIIUCAHNE HA CBETOBE. BebIIHOCT
BB3MOKHUTE ONMCAHMS HA CBETA Ca MHOTO Pa3HOOOPA3HM U HE C€ CBEXJIAT CaMo JI0 ONHMCaHHE Ha
M3YUCIUMA QYHKIUS.

B ta3u craTus me pasriaegame pa3IiMuHUA ONMUCAaHUS Ha cBeTOoBE. [IBpBO 11e pasriename Haii-
CTaHJIaPTHOTO MPEICTAaBSIHE HA CBETA KAaTO JETePMUHUCTUYHA n3uncauma QyHkius. Cien ToBa
e 100aBUM CITy4aiHOCT, TIOCTIE TIIe T0OaBUM areHTH M Taka IIe MOJydYuM Hal-pa3InyHu €3UIH
3a OIIMCAHKC HA CBETOBE.

2.10 AnTepHaTUBHO MHEHUE

Hackopo WUnon Mbck B (Musk, 2023) uu mpu3oBa J1a 3a0aBUM TEMITOTO | Jia CIIPEM 3a IIECT
Mecela u3cieaBanusiTa B oonacrra Ha . Moske 61 He BCHUKHM U3Cie/IBaHUs, HO MTOHE JIa CIIpeM
C eKCIIEpUMEHTHTEe, KOUTO MOTaT Jia IOBeJaT JO TEXHOreHHa KaTactpoda. Toii mo mpuHIum e



IpaB, HO U3MYCHE JIM C€ BEAHBXK JYXbT OT OyTHUIIKATa € MHOTO TPYIHO Jia c€ BbpPHE 00paTHO.
CobriaceH cbM, ue TpsiOBa MHOTO J]a c€ BHUMaBa C €KCIIEPUMEHTHTE, 0COOEHO KOraTo HsMaMme
IIPEJICTaBa KaKbB TOYHO MOXKE J1a € pe3ynrara uM. Bce nak, 1mo-sakxHoTo € I'bpBO Ja CU 3aJaIeM
BBIIPOCA KaKBO BCBHIIHOCT npezacTasisiBa MM u kak OT cera HaTaThK LIE JKUBEEM 3a€JHO C HETO.

3. Terms of the problem

Let the agent have n possible actions and m possible observations. Let X' and £2 be the sets of
actions and respectively observations. In the observations set there will be two special
observations. These will be the observations good and bad, and they will provide rewards 1
and -1. All other observations in ©2will provide reward 0.

We will add another special observation — finish. The agent will never see that observation
(finish 202), but we will need it when we come to define the model of the world. The model will
predict finish when it breaks down and becomes unable to predict anything more. For us the
finish observation will not be the end of life, but rather a leap in the unknown. We expect our Al
to avoid such leaps in the unknown and for this reason the reward given by the finish observation
will be -1.

Definition 1: The tree of all possibilities is an infinite tree. All vertices which sit at an even-
number depth level and are not leafs will be referred to as action vertices and those at odd-
number depth levels will be observation vertices. From each action vertex there will depart n
arrows which correspond to the n possible actions of the agent. From each observation vertex
there will depart m+1 arrows which correspond to the m possible observations of the agent and
the observation finish. The arrow which corresponds to finish will lead to a leaf. All other arrows
lead to vertices which are not leafs.

Definition 2: In our terms the world will be a 3-tuple <S, so, f>, where:

1. Sis a finite or countable set of internal states of the world,;

2. so € S is the initial state of the world; and

3. f: Sx2' — QxS is a function which takes a state and an action as input and returns an
observation and a new state of the world.

The f function cannot return observation finish (it is predicted only when f is not defined and
there is not any next state of the world). What kind of function is f — computable, deterministic or
total? The answer to each of these three questions can be Yes, but it can also be No.

Definition 3: A deterministic policy of the agent is a function which assigns a certain action to
each action vertex.

Definition 4: A non-deterministic policy of the agent is a function which assigns one or more
possible actions to each action vertex.

When the policy assigns all possible actions at a certain vertex (moment) we will say that at that
moment the policy does not know what to do. We will not make a distinction between an agent
and the policy of that agent. A union of two policies will be the policy which we get when choose
one of these two policies and execute it without changing that policy. Allowing a change of the
chosen policy will lead to something else.
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Definition 5: Life in our terms will be a path in the tree of all possibilities which starts from the
root.

Each life can be presented by a sequence of actions and observations:
ai, 01, ..., at, O, ...

We will not make a distinction between a finite life and a vertex in the tree of all possibilities
because there is a one-to-one correspondence between these two things.

Definition 6: The length of life will be t (the number of observations). Therefore, the length of
life will be equal to the length of the path divided by two.

Definition 7: A completed life is one which cannot be extended. In other words, it will be an
infinite life or a life ending with the observation finish.

When we let an agent in a certain world, the result will be a completed life. If the agent is non-
deterministic then the result will not be unique. The same applies when the world is non-
deterministic.

4. The grade

Our aim is to define the agent’s best performing policy. For this purpose we need to assign some
grade to each life. This grading will give us a linear order by which we will be able to determine
the better life in any pair of lives.

Let us first determine how to measure the success of each life L. For a finite life, we will count
the number of times we have had the observation good, and will designate this number with
Lgood(L). Similar designations will be assigned to the observations bad and finish. Thus, the
success of a finite life will be:

Lgood (L) - Lbad (L) - Lfinish (L)
L]

Success(L) =

Let us put L; for the beginning of life L with a length of i. The Success(L) for infinite life L will
be defined as the limit of Success(Li) when i tends to infinity. If this sequence is not convergent,
we will take the arithmetic mean between the limit inferior and limit superior.

1
Success(L) = > (ligr_l)gonf(Success(Li)) +lim sup(Success(LJ))

1—>00

By doing this we have related each life to a number which belongs to the interval [-1, 1] and
represents the success of this life. Why not use the success of life for the grade we are trying to
find? This is not a good idea because if a world is free from fatal errors then the best performing
policy will not bother about the kind of moves it makes. There would be one and only one
maximum success and that success would always be achievable regardless of the number of
errors made in the beginning. If there are two options which yield the same success in some
indefinite time, we would like the best performing policy to choose the option that will yield
success faster than the other one. Accordingly, we will define the grade of a completed life as
follows:

11



Definition 8: The grade of infinite life L will be a sequence which starts with the success of that
life and continues with the rewards obtained at step i:

Success(L), reward(o1), reward(o2), reward(0s), ...

Definition 9: The grade of finite and completed life L will be the same sequence, but in this
sequence for i>t the members reward(oi) will be replaced with Success(L):

Success(L), reward(0y), ..., reward(oy), Success(L), Success(L), ...

(In other words, the observations that come after the end of that finite life will receive some
expectation for a reward and that expectation will be equal to the success of that finite life.)

In order to compare two grades, we will take the first difference. This means that the first
objective of the best performing policy will be the success of entire life, but its second objective
will be to achieve a better reward as quickly as possible.

5. The expected grade
Definition 10: For each deterministic policy P we will determine grade(P): the grade we expect
for the life if policy P is executed.

We will determine the expected grade at each vertex v assuming that we have somehow reached v
and will from that moment on execute policy P. The expected grade of P will be the one which
we have related to the root.

We will provide a rough description of how we relate vertices to expected grades. Then we will
provide a detailed description of the special case in which we look for the best grade, i.e. the
expected grade of the best performing policy.

Rough description:
1. Let v be an action vertex.
Then the grade of v will be the grade of its direct successor which corresponds to action P(v).

2. Let v be an observation vertex.

2.1. Let there be one possible world which is a model of v.

If we execute P in this world we will get one possible life. Then the grade of v will be the grade
of that life.

2.2. Let there be many possible worlds.

Then each world will give us one possible life and the grade v will be the mean value of the
grades of the possible lives.

The next section provides a detailed description of the best performing policy. The main

difference is that when v is an action vertex, the best performing policy always chooses the
highest expected grade among the expected grades of all direct successors.

12



6. The best performing policy

As mentioned above, we should have some clue about what the world looks like before can have
some expectation about the success of the agent. We will assume that the world can be described
by some language for description of worlds.

Let us take the standard language for description of worlds. In this language the world is
described by a computable function (this is the case in Orallo, 1998 and Hutter, 2000). We will
describe the computable function f by using a Turing machine. We will describe the initial state
of the world as a finite word over the machine alphabet. What we get is a computable and
deterministic world which in the general case is not a total one.

Definition 11: A world of complexity k will be a world in which:

1. The f function is described by a Turing machine with k states.

2. The alphabet of that machine contains k+1 symbols (4o, ..., Ak).

3. The initial state of the world is a word made of not more than k letters. The alphabet is
{4, ..., X}, 1.e. the alphabet of the machine without the blank symbol Ao.

Here we use the same k for three different things as we do not need to have different constants.

We will identify the best performing policy for the worlds of complexity k (importantly, these
worlds are finitely many). For this purpose we will assign to each observation vertex its best
grade (or the expected grade if the best performing policy is executed from that vertex onwards).

Let us have life a1, 01, ..., at, Ot, At+1.
Let this life run through the vertices vo, Wi, V1, ..., Wt, Vi, W+,
where vg is the root, v; are the action vertices and w; are the observation vertices.

Now we have to find out how many models of complexity k are there for vertex vi.

Definition 12: A deterministic world is a model of vi when in that world the agent would arrive at
vt if he executes the corresponding actions (as, ... , a). The models of each action vertex are
identical with the models of its direct successors.

Definition 13: The best performing policy for the worlds of complexity k will be the one which
always chooses the best grade (among the best grades of the direct successors).

Definition 14: The best grade of vertex wi+1 is determined as follows:

Case 1. Vertices vt and we+1 do not have any model of complexity k.
In this case the best grade for wi+1 will be undef. At this vertex the policy will not know what to
do (across the entire subtree of vi) because the best grade for all successor vertices will be undef.

If we do not want to introduce an undef grade, we can use the lowest possible grade — the
sequence of countably many -1s. The maximal grade will be chosen among the vertices which are
different from undef. Replacing undef with the lowest possible grade will give us the same result.

Case 2. Vertices vi and wt+1 have one model of complexity k.
Let this model be D. In this case there are continuum many paths through we+1 such that D is
model of all those paths. From these paths (completed lives) we will select the set of the best
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paths. The grade we are looking for is the grade of these best paths. Each of these paths is related
to a deterministic policy of the agent. We will call them the best performing policies which pass
through vertex wi+1.

This is the procedure by which we will construct the set of best deterministic policies: Let Po be
the set of all policies which lead to we+1. We take the success of each of these policies in the
world D. We create the subset P of the policies which achieve the maximum success. Then we
reduce P1 by selecting only the policies which achieve the maximum for reward(ot+2) and obtain
subset P». Then we repeat the procedure for each i>2. In this way we obtain the set of the best
deterministic policies P. (The best ones of those which pass through vertex wi+1 as well as the
best ones for the paths which pass through vertex wi+1. As regards the other paths, it does not
matter how the policy behaves there.)

We can think of P as one non-deterministic policy. Let us take some p eP. This will give us the
best grade:

Success(p), reward(o,4,), reward (0, r4,), reward(0, 143) , -

Here we drop out the members reward(o;) at i<t because they are uniquely defined by vi. The next
member depends on wi+1 and D, but does not depend on p. The remaining members depend on p.

Another way to express the above formula is:

;nea}%i Success(p) ,reward(0¢44), glee}gl( reward(op,Hz) , glgz})}z( reward(op,Hg) ) e

Case 3. Vertices viand we+1 have a finite number of models of complexity k.

Let the set of these models be M. Again, there are continuum many paths through we+1 such that
each of these paths has a model in M. These paths again form a tree, but while in case 2 the
branches occurred only due to a different policy of the agent, in this case some branches may
occur due to a different model of the world. Again, we have continuum many deterministic
policies, but now they will correspond to subtrees (not to paths) because there can be branches
because of the model. Again we will try to find the set of best performing deterministic policies
and the target grade will be mean grade of those policies (the mean grade in M).

We will again construct the set of policies Pi. Here P1 will be the set of policies for which the
mean success reaches its maximum. Accordingly, P2 will be the set of policies for which the
mean reward(ot+2) reaches its maximum and so on. This is how the resultant grade will look like:

max E Qm - Success(m,p), E qm -reward (om t+1)' max E qm - reward(om p t+2)'
pePo ’ pePy "
meM meM

meM
If we take some p &P, the resultant grade will look like this:

z Qm - Success(m,p), Z qm.reward(om,tﬂ), Z qm.reward(om’pﬁz),...

meM meM meM
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Here g; are the weights of the worlds which have been normalized in order to become
probabilities. In this case we assume that the worlds have equal weights, i.e.:

1

= T

What we have described so far looks like an algorithm, however, rather than an algorithm, it is a
definition because it contains uncomputable steps. The so described policy is well defined, even
though it is uncomputable. Now, from the best grade for complexity k, how can we obtain the
best grade for any complexity?

Definition 15: The best grade at vertex v will be the limit of the best grades at vertex v for the
worlds of complexity k when k tends to infinity.

How shall we define the limit of a sequence of grades? The number at position i will be the limit
of the numbers at position i. When the sequence is divergent, we will take the arithmetic mean
between the limit inferior and limit superior.

Definition 16: The best performing policy will be the one which always chooses an action which
leads to the highest grade among the best grades of the direct successors.

What makes the best performing policy better than the best performing policy for worlds of
complexity k? The first policy knows what to do at every vertex, while the latter does not have a
clue at the majority of vertices because they do not have any model of complexity k. The first
policy can offer a better solution than the latter policy even for the vertices at which the latter
policy knows what to do because the first policy also considers models of complexity higher than
k. Although at a first glance we do not use Occam’s razor (because all models have equal
weights), in earnest we do use Occam’s razor because the simpler worlds are calculated by a
greater number of Turing machines, meaning that they have a greater weight.

7. The Al definition
Definition 17: Al will be a computable policy which is sufficiently proximal to the best
performing policy.

At this point we must explain what makes a policy proximal to another policy and how proximal
is proximal enough. We will say that two policies are proximal when the expected grades of these
two policies are proximal.

Definition 18: Let A and B be two policies and {an} and {bn} are their expected grades. Then the
difference between A and B will be {&}, where:

n
f= ) V@ =b) = tny +Y"(@n — by)
i=0
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Here y is a discount factor. Let y=0.5. We have included a discount factor because we want the
two policies to be proximal when they behave in the same way for a long time. The later the
difference occurs in time, the less impact it will have.

When n goes up, |&| may go up or down. We have made the definition in this way because we
want the difference to be small when the expected grade of policy A hovers around the expected
grade of policy B. lL.e., if for n-1 the higher expected grade is that of A and for n the higher
expected grade is that of B, then in & the increase will offset the decrease and vice versa.

Definition 19: We will say that |A-B|<eif vh |a|<e

8. A program which satisfies the definition

We will describe an algorithm which represents a computable policy. Each action vertex relates
to an uncompleted life and the algorithm will give us some action by which this life can continue.
This algorithm will be composed of two steps:

1. The algorithm will answer the question ‘What is going on?’ It will answer this question by
finding the first k for which the uncompleted life has a model. The algorithm will also find the
set M (the set of all models of the uncompleted life, the complexity of which is k). Unfortunately,
this is uncomputable. To make it computable we will try to find efficient models with
complexity k.

Definition 20: An efficient model with complexity k will be a world of complexity k (definition
11), where the Turing machine uses not more than 1000.k steps in order to make one step of the
life (i.e. to calculate the next observation and the next internal state of the world). When the
machine makes more than 1000.k steps, the model will return the observation finish.

The number 1000 is some parameter of the algorithm, but we assume this parameter is not very
important. If a vertex has a model with complexity k, but does not have an efficient model with
complexity k, then =h (n>k) such that the vertex has an efficient model with complexity n.

2. The algorithm will answer the question ‘What should I do?’. For this purpose we will run h
steps in the future over all models in M and over all possible actions of the agent. In other words,
we will walk over one finite subtree and will calculate best for each vertex of the subtree (this is
the best expected grade up to a leaf). Then we will choose an action which leads to the maximum
by best (this is the best partial policy).

Definition 21: A partial subtree of vertex vi over M with depth h will be the subtree of v
composed of the vertices which i) have a depth not more than 2h and ii) have a model in M.

Definition 22: The grade up to a leaf of vertex vi+ to the leaf vi+j will be:
Case 1. If j=h, this will be the sequence:
Success(vt+j), reward(Ot+i+1), ... , reward(ot+j)
Case 2. If j<h, then the sequence in case 1 will be extended by h-j times Success(vt+j). The
purpose of this extension is to ensure that the length of the grade up to a leaf will always be h-
i+1.

Definition 23: The best expected grade up to a leaf (this is best):
16



1. Let vi+i be an action vertex.
1.1. If vi+i is a leaf, then best(vi+i) will be the grade up to a leaf of vi+ to the leaf vi+i.
1.2. If v+ is not a leaf then:
best(viy;) = max best(wy)

By wa here we designate the direct successor of vi+i resulting from action a. The same applies
accordingly to v, below.

2. Let wi+i be an observation vertex. Then:
best(w;y;) = z Do- (reward(o) insert_at_1_in best(v,))
0eQ’
Thus, we take the best of the direct successor v, and extend it by one by inserting reward(o) at

position 1. Here Q'= Q < {finish} and po is the probability of the next observation being o. Let
M(v) be the set of the models of v. Then:

Py = (ZmEM(vo) an) _ |M(UO)|
° (ZmeM(wm) Qm) MWyl

In this formula gm are the weights of the models. The last equality is based on the assumption that
all models have equal weights. If M(vo)=g then po,=0 and it will not be necessary to calculate
best(vo).

So far we showed how the best partial policy is calculated. Will that be the policy of our
algorithm? The answer is No because we want to allow for some tolerance.

If two policies differ only slightly in the first coordinates of their expected grades, then a minor
increase of h is very likely to reverse the order of preferences. Therefore, for a certain policy to
be preferred, it should be substantially better (i.e. the difference at some of the coordinates should
be greater than ¢).

We will define the best partial policy with tolerance ¢ and that will be the policy of our algorithm.

9. The tolerance ¢
We will modify the above algorithm by changing the best function. While the initial best function
returns the best grade, the modified function will return the set of best grades with tolerance «.

How shall we modify the search for the maximum grade to a search for a set of grades? The
previous search looked at the first coordinate and picked the grades with the highest value at that
coordinate. The search then went on only within these grades to find the ones with the highest
value of the second coordinate and so on until it settles for a single grade. The modified search
will pick i) the grades with the highest value of the first coordinate and ii) the grades which are at
distance ¢ from the maximum value. Let Eo be the initial set of grades. Let in Eo there be n
grades, all of them with length m+1. We will construct the sequence of grade sets Eo, ... , Em+1
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(Ei+1c Ei) and the last set Em+1 will be the target set of best grades with tolerance ¢. Let Eo={G1,
..., Gn} and Gj=gjo, ... , gjm- We will also construct the target grade « (a=«w, ..., am). The target
set of grades Em+1 will be comprised of the grades at distance ¢ from «.

Definition 24: The target grade « and the target set Em-+1 are obtained as follows:

Oy = Max g;
0 GjEEogjO

E1={ GjeEo| ao-gjo<e }

o = max g;
1 GjeElgjl

Ex={ Gj ek | (a0-Gjo)+ y(an-gj)<e }

Here yis again a discount factor. Thus, we have modified the way in which the maximum is
calculated. We also need to modify the sum of the grades.

Now the individual grades will be replaced with sets of grades. We will develop all possible
combinations and calculate the sum for each combination. The resulting set will be the set of all
sums for all possible combinations.

The only remaining thing to do now is to select the next move. We will take the sets of grades
provided by the best function for the direct successors of vi. Then we will make the union of these
sets and from that union we will calculate the set of best grades with tolerance ¢. Finally, we will
select one of the actions which take us to one of these best grades.

10. Is this AI?

Does the algorithm described above satisfy our Al definition? Before that we must say that the
algorithm depends on the parameters h and ¢. In order to reduce the number of parameters, we
will assume that ¢ is a function of h. For example, this function can be e=h"">.

Statement 1: When the value of h is sufficiently high, the described algorithm is sufficiently
proximal to the best performing policy.

Let the best performing policy be Prest, and the policy calculated by the above algorithm with
parameter h be Pn. Then statement 1 can be expressed as follows:
Ve>0 Fn vh>n (|Ppest - Pn|<¢)

Although we cannot prove this statement, we can assume that when h tends to infinity then Py,
tends to the best performing policy for the worlds the complexity of which is k. When t tends to
infinity, k will reach the complexity of the world or tend to infinity. These reflections make us
believe that the above statement is true.

11. A world with randomness

The first language for description of worlds which discussed here describes deterministic worlds.
But, if the world involves some randomness, then the description obtained by using that language
would be very inaccurate. Accordingly, we will add randomness to the language for description
of worlds. This would improve the language and make it much more expressive.
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The new language will also describe the world by a computable function. However, this function
will have one additional argument — randomness. By randomness we will mean the result from
rolling a dice. Let the complexity of the world be k. Then the dice will have k faces and can
accordingly return k possible results. The probabilities of occurrence of one of these results will
be py, ..., Pk

Definition 25: A model of life until moment t with complexity k will be a world with complexity
k and randomness with a length of t. We want that life to be generated by that model and that
randomness. The randomness will be some word R of length t. The R letters will be those from
the Turing machine alphabet except Ao.

The weight of the model is the probability of occurrence of R.

Definition 26: The weight of the model will be p. ™, . .p. ™.
We will set the probabilities ps, ..., pk of the model such that the probability of occurrence of R
becomes maximal:

by = Ly, (R)
“IR|

Thus, we will end up with some low-weight models where the probability of occurrence of the
life represented by the model is very low, and some heavy-weight models in which the
probability of occurrence is higher.

12. A definition with randomness

Similar to the process described above, we will define the best performing policy for the models
the complexity of which is k. (An important element here is that these models have different
weights.) We will develop the policy which represents the limit when k tends to infinity, and that
will be the best performing policy. Again, Al will be defined as a computable policy which is
sufficiently proximal to the best performing policy.

Statement 2: The two Al definitions are identical.

This means that the best performing policy for worlds without randomness is the same as the best
performing policy for worlds with randomness. Before we can prove this statement, we need to
prove that:

Statement 3: If we have some word o over the alphabet {0, 1} such that the instances of 1 occur
with a probability of p, and if we make a natural extension of this word, then the next letter will
be 1 with probability p.

What is a natural extension? Let us take the first (simplest) Turing machine which generates .
The natural extension will be the extension generated by that Turing machine.

While we cannot prove statement 3, we can offer two ideas about how to prove it:
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The first idea is a practical experiment. We will write a program which finds the natural

extension of a sequence and then we will run a series of experiments. We will keep feeding into
the program various o words where 1 occurs with probability p. Then we will check the
extensions and will calculate the average probability for all these experiments. If the experiments
are many and if the average probability obtained from these experiments is p, then we can assume
that statement 3 is true.

The second idea is to prove the statement by theoretical reasoning. Let us have a computable
function f from N to N. Suppose we start from the number n. The resultant sequence will be

{f i(n)}. We will convert this sequence into sequence {bi} which is made of instances of 0 and 1.
The number b; will be zero iff f '(n) is an even number. Let o be some beginning of {bi}. What do
we expect the next member of {bi} to be?

Case 1. Sequence {bi} is cyclic and has the form m10;". Let o be longer than wi. Then there is
some beginning of w, which is part of ® and for that beginning the instances of 1 occur with
probability p.

Case 2. Sequence {f '(n)} has a long beginning in which odd numbers occur with probability p.
We do not have a reason to expect that the p probability will change.

13. A program with randomness
We will develop a program which satisfies an Al definition based on models with randomness.
We will proceed in the similar way as above, but with some differences.

We will not search for the first k for which there is a model until moment t with complexity k
since such a model exists for very low value of k. Instead, we will assume that k is fixed and Kk is
parameter of the algorithm.

The first step will be to find all models of complexity k of vertex vi. The second step will be to
run at depth level h across a partial subtree of vertex v: over i) all discovered models, ii) over all
possible actions of the agent and iii) over all probabilities Ri1R>, where R is the probability of the
model and R: is the probability after t. Here Ry is fixed (it is determined by the model), and R
runs over all possibilities.

The next statement will be similar to statement 1:

Statement 4: When the values of k and h are sufficiently high, the described algorithm is
sufficiently proximal to the best performing policy.

We assert that when the values of the parameters are sufficiently high, both algorithms will
calculate approximately the same policy. However, are the two algorithms equally efficient?

In practice both algorithms are infinitely inefficient, however, the second algorithm is far more
efficient than the first one. We will look at three cases:

1. Let us have a simple deterministic world. By simple we mean that its complexity k is very low.
In this case the first algorithm will be slightly more efficient because it will find the model
quickly. The second algorithm will find the same model because the deterministic models are a
subset of the non-deterministic ones.
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2. Let us have a deterministic world which is not simple, i.e. its complexity Kk is high. In this case
the first algorithm will need a huge amount of time in order to find a model of the world.
Moreover, rather than the real model of the world, it will probably find some simplified
explanation. That simplified explanation will model the life until moment t, but after a few more
steps the model will err. The second algorithm will also find a simplified explanation of the
world, but that simplified explanation will be non-deterministic. While both algorithms will
predict the future with some degree of error, the description which includes randomness will be
better and more accurate. Moreover, the description with randomness will be much simpler (with
smaller k).

3. Let us have a world with randomness. In this case the second algorithm has a major advantage.
It will find the non-deterministic model of the world and will begin predicting the future in the
best possible way. It may appear that the first algorithm will not get there at all, but this is not the
case. It will get there, too, but much later and not so successfully. The non-deterministic model
consists of a computable function f and randomness R. There exists a computable function g
which generates R. The composition of f and g will be a deterministic model of the world at
moment t. Certainly, after a few more steps g will diverge from the actual randomness and f°g
will not be a model of the world anymore. Then we will have to find another function g. All this
means that a deterministic function can describe a world with randomness, but such description
will be very ungainly and will work only until some moment t. The non-deterministic model
gives us a description which works for any t.

The conclusion is that the choice of language for description of the world is very important.
Although these two languages provide identical Al definitions, the programs developed on the
basis of each language differ substantially in terms of efficiency.

14. A world with many agents

The world with randomness can be imagined as a world with one additional agent who plays
randomly. Let us assume that there are many agents in the world and each of these agents belongs
to one of the following three types:

1. Friends, i.e. agents who help us.
2. Foes, i.e. agents who try to disrupt us.
3. Agents who play randomly.

Let the number of additional agents be a (all excluding the protagonist). Let each additional agent
have k possible moves (k is the complexity of the world). We will assume that the protagonist
(that’s us) will play first and the other agents will play after us in a fixed order. We assume that
each additional agent can see everything (the internal state of the world, the model including the
number of agents and the type of each agent, i.e. friend or foe, as well as the moves of the agents
who have played before him). We will also assume that the agents are very smart and capable to
calculate which move is the best and which move is the worst.

The model of the world will again be a Turning machine, but that machine will have more
arguments (the internal state of the world and the move of the protagonist, plus the moves of all
other agents). The model will also include the type of each agent, i.e. friend or foe. Furthermore,
the model of life until moment t will include the moves of all a agents at all steps until t.
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Once again, we will develop an Al definition on the basis of this new and more complicated
language. We will continue with the assumption that the third definition is identical to the
previous two. We will also develop a program which looks for a model of the world in the set of
worlds with many agents. In the end of the day we will see that the new language is far more
expressive: If we have at least one foe in the world this way of describing the world is much more
adequate and, accordingly, the Al program developed on the basis of that language is far more
efficient.

15. Conclusion

We examined three languages for description of the world. On the basis of each language, we
developed an Al definition and assumed that all three definitions are the same. Now we will
make an even stronger assertion:

Statement 5: The Al definition does not depend on the language for description of the world on
the basis of which the definition has been developed.

We cannot prove this statement although we suppose that it is true. We also suppose that the
statement cannot be proven (similar to the thesis of Church).

Although we assumed that the Al definition does not depend on the language for description of
the world, we kept assuming that the program which satisfies this definition strongly depends on
the choice of language. The comparison between the first two languages clearly demonstrated
that the second language is far more expressive and produces a far more efficient Al.

Let us look at one more language for description of worlds — the language described in Dobrev
(2022, 2023). That language describes the world in a far more efficient way by defining the term
‘algorithm’. The term ‘algorithm’ enables us plan the future. For example, let us take the
following: ‘I will wait for the bus until it comes. Then I will go to work and will stay there until
the end of the working hours.” These two sentences describe the future through the execution of
algorithms. If we are to predict the future only by running h possible steps, then h will necessarily
become unacceptably large.

The language described in Dobrev (2022, 2023) is far more expressive and lets us hope that it can
be used to produce a program which satisfies the Al definition and which is efficient enough to
work in real time.
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