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Abstract

To help fill the need for examples of introductory-level problems that

have been solved via Geometric Algebra (GA), we derive the equation

for a plane that is tangent to three given planes. The approach that we

use determines the unit bivector of the tangent plane from the interior

and exterior products of the vectors that connect the centers of the given

spheres. A more-general version of this approach is presented in an

appendix.
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1 Introduction

To specify a plane, all we need to know is the unit bivector
(
B̂
)
parallel to the

plane, and one point (p) within the plane. We can then write the equation of

the tangent plane as

(x− p) ∧ B̂ = 0. (1.1)

Our challenge is to identify the required points and unit bivectors for the

two planes that are tangent to a given set of three spheres.

2 Some of the Ideas that We Will Find Useful

1. For any two vectors a and b, ∥a ∧ b∥2 = a2b2 − (a · b)2.
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Figure 1: The relationship between the vector v and its projection
[
PB̂ (v)

]
and “rejection”

[
RejB̂ (v)

]
with respect to the bivector B̂.

2. The relationship between a vector v and its projection and “rejection”

with respect to a bivector B̂ is as shown in Fig. 1.

3. The unit vector from the center of a sphere to a point of tangency is the

dual of the unit bivector of the tangent plane. Note that we need to choose

the correct sense of rotation of the bivector, according to the right-hand

rule, so that B̂I−1
3 is directed away from the center (Fig. 2). See also [1] ,

pp. 105-108.

4. Let v be a vector, and α, β be scalars. Then, the multiplicative inverse of

the multivector αI3 + βv is
−αI3 + βv

α2 + β2
=

αI−1
3 + βv

α2 + β2
.

5. Whenever an expression contains the outer product of two perpendicular

vectors (call them a and b), we should consider substituting the geometric

product ab for a ∧ b.

3 Formulation of the Problem in GA Terms

For any given set of three spheres, there are two planes that are tangent to

all three of them (Fig. 3 ). We will formulate the problem for only one of the

two tangent planes (Fig. 4), leaving the formulation for the other plane as an

exercise to the reader. We call the smallest sphere S1, and its radius R1. The

radii of S2 and S3 are (respectively) R2 and R3.

Reducing the problem to one of

“two spheres and one point” is

not necessary, but does help us

to identify the essential elements

of the problem.

We begin by reducing the problem from “three spheres” to “one point and

two spheres”, as in the solution of the classic Apollonius problem . The center
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Figure 2: The unit vector from the center of a sphere to a point of tangency is

the dual of the unit bivector of the tangent plane. (Note that we need to choose

the correct sense of rotation of the bivector, according to the right-hand rule, so

that B̂I−1
3 is directed away from the center.)

Figure 3: For any given set of three spheres, there are two planes that are

tangent to three all of them.
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Figure 4: We will identify the tangent plane that is shown here. We denote the

radii of the three spheres as (respectively) R1, R2, and R3, with R1 being the

smallest.

of the “reduced” sphere S ′
2 is the same as for S2; S ′

2’s radius is r2 = R2 − R1

(Fig. 5). Similarly, center of the “reduced” sphere S ′
3 is the same as for S3; and

S ′
3’s radius is r3 = R3 −R1.

To complete the formulation, we use the center of S1 as the origin, and

define the vectors as in Fig. 6. According to this formulation,

s2 = PB̂ (s2) +
(
s2∧B̂

)
B̂

−1

= PB̂ (s2)− r2B̂I−1
3

= PB̂ (s2) + r2B̂I3 . (3.1)

s3 = PB̂ (s3) +
(
s3∧B̂

)
B̂

−1

= PB̂ (s3)− r2B̂I−1
3

= PB̂ (s3) + r2B̂I3 . (3.2)

We will see later that we might

have been better off to leave the

results as s2 = PB̂ (s2)−r2B̂I−1
3

and s3 = PB̂ (s3)− r3B̂I−1
3 .

4 Our Strategy

We need to identify the unit bivector B̂, and one point within the tangent plane.

We will identify B̂ via the outer product of the projections of s2 and s3. As the

required point, we will use R1B̂I−1
3 (the point of tangency with S1). Then, we

will write the equation of the plane as(
x−R1B̂I−1

3

)
∧ B̂ = 0. (4.1)
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Figure 5: Reduction of the problem to “two spheres and one point”. The origin

is at the center of S1. The centers and radii of radius center of spheres S ′
2 and

S ′
3 are as follows:

The center of S ′
2 is the same as for S2; S ′

2’s radius is r2 = R2 −R1.

The center of S ′
3 is the same as for S3; S ′

3’s radius is r3 = R3 −R1.

Figure 6: Our formulation of the problem in GA terms. Note that the unit

vector of the direction from the ends of the projections to the centers of the

spheres is -B̂I−1
3 , = B̂I3. M̂ is the unit bivector of the plane that contains

the vectors s2 and s3. B̂ (the bivector that we wish to identify) contains their

projections.
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5 Solution

5.1 Preliminary Work

Here, we will write a few results that we will need later. First, B̂ is the unit

bivector of the plane that contains (or to be more correct, is parallel to) the

bivector PB̂ (s2) ∧ PB̂ (s3). Therefore,

PB̂ (s2) ∧ PB̂ (s3) = ∥PB̂ (s2) ∧ PB̂ (s3)∥B̂. (5.1)

From Item 1 in Section 2, we might infer that to find ∥PB̂ (s2) ∧ PB̂ (s3)∥,
we will need to know the lengths of the projections of PB̂ (s2) and PB̂ (s3).

Therefore, we will write expressions for those lengths now:

∥PB̂ (s2) ∥ =
√
s22 − r22 , and

∥PB̂ (s3) ∥ =
√
s23 − r23 .

(5.2)

5.2 Identify ∥PB̂ (s2) ∧ PB̂ (s3) ∥

We will deal with ∥PB̂ (s2) ∧ PB̂ (s3) ∥ first, so that when we have obtained an

expression for PB̂ (s2)∧PB̂ (s3), we may replace that expression with ∥PB̂ (s2)∧
PB̂ (s3) ∥B̂.

Item 1 in Section 2 noted that for any two vectors a and b, ∥a ∧ b∥2 =

a2b2 − (a · b)2. Thus,

∥PB̂ (s2) ∧ PB̂ (s3) ∥2 = ∥PB̂ (s2) ∥2∥PB̂ (s3) ∥2 −
[
PB̂ (s2) · PB̂ (s3)

]2
.

We have already found expressions for ∥PB̂ (s2) ∥ and ∥PB̂ (s3) ∥ (Eqs. (5.2)). To

find PB̂ (s2) · PB̂ (s3), we start from the relations (Eqs. (3.1) and (3.2)) between

each “s” vector and its projection. Specifically,[
PB̂ (s2) + r2B̂I3

]
︸ ︷︷ ︸

= s2

·
[
PB̂ (s3) + r3B̂I3

]
︸ ︷︷ ︸

=s3

= s2·s3

PB̂ (s2) and PB̂ (s3) are perpendicular to B̂I3; therefore, the left-hand side

reduces to

PB̂ (s2) · PB̂ (s3) + r2r3

(
B̂I3

)2

= s2·s3.

B̂I3 is a unit vector, so PB̂ (s2) · PB̂ (s3) + r2r3 = s2·s3, from which

PB̂ (s2) · PB̂ (s3) = s2·s3 − r2r3 .

Putting the previous ideas together,

∥PB̂ (s2) ∧ PB̂ (s3) ∥ =

√[
PB̂ (s2)

]2 [
PB̂ (s3)

]2 − [
PB̂ (s2) · PB̂ (s3)

]2
=

√
(s22 − r22) (s

2
3 − r23)− [s2 · s3 − r2r3]

2
.
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Expanding the products and simplifying,

We’ll see more of the vector

(r3s2 − r2s3) shortly.

∥PB̂ (s2) ∧ PB̂ (s3) ∥ =

√
s22s

2
3 − (s2 · s3)2 − (r23s

2
2 − 2r3r2s2 · s3 + r22s

2
3)

=
√

∥s2 ∧ s3∥2 − ∥r3s2 − r2s3∥2 . (5.3)

5.3 Obtain an expression for PB̂ (s2) ∧ PB̂ (s3)

We begin by writing[
PB̂ (s2) + r2B̂I3

]
︸ ︷︷ ︸

=s2

∧
[
PB̂ (s3) + r3B̂I3

]
︸ ︷︷ ︸

=s3

= s2∧s3.

Because
[
B̂I3

]
∧
[
B̂I3

]
= 0,

PB̂ (s2) ∧ PB̂ (s3) +
[
PB̂ (s2)

]
∧
[
B̂I−1

3

]
+
[
r2B̂I3

]
∧
[
PB̂ (s3)

]
= s2∧s3 ,

and

PB̂ (s2) ∧ PB̂ (s3) +
[
r3PB̂ (s2)− r2PB̂ (s3)

]
∧
[
B̂I3

]
= s2∧s3.

We wish to find B̂, so let’s introduce it in the first term on the left-hand side,

via the substitution indicated by Eq. (5.1). Our idea is that we may be able to

transform the left-hand side into a product of B̂ and some multivector that has

an inverse.

∥PB̂ (s2) ∧ PB̂ (s3)∥B̂︸ ︷︷ ︸
=PB̂(s2)∧PB̂(s3)

+
[
r3PB̂ (s2)− r2PB̂ (s3)

]
∧
[
B̂I3

]
= s2∧s3.

With the same idea in mind, we note that we can write[
r3PB̂ (s2)− r2PB̂ (s3)

]
∧
[
B̂I3

]
as

Both PB̂ (s2) and PB̂ (s3) are

parallel to B̂; therefore, any lin-

ear combination of them (e.g.,

r3PB̂ (s2)−r2PB̂ (s3)) is parallel

to B̂.

[
r3PB̂ (s2)− r2PB̂ (s3)

] [
B̂I3

]
.

Thus,

∥PB̂ (s2) ∧ PB̂ (s3)∥B̂+
[
r3PB̂ (s2)− r2PB̂ (s3)

] [
B̂I3

]
= s2∧s3. (5.4)

Although that result could be transformed readily into the form of a product

of B̂ and some multivector, we would still not be able to solve for B̂, because we

cannot as yet identify the vector
[
r3PB̂ (s2)− r2PB̂ (s3)

]
. To get an idea, let’s

“see” Eq. (5.4) as an addition of bivectors, examine a geometric representation

of the addition of bivectors in general (Fig. 7). The key element in that

representation is the “hinge” vector that is parallel to both of the addends.

Could
[
r3PB̂ (s2)− r2PB̂ (s3)

]
be that “hinge” in our case? More specifically,
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Figure 7: Geometric representation of the sum of bivectors, A1+A2 = A3. The

“hinge” vector v is a factor of both addends, and therefore of the result (A3) as

well.

we showed (above) that that vector is parallel to B̂. Is that vector also parallel

to s2 ∧ s3? Yes, it is. We can show this by writing PB̂ (s2) as s2 − r2B̂I3, and

PB̂ (s3) as s3 − r3B̂I3:

r3

[
s2 − r2B̂I3

]
︸ ︷︷ ︸

=PB̂(s2)

−r2

[
s3 − r3B̂I3

]
︸ ︷︷ ︸

=PB̂(s3)

= r3s2 − r2s3.

Therefore, Eq. (5.4) becomes

∥PB̂ (s2) ∧ PB̂ (s3)∥B̂+ [r3s2 − r2s3]
[
B̂I3

]
= s2∧s3. (5.5)

Two comments are in order. First, a study of Eq. (5.5) shows us why Eq.

(5.3) makes sense: the bivector s2∧s3 is the sum of the bivectors PB̂ (s2)∧PB̂ (s3)

and [r3s2 − r2s3]
[
B̂I3

]
, which are perpendicular to each other. Therefore, the

relation between the norms of the three vectors has the form of the Pythagorean

Theorem.

The second comment is that although we could now proceed with our idea

of identifying B̂, we can also change our goal, with benefit.

5.4 Changing Our Goal to Take Advantage of an Unfore-

seen Opportunity

Our goal has been to identify B̂, after which we would write the equation of

the tangent plane as
(
x−R1B̂I−1

3

)
∧ B̂ = 0. (See Eq. (4.1).) However, an

examination of Eq. (5.5) suggests that we could instead find the vector B̂I−1
3

directly. One advantage of this change of plans is that we can then write the

9



equation of the plane as the more user-friendly
(
x−R1B̂I−1

3

)
·
[
B̂I−1

3

]
= 0,

and thus as

x ·
[
B̂I−1

3

]
= R1. (5.6)

Another advantage (as we shall see) is that the expression for B̂I−1
3 will be both

readily interpretable, and easy to check via programs such as GeoGebra.

5.5 Continuing in Our New Direction: Find B̂I−1
3 Rather

than B̂

To make the necessary transformation of Eq. (5.5), we will use the identities

I3I
−1
3 = 1 and I−1

3 = -I3. We begin by writing Eq. (5.5) as

[
∥PB̂ (s2) ∧ PB̂ (s3) ∥

] [
I3I

−1
3 B̂

]
− [r3s2 − r2s3]

[
B̂I−1

3

]
= s2∧s3

Now, we use I−1
3 B̂ = B̂I−1

3 , and the fact that GA products possess the associative

property, to write[
∥PB̂ (s2) ∧ PB̂ (s3) ∥I3

] [
B̂I−1

3

]
− [r3s2 − r2s3]

[
B̂I−1

3

]
= s2∧s3

Factoring, we obtain{
∥PB̂ (s2) ∧ PB̂ (s3) ∥I3 − (r3s2 − r2s3)

} [
B̂I−1

3

]
= s2∧s3

Left-multiplying both sides by the inverse of the factor in “{}s”,

B̂I−1
3 =

[
∥PB̂ (s2) ∧ PB̂ (s3) ∥I3 − (r3s2 − r2s3)

]−1
[s2 ∧ s3] .

To find that inverse, we use Item 4 from Section 2[
∥PB̂ (s2) ∧ PB̂ (s3) ∥I3 − (r3s2 − r2s3)

]−1

=
−∥PB̂ (s2) ∧ PB̂ (s3) ∥I3 − (r3s2 − r2s3)

∥PB̂ (s2) ∧ PB̂ (s3) ∥2 + ∥r3s2 − r2s3∥2
. (5.7)

From Eq. (5.3), ∥PB̂ (s2) ∧ PB̂ (s3) ∥2 = ∥s2 ∧ s3∥2 − ∥r3s2 − r2s3∥2. Making

this substitution in the denominator of Eq. (5.7), then simplifying (and recalling

that I−1
3 = -I3), we obtain[

∥PB̂ (s2) ∧ PB̂ (s3) ∥I3 − (r3s2 − r2s3)
]−1

=
−∥PB̂ (s2) ∧ PB̂ (s3) ∥I3 − (r3s2 − r2s3)

∥s2 ∧ s3∥2

=
∥PB̂ (s2) ∧ PB̂ (s3) ∥I−1

3 + (r2s3 − r3s2)

∥s2 ∧ s3∥2
. (5.8)
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Therefore,

B̂I−1
3 =

[
∥PB̂ (s2) ∧ PB̂ (s3) ∥I−1

3 + (r2s3 − r3s2)

∥s2 ∧ s3∥2

]
[s2 ∧ s3]

=

[
∥PB̂ (s2) ∧ PB̂ (s3) ∥I−1

3 + (r2s3 − r3s2)

∥s2 ∧ s3∥

]
M̂ , (5.9)

where M̂ = [s2 ∧ s3] /∥s2 ∧ s3∥.

We can put that result in a more readily-interpreted form as follows:

B̂I−1
3 =

[
∥PB̂ (s2) ∧ PB̂ (s3) ∥

∥s2 ∧ s3∥

] [
I−1
3 M̂

]
+

[
1

∥s2 ∧ s3∥

] [
(r2s3 − r3s2) M̂

]

=

[√
∥s2 ∧ s3∥2 − ∥r3s2 − r2s3∥2

∥s2 ∧ s3∥

] [
M̂I−1

3

]
+

[
1

∥s2 ∧ s3∥

] [
(r2s3 − r3s2) M̂

]

=


√

1−
[
∥r3s2 − r2s3∥
∥s2 ∧ s3∥

]2 [
M̂I−1

3

]
+

[
1

∥s2 ∧ s3∥

] [
(r2s3 − r3s2) M̂

]
. (5.10)

The first term on the right-hand side is a scalar multiple of the unit normal

vector (in the right-hand sense) of the bivector s2 ∧ s3 —and thus of the plane

that contains the centers of the three given spheres. The second term is a

scalar multiple of the 90 deg rotation (in the right-hand sense) of the vector

(r2s3 − r3s2) in the plane of s2 ∧ s3. The result is shown in Fig. 8.

6 For the Reader

In what way does this procedure need to be changed in order to identify the

unit bivector of the second tangent plane?
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Figure 8: The result: All vectors x whose endpoints lie in the tangent plane

fulfill the condition x ·
[
B̂I−1

3

]
= R1.

A General Case

Here, we will develop an equation analogous to Eq. (5.10), but for the general

case in which

v1 = PB̂ (v1) + λ1B̂I−1
3 (A.1)

and

v2 = PB̂ (v2) + λ2B̂I−1
3 , (A.2)

where either both of the λ’s are positive, or both are negative. As in the main

text, we find ∥PB̂ (v1) ∧ PB̂ (v2) ∥ by first finding ∥PB̂ (v1) ∥, ∥PB̂ (v2) ∥ , and

PB̂ (v1) · PB̂ (v2), so that we may use the relation

∥PB̂ (v1) ∧ PB̂ (v2) ∥2 =
[
PB̂ (v1)

]2 [
PB̂ (v2)

]2 − [
PB̂ (v1) · PB̂ (v2)

]2
. (A.3)

From Eqs. (A.1) and (A.2),

∥PB̂ (x1) ∥2 = v21 − λ2
1, and

∥PB̂ (v2) ∥2 = v22 − λ2
2.

(A.4)

To obtain an expression for PB̂ (v1) · PB̂ (v2), we write[
PB̂ (v1) + λ1B̂I−1

3

]
·
[
PB̂ (v2) + λ2B̂I−1

3

]
= v1 · v2,

from which

PB̂ (v1) · PB̂ (v2) = v1 · v2 − λ1λ2. (A.5)
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Therefore, Eq. (A.3) becomes

∥PB̂ (v1) ∧ PB̂ (v2) ∥2 =
[
v21 − λ2

1

] [
v22 − λ2

2

]
− [v1 · v2 − λ1λ2]

2

= v21v
2
2 − (v1 · v2)

2 −
[
(λ2v1)

2 − 2λ1λ2v1 · v2 + (λ1v2)
2
]

= ∥v1 ∧ v2∥2 − ∥λ2v1 − λ1v2∥2. (A.6)

Next, we form the outer product from Eq. (A.1) and (A.2):[
PB̂ (v1) + λ1B̂I−1

3

]
∧
[
PB̂ (v2) + λ2B̂I−1

3

]
= v1 ∧ v2,

from which

PB̂ (v1) ∧ PB̂ (v2) +
[
λ2PB̂ (v1)− λ1PB̂ (v2)

]
∧
[
B̂I−1

3

]
= v1 ∧ v2,

∥PB̂ (v1) ∧ PB̂ (v2) ∥B̂+
[
λ2PB̂ (v1)− λ1PB̂ (v2)

]
∧
[
B̂I−1

3

]
= v1 ∧ v2,

and (because B̂I−1
3 is perpendicular to the vector

[
λ2PB̂ (v1)− λ1PB̂ (v2)

]
)

∥PB̂ (v1) ∧ PB̂ (v2) ∥B̂+
[
λ2PB̂ (v1)− λ1PB̂ (v2)

] [
B̂I−1

3

]
= ∥v1 ∧ v2∥M̂,

where M̂ = [v1 ∧ v2] /∥v1 ∧ v2∥. Writing PB̂ (v1) as v1 − λ1B̂I−1
3 and PB̂ (v2)

as v2 − λ2B̂I−1
3 , then simplifying, the factor

[
λ2PB̂ (v1)− λ1PB̂ (v2)

]
becomes

λ2v1 − λ1v2. Thus,

∥PB̂ (v1) ∧ PB̂ (v2) ∥B̂+ (λ2v1 − λ1v2)
[
B̂I−1

3

]
= ∥v1 ∧ v2∥M̂.

Continuing as in the main text, we use I−1
3 B̂ = B̂I−1

3 , and the fact that

GA products possess the associative property, to obtain[
∥PB̂ (v1) ∧ PB̂ (v2) ∥I3

] [
B̂I−1

3

]
+ (λ2v1 − λ1v2)

[
B̂I−1

3

]
= ∥v1 ∧ v2∥M̂,[

∥PB̂ (v1) ∧ PB̂ (v2) ∥I3 + (λ2v1 − λ1v2)
] [

B̂I−1
3

]
= ∥v1 ∧ v2∥M̂,

and

B̂I−1
3 =

{[
∥PB̂ (v1) ∧ PB̂ (v2) ∥I3 + (λ2v1 − λ1v2)

]}−1 ∥v1 ∧ v1∥M̂.

(A.7)

The inverse on the right-hand side is

∥PB̂ (v1) ∧ PB̂ (v2) ∥I−1
3 + (λ2v1 − λ1v2)

∥PB̂ (v1) ∧ PB̂ (v2) ∥2 + (λ2v1 − λ1v2)
2 .

Recalling that ∥PB̂ (v1) ∧ PB̂ (v2) ∥2 = ∥v1 ∧ v2∥2 − ∥λ2v1 − λ1v2∥2, the de-

nominator reduces to ∥v1 ∧ v2∥2, and Eq. (A.7) becomes

B̂I−1
3 =

{
∥PB̂ (v1) ∧ PB̂ (v2) ∥I−1

3 + (λ2v1 − λ1v2)

∥v1 ∧ v2∥

}
M̂

=

[
∥PB̂ (v1) ∧ PB̂ (v2) ∥

∥v1 ∧ v2∥

] [
I−1
3 M̂

]
+

1

∥v1 ∧ v2∥

[
(λ2v1 − λ1v2) M̂

]
.
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Now, we use ∥PB̂ (v1)∧PB̂ (v2) ∥ =
√
∥v1 ∧ v2∥2 − ∥λ2v1 − λ1v2∥2 and I−1

3 M̂ =

M̂I−1
3 :

B̂I−1
3 =

[√
∥v1 ∧ v2∥2 − ∥λ2v1 − λ1v2∥2

∥v1 ∧ v2∥

] [
M̂I−1

3

]
+

1

∥v1 ∧ v2∥

[
(λ2v1 − λ1v2) M̂

]
.

Simplifying,

B̂I−1
3 =


√
1−

[
∥λ2v1 − λ1v2∥

∥v1 ∧ v2∥

]2 [
M̂I−1

3

]
+

1

∥v1 ∧ v2∥

[
(λ2v1 − λ1v2) M̂

]
. (A.8)

The first term on the right-hand side is a scalar multiple of the unit normal

vector (in the right-hand sense) of the bivector v1 ∧ v2. The second term is

a scalar multiple of the 90 deg rotation (in the right-hand sense) of the vector

(λ2v1 − λ1v2) in the plane of v1 ∧ v2.
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