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Abstract 

The Kolmogorov (K-) entropy quantifies the continuous transition from deterministic 

evolution to fully developed chaos. We argue here that, in the early Universe, multi-body 

Newtonian gravity emerges from the properties of the K-entropy. This finding also 

suggests that, far above the Fermi scale, gravitational physics and field theory are 

coexisting manifestations of Hamiltonian chaos in large systems of interacting 

components. 
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The near-equilibrium regime of star clusters and galaxies can be modeled 

using the dynamics of Newtonian N-body systems, whose Lagrangian takes 

the form [1-4] 
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As these systems settle down to thermodynamic equilibrium, several of their 

physical parameters (such as surface luminosity and velocity dispersion) 

approach stationary values within a relaxation time window ( ) [1-4].  

To proceed with our derivation, we introduce a couple of assumptions: 

A1) The relaxation time of star clusters and galaxies is given by the 

Gurzadyan-Savvidy (GS) theory, according to which [1-4]. 
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Here, v  is the average stellar velocity, 0M  the mean stellar mass and n  the 

mass density. The derivation of (3) is based upon treating the N-body 

problem of Newtonian gravity as geodesic flows on Riemannian manifolds.  

A2) The non-relativistic model (1) is a reasonable approximation of the near-

equilibrium regime describing star clusters and galaxies in the early 

Universe. 

Unlike the approach behind A1), the basic premise of A2) is that the weak 

field limit of General Relativity reduces to the Poisson equation [5] 

 000 4R G n =  =  (4) 

where 00R  is the temporal component of the curvature tensor,   the 

Newtonian potential,  

 00 1 2g = +  (5) 
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and 0n  the stellar spacetime density.  

Straightforward dimensional analysis of densities entering (3) and (4) shows 

that, while n  scales as the inverse of the spatial volume, 0n  scales as the 

inverse of the four-dimensional spacetime volume as in  

 3n M   =  (6) 

 4
0n M 

  =  (7) 

Based on (6)-(7), to ensure a sensible comparison between (3) and (4) we 

choose the parameterization 

 0 0n M n=  (8) 

One obtains, on account of (3), (4) and (8) 
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K-entropy relates to the inverse of the relaxation time  , as a vanishing   

corresponds to maximal entropy at thermal equilibrium [1]. The magnitude 
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of the K-entropy is computed from the sum of all positive Lyapunov 

exponents integrated over phase-space according to [6] 

 iK i
S d 


=  ;   0i   (10) 

in which   denotes the phase space volume, whose differential measure is 

d . The GS relaxation time can be thus expressed as 
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Combined use of (9), (10) and (11) yields 
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Within the approximations made above, it is apparent from (3), (4), (11) and 

(12) that a diverging entropy rate KdS d →  leads to an infinite temporal 

curvature 00R , which reflects a highly unstable regime of entropy 

fluctuations. By contrast, a vanishing entropy rate means a vanishing 

temporal curvature 00R  and the onset of thermodynamic equilibrium. 
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However, this latter setting is unphysical, since – by (4) - it implies zero mass 

density and an absolute cosmological vacuum.   

In closing, we bring up several points that are important for follow up work 

on the topic: 

1)  According to the equation (3) of [4], an intriguing relationship exists 

between GS  and the fractal dimension of large systems of gravitating bodies. 

Taking the space dimension to represent a continuous variable 3d = − , in 

which 1  , bridges the gap between the K-entropy, gravitational 

dynamics and the concept of minimal fractal manifold, conjectured to come 

into play above the Fermi scale [7]. 

2) An alternative derivation is possible upon using the analogy between 

gravitational physics and the theory of geodesic flows on Riemannian 

manifolds. To this end, one can start from the relationship between GS  and 

the kinetic energy of gravitational motion W  expressed by equation (60) of 

[1] 
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The proper time interval considered in [1] has the form 

 2ds Wdt=  (14) 

and stands in a one-to-one correspondence with the expression of the proper 

time interval in the weak field non-relativistic limit of General Relativity [5] 

 00 (1 2 )ds g dt dt= = +  (15) 

Combining (11) with (13)-(15) links the K-entropy to the Newtonian 

potential of the N-body problem.  

3)  It is known that Hamiltonian dynamical systems lie at the heart of 

classical physics and field theory. Aside from a handful of cases, these 

systems are nonintegrable, as the instability of their phase-space trajectories 

drives the dynamics into Hamiltonian chaos. It is also known that the chaotic 

behavior of N-body gravitational systems is on par with Hamiltonian chaos. 
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In this context and in line with the ideas of [8-12], relation (12) suggests that, 

far above the Fermi scale, gravitational physics and field theory are 

coexisting manifestations of Hamiltonian chaos in large systems of 

interacting components. 
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