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Abstract

This article explores the extension of well-known F1 score used for assessing the perfor-

mance of binary classi�ers. We propose the new metric using probabilistic interpretation

of precision, recall, speci�city, and negative predictive value. We describe its properties

and compare it to common metrics. Then we demonstrate its behavior in edge cases of

the confusion matrix. Finally, the properties of the metric are tested on binary classi�er

trained on the real dataset.
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1. Background

The F1 metric { as described by Sasaki (2007) { is commonly used to evaluate the perfor-

mance of binary machine learning classi�ers. Calculated as a harmonic mean of precision

and recall (see section 2) gains an advantage over less complex metrics like accuracy. Es-

pecially when used against imbalanced datasets. The properties of F1 and methods of

maximizing the expected metric value, were precisely described, and analyzed from the

theoretical and experimental point of view by Lipton et al. (2014).

F1 is often criticized as an evaluation metric. The main axis of that critique is lack of

the dependency on true negatives - pointed among the others by Powers (2020) and Hand

and Christen (2018). Another of its drawbacks is asymmetry { it may give di�erent score

when the dataset labeling is changed (positives labeled as negatives and negatives labeled

as positives). These facts make it unreliable as a metric in certain cases.

As a cure for these F1 problems { MCC is often pointed to { like presented by

Chicco and Jurman (2020). On the other hand sometimes, researchers prefer to use them

both \cooperating" { like Cao et al. (2020). To this last aspect, we will return later in our

article.

2. Common metrics

2.1 Basic and composite metrics

Let us �rst list the basic building blocks of which the binary classi�er metrics are composed:

• TP - true positives (positive samples classi�ed as positive),

• FN - false negatives (positive samples misclassi�ed as negative),
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• TN - true negatives (negative samples classi�ed as negative),

• FP - false positives (negative samples misclassi�ed as positive),

Based on them, the precision and recall (also called sensitivity) metrics were de�ned:

PREC =
TP

TP + FP

REC =
TP

TP + FN

Then F1 is de�ned as a harmonic mean of two above:

F1 =
2

1
PREC + 1

REC

=
TP

TP + 1
2(FP + FN)

We will also use another metric called speci�city :

SPEC =
TN

TN + FP

Precision and recall are more popular in machine learning publications, while the

medical ones usually prefer recall and speci�city. The latter two are the base components

of Youden index (also known as informedness) de�ned by Youden (1950):

J = REC + SPEC− 1

We also want to include another metric called - negative predictive value - NPV in

this overview:

NPV =
TN

TN + FN

Finally, NPV is a component of markedness (see: Powers (2020)):

MK = PREC + NPV − 1

The presented list obviously is not comprehensive - it does not exhaust all the metrics in

use. However, we will focus on them in our discussion.

Summarizing: in the further sections we will be considering the following plain metrics:

PREC, REC, SPEC, NPV, and following composite metrics: F1, J, MK.

2.2 Matthews correlation coefficient

On a separate note, the MCC metric deserves attention. Matthews correlation coe�cient

known under several other forms, in its present form de�ned by Matthews (1975). MCC

is a Pearson correlation coe�cient calculated for two binary sequences: the original sample

values (positives and negatives) and the values returned by classi�er. In terms of TP, FN,

TN, FP values it can be calculated as follows:

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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3. Probabilistic approach – focusing on conditional probabilities

The probabilistic interpretation of F1, PREC and REC has been comprehensively presented

by Goutte and Gaussier (2005). We want to attack the problem from the opposite side and

start with the de�nition of 4 conditional probabilities which values we want to maximize

when designing a binary classi�er:

• P (+ | C+) { the probability that the sample is positive, provided the classi�er result

was positive.

• P (C+ | +) { the probability that the classi�er result will be positive, provided the

sample is positive.

• P (C− | −) { the probability that the classi�er result will be negative, provided the

sample is negative.

• P (− | C−) { the probability that the sample is negative, provided the classi�er result

was negative.

Given all these conditional probabilities, we can require a valid classi�er to produce results

for which each is close to 1. Basing on this requirement, we are building the new metric

P4, demanding it to have the following properties:

1. The metric value is limited to the given range: P4 ∈ [0, 1].

2. When any of the four conditional probabilities tends to zero, P4 metric also tends to

zero regardless of the values of the other probabilities.

3. When all the four conditional probabilities tend to one, P4 metric also tends to one.

Now let us quantitatively describe each of these probabilities:

P (+ | C+) =
TP

TP + FP
= PREC (1)

P (C+ | +) =
TP

TP + FN
= REC (2)

P (C− | −) =
TN

TN + FP
= SPEC (3)

P (− | C−) =
TN

TN + FN
= NPV (4)

Coming back to the composite metrics mentioned before: F1 captures only probabilities

(1) and (2), J is based on (2) and (3), while MK depends on (1) and (4). We have not

yet met a metric that refers directly to all four probabilities at once. This fact imposes a

certain desire to combine all of them into a single measure. So, let us �nally de�ne P4 as a

harmonic mean of all the four conditional probabilities:
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P4 =
4

1
PREC + 1

REC + 1
SPEC + 1

NPV

Thus, we get:

P4 =
4 · TP · TN

4 · TP · TN + (TP + TN) · (FP + FN)

The newly de�ned P4 metric satis�es all the three requirements we de�ned above. This is

due to the properties of the harmonic mean. What is more, for the requirements 2 and 3

the inverse implication is also true:

4. When P4 metric tends to zero, at least one of the conditional probabilities is close to

zero.

5. When P4 metric tends to one, all the probabilities are close to one.

P4 is also symmetrical with respect to dataset labels swapping (similarly to the MCC

metric), as opposed to F1 { see appendix A. In the coming sections, we will take a closer

look at the newly de�ned metric and compare its properties with those of the commonly

known metrics.

4. Edge cases

4.1 Confusion matrix

It is essential that when analyzing the performance of a classi�er, it should not be considered

in isolation from the population to which it applies. The same classi�er used on two

populations having di�erent sample distributions { will lead to the di�erent performance

metric values. Therefore, a convenient way to present the performance of a classi�er with

respect to a given population is a confusion matrix:

Actual positive Actual negative

TP+FN FP+TN

Classi�ed positive

TP + FP TP FP

Classi�ed negative

FN + TN FN TN

We will use the shorten version of confusion matrix, in our demonstration:

C =

[
TP FP

FN TN

]
To show the properties of P4 against other metrics, we will present four examples of

confusion matrices. For each of them, one of the conditional probabilities (1), (2), (3), (4)
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is close to 0, while the others are moderately close to 1. In each of the cases presented, we

use a simulated classi�er and a population of 10000 samples.

Because some of the metrics presented above, are ranged in [−1, 1] than in [0, 1], we

must scale them �rst, to compare with the other ones. Thus, we will be using:

MCC′ = (MCC + 1)/2

J′ = (J + 1)/2

MK′ = (MK + 1)/2

4.2 Case 1 - “alarming precision”

This is a classic case in which F1 shines. The population is highly imbalanced in favor

of negative samples. The classi�er's performance on positive samples is 90%, the same on

negative ones. Thus, we have the following confusion matrix:

C1 =

[
45 995

5 8955

]
In this case, the four conditional probabilities are as follows:

Conditional Probability Value

P (+ | C+) 0.0433

P (C+ | +) 0.9000

P (C− | −) 0.9000

P (− | C−) 0.9994

And now let us look at how these a�ect the values of our metrics:

Metric Value

P4 0.1519

F1 0.0826

MCC′ 0.5924

J′ 0.9000

MK′ 0.5214

We can identify three groups of metrics in the table above:

• \Close to zero" (yellow) group { having two members: P4 and F1.

• \Middle of the range" (white) group { MCC′ and MK′ { still reacting OK on the

situation.

• \Ignoring" (red) group { metric J′ { no proper reaction on the low conditional prob-

ability: P (+ | C+).
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4.3 Case 2 - “alarming negative predictive value”

This case can be simply obtained from \Case 1" by re-labeling the samples - naming the

\positives" as \negatives" and vice versa. Thus, we have the following confusion matrix:

C2 =

[
8955 5

995 45

]
Probabilities:

Conditional Probability Value

P (+ | C+) 0.9994

P (C+ | +) 0.9000

P (C− | −) 0.9000

P (− | C−) 0.0433

That gives the following metric values:

Metric Value

P4 0.1519

F1 0.9471

MCC′ 0.5924

J′ 0.9000

MK′ 0.5214

As we can see, F1 is the only metric that changed its value after the label swap. This

clearly shows the problem with its asymmetry. Contrasting to the previous case, F1 is

completely not noticing one of the key probabilities being close to zero. The other metrics

considered have not changed compared to the \Case 1".

4.4 Case 3 - “alarming recall”

This case represents a typical situation when the classi�er is over-predicting in favor of

negative results, resulting a particularly superior performance on the negative samples

and de�cient performance on the positive samples. The population contains 10% positive

samples. So, there we have the confusion matrix:

C3 =

[
50 9

950 8991

]
Conditional probabilities:

Conditional Probability Value

P (+ | C+) 0.8475

P (C+ | +) 0.0500

P (C− | −) 0.9990

P (− | C−) 0.9044
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Values of the metrics:

Metric Value

P4 0.1718

F1 0.0944

MCC′ 0.5960

J′ 0.5245

MK′ 0.8759

As we see F1 is back in the league. MCC′ and J′ playing well. And a red card is given

to a player of the visiting team: MK′.

4.5 Case 4 - “alarming specificity”

The last case represents the inversion of \Case 3". The classi�er over-predicts in favor of

positive results { having particularly superior performance on positive results and de�cient

performance on the negative ones. The population contains 10% negative samples. So, let

us look at the confusion matrix, probabilities, and the metrics:

C4 =

[
8991 950

9 50

]
Conditional Probability Value

P (+ | C+) 0.9044

P (C+ | +) 0.9990

P (C− | −) 0.0500

P (− | C−) 0.8475

Metric Value

P4 0.1718

F1 0.9494

MCC′ 0.5960

J′ 0.5245

MK′ 0.8759

MK′ again occupies the \red" group, this time together with F1 as a companion. P4

obviously { works as designed.

4.6 Summary

As we have seen in the four edge cases: none of the considered, existing so far compound

metrics (F1, J, MK), guarantees correct behavior in all of them. MCC as a correlation coef-

�cient here represents a separate category and stands out positively against its background.

And even though it does not reach values near its minimum in edge cases, its performance

should still be considered satisfactory.
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What is not surprising, however, is the behavior of the newly de�ned P4 metric itself {

it reaches a correspondingly low value every time, and this is due to the very assumptions

on which it was based.

5. P4 compared to other metrics

In the following subsections we will again compare P4 against four traditional metrics:

MCC, F1, J and MK. This time, covering quasi-continuous range of cases. As in previous

cases, we use a simulated classi�er and a �xed population size of 10000.

5.1 Metrics vs population balance

In the experiment we �xed the following parameters:

• The ratio of true positives to the actual positives (TPR { true positive rate) is

�xed and equals 0.1.

• The ratio of true negatives to the actual negatives (TNR { true negative rate) is

�xed and equals 0.1.

Thus, using our rather poor \classi�er", we are observing how the values of each metric

change as a function of: actual positives to population size ratio. The result can be seen

on the charts below:
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On the left chart, attention is drawn to the symmetrical shape determined by MCC′ and
P4 curves, while F1 follows its own path. On the right chart we have a similar symmetrical
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shape as in the previous one, but this time P4 is accompanied by MK′. Youden index is

not sensitive to the population balance change. The example presented here is distant from

the results obtained from the classi�ers encountered on a daily basis but has the advantage

of capturing di�erences between the metrics studied.

5.2 Metrics vs true positive rate

Let us see a bit more realistic example now. The following parameters are �xed now:

• The ratio of true negatives to the actual negatives is �xed and equals 0.8.

• The ratio of actual positives to the population size is also �xed and equals 0.95.

Then we are observing how the metric changes as a function of TPR (true positive rate).
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In this case, the course of P4 and MCC′ metrics is similar in nature, however for the �rst half
of TPR's range the di�erence between them is roughly ≈ 0.3. They reach full agreement at

the end of the plot. At this point the di�erence between them and F1 equals 0.05 { which

is actual negatives to the population size ratio.

5.3 Summary

The charts presented here do not exhaust all the relationships between the metrics being

discussed. Many of the aspects are left undiscussed due to the short form of this paper.

We are also not analyzing the base building blocks of the composite metrics: PREC, REC,

SPEC, NPV, because the results they give are simpler than the presented ones. The analysis
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of accuracy is skipped because of the same reason. The following conclusions can be drawn

from the charts:

• P4 and MCC behave di�erently in extreme case, however they tend to behave similarly

in the more real-world case.

• F1 is oversimpli�ed compared with P4 and MCC.

• J′ behaves linear in presented cases

6. P4 metric in use

To demonstrate the properties and usefulness of P4, we will check how it behaves on a

real dataset. To achieve this goal the technique derived from the \Receiver operating

characteristic" method will be used.

We will use well-known Breast Cancer Wisconsin dataset provided by UCI Machine

Learning Repository (http://archive.ics.uci.edu/ml), with a help of Scikit-Learn package {

Pedregosa et al. (2011). It's a set consisting of 569 samples, 30 dimensions. The samples

contain various characteristics of biological cell nuclei (radius, texture, symmetry etc.) and

the cancer binary classi�cation: malignant/benign.

6.1 Receiver operating characteristic

\Receiver operating characteristic" (ROC) - is commonly used technique for assessing the

trade-o� between recall and speci�city. It's used together with the classi�ers that, as a

result { give a probability of being positive for the sample { like for example logistic regres-

sion. To obtain an answer \positive"/"negative", we must decide on a speci�c probability

threshold τ above which we consider the sample positive. Using ROC technique { we are

starting from τ0 = 0 and iterating, increasing it by ∆τ until τn = 1 is reached. For each

τi we calculate confusion matrix Ci and thus the precision-recall pair. Then we plot the

curve on the REC vs SPEC chart. That plot gives us an insight into the characteristic of

the classi�er-dataset pair and allows choosing optimal τ threshold.

This method has been creatively adapted by Cao et al. (2020). Instead of precision-

recall pair, MCC-F1 pair has been used in their case, allowing more unambiguous result

and easier selection of the optimum.

6.2 MCC-F1 and MCC-P4 curves

We will use the same technique as mentioned above but also including the P4 metric in

place of F1 { comparing two curves: MCC-F1 and MCC-P4. We chose the Support Vector

Machine classi�er with probabilistic output (see Cortes and Vapnik (1995), Platt et al.

(1999)) and the Gaussian kernel. The result { two ROC-like curves { can be seen in the

chart below:
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The resulting graphs are similar in both cases, however for P4 the curve has a smaller

opening angle. The critical section is captured in the close-up on the graph to the right.

The curves give di�erent optimal threshold values: τ = 0.52 for MCC-P4 curve and τ = 0.45

for MCC-F1. From the perspective of this single experiment { the behavior of P4 metric

is as expected. The di�erence between the two results, is since P4 includes two additional

components comparing to F1 { conditional probabilities: P (C− | −) and P (− | C−).

7. Conclusions

The de�nition of the new P4 metric presented, broadens the range of available tools for

evaluating binary classi�ers. It represents one step further in the direction indicated by

F1. The main advantages of P4 are that it zeroes out when at least one of the key four

conditional probabilities also zeroes out, and that reaching a value close to 1 requires that

all four probabilities also go to 1.

We realize that evaluating the performance of binary classi�ers is a complex problem,

and we cannot expect a single metric to be the ultimate gold standard here. Some situations

may require that selected conditional probabilities be considered more signi�cant than

others. And this, in turn, will require the development of weights like those known from

Fβ.

The key di�erences between P4 and MCC are a di�erent probabilistic interpretation

and a guarantee that P4 will zero out under certain conditions. Finally, their values belong

to other ranges: MCC ∈ [−1, 1] and P4 ∈ [0, 1]. The last one may be perceived as a little

easier to interpret. Despite these facts, P4 appears to be much closer to MCC than the

other composite metrics. In a situation when one uses the F1 however, we can frankly

recommend its replacement with the P4.
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A. Symmetry

In this appendix, we will prove the symmetry of P4 with respect to dataset labels swapping.

By label swapping we mean renaming labels from positives to negatives and vice versa.

1. P4 is de�ned as the harmonic mean of PREC, REC, SPEC and NPV.

2. Harmonic mean is a commutative operation.

3. Dataset label swapping causes the following changes to the confusion matrix:

(a) TP becomes TN

(b) TN becomes TP

(c) FP becomes FN

(d) FN becomes FP

4. After this changes to the confusion matrix: PREC becomes NPV, NPV becomes

PREC (see de�nitions in section 2).

5. Similarly, REC becomes SPEC, SPEC becomes REC

6. Swapping the order of the arguments of the harmonic mean does not change its value

(see point 2) { what ends the proof.
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