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Abstract

One of the most famous functions, full of enigmas, is the Riemann zeta function, since it is the basis for
one of the most amazing hypotheses because of its relation with the prime counting function. But in the
present paper, we will discover some of those enigmas, using the Euler-Maclaurin formula.
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1 Introduction.

1.1 Definition of the Riemann Zeta function.

The Riemann Zeta Function is defined as a complex variable function C → C as follows:

ζ(s) =

∞∑
m=1

1

ms
(1)

Where: s ∈ C and Re(s) > 1

And:
ζ(s) = 2sπs−1 sin

(sπ
2

)
Γ(1− s)ζ(1− s) (2)

Is the Analytic Continuation of the Riemann Zeta Function, with ζ(1) = undetermined

1.2 Some formulas for certain cases of the Riemann Zeta Function.

We know two formulas to calculate Zeta for some special cases:

ζ(2k) =
(−1)k−1(2π)2kB2k

2(2k)!
(3)

ζ(−k) = −Bk+1

k + 1
(4)

Where: k ∈ N

2 Sums of Powers and the Bernoulli Numbers.

In mathematics, the Bernoulli numbers Bj is a set of successive rational numbers with relevant importance in
number theory. They appear in Combinatorics, in the expansion of the tangent functions and the hyperbolic
tangent by Taylor series, and the Bernoulli formula to calculate the sum of powers.

Today, there is a known way to obtain the equation for the sum of powers, and it is the following recursive
formula:

n∑
m=1

mk = Sk(n) =

1+k∑
p=1

Apn
p (5)

Where: k ∈ N ∪ {0}, and Sk is function of n.

Ap is obtained by:

Ap =
(−1)1+k−p

1 + k

(
1 + k

p

)
B1+k−p (6)

And B1+k−p are the Bernoulli Numbers obtained by:

Bj = − 1

1 + j

j−1∑
m=0

(
1 + j

m

)
Bm (7)
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3 Sums of Powers as sum of higher-order derivatives.

Factorizing 1
1+k and developing the summation of Equation (5) to find Sk(n):

Sk(n) =
1

1 + k

[
(−1)k(k + 1)!

1!k!
Bkn+

(−1)k−1(k + 1)!

2!(k − 1)!
Bk−1n

2 +
(−1)k−2(k + 1)!

3!(k − 2)!
Bk−2n

3+

(−1)k−3(k + 1)!

4!(k − 3)!
Bk−3n

4 + · · ·+ (−1)1(k + 1)!

k!1!
B1n

k +
(−1)0(k + 1)!

(k + 1)!(0)!
B0n

k+1

]

Rearranging terms and accommodating the factorials in order to simplify:

Sk(n) =
1

1 + k

[
(−1)0(k + 1)!

(k + 1)!0!
B0n

k+1 +
(−1)1(k + 1)!

k!1!
B1n

k +
(−1)2(k + 1)!

(k − 1)!2!
B2n

k−1 + · · ·

· · ·+ (−1)k(k + 1)!

1!k!
Bkn

]

Sk(n) =
1

1 + k

[
(−1)0(k + 1)!

(k + 1)!0!
B0n

k+1 +
(−1)1k!(k + 1)

k!1!
B1n

k +
(−1)2(k − 1)!k(k + 1)

(k − 1)!2!
B2n

k−1 + · · ·

· · ·+ (−1)k(k + 1)!

1!k!
Bkn

]

Sk(n) =
1

1 + k

[
(−1)0

0!
B0n

k+1 +
(−1)1(k + 1)

1!
B1n

k +
(−1)2k(k + 1)

2!
B2n

k−1 + · · ·

· · ·+ (−1)k(k + 1)!

1!k!
Bkn

]
Rewriting as a summation of a product of factors:

Sk(n) =
1

1 + k
nk+1 +

1+k∑
p=2

(−1)p−1Bp−1

(1 + k)(p− 1)!

p−1∏
m=1

(2 + k −m)n2+k−p (8)

It can also be expressed as the sum of higher order derivatives:

Sk(n) =

∫ n

0

mkdm+

k∑
p=1

(−1)pBp

(p)!
∗ dp−1

dnp−1

(
nk

)
(9)

Or:

S−k(n) =

∫ n

0

1

mk
dm+

k∑
p=1

(−1)pBp

(p)!
∗ dp−1

dnp−1

(
1

mk

)
(10)

4 The Euler–Maclaurin formula and the Zeta function.

Given the known Euler-Maclaurin equation [1], for the summation of a given function f(m),R → R, and it is q
times derivable:

b∑
m=a+1

f(m) =

∫ b

a

f(x)dx+

q∑
p=1

(−1)pBp

p!

[
fp−1(b)− fp−1(a)

]
+Rq (11)

Where:
Bp are the Bernoulli Numbers, fp−1(b) is the derivative of order p− 1 of the function f evaluated at b, fp−1(a)
is the derivative of order p− 1 of the function f evaluated at a, and Rq is the residual error.

4



If we define the limits of the sum with a = 0 and b = n, and let f(m) = 1
mk , k ∈ R, and f(m) be infinitely

derivable, one obtains:

n∑
m=1

1

mk
=

∫ n

0

1

mk
dm+

q=∞∑
p=1

(−1)pBp

p!

[
fp−1(n)− fp−1(0)

]
+Rq

Then:
n∑

m=1

1

mk
=

∫ n

0

1

mk
dm+

q=∞∑
p=1

(−1)pBp

p!

[
fp−1(n)

]
+Rq

n∑
m=1

1

mk
=

∫ n

0

1

mk
dm+

q=∞∑
p=1

(−1)pBp

p!
∗ dp−1

dnp−1

(
1

nk

)
+Rq (12)

Now let us clear the term Rq as function of k and let’s n → ∞:

Rq(k) = lim
n→∞

[
n∑

m=1

1

mk
−
∫ n

0

1

mk
dm−

q=∞∑
p=1

(−1)pBp

p!
∗ dp−1

dnp−1

(
1

nk

)]
(13)

Extending the second series of the equation (13) we have:

Rq(k) = lim
n→∞

[
n∑

m=1

1

mk
−
(

1

1− k
n1−k +

(−1)1B1

1!
n−k +

(−1)2B2

2!
(−k)n−1−k +

(−1)3B3

3!
(−k)(−1− k)n−2−k + · · ·

)]
(14)

If k > 1, and applying the limit, we get:

Rq(k) =

[ ∞∑
m=1

1

mk
−
(

1

1− k
0 +

(−1)1B1

1!
0 +

(−1)2B2

2!
(−k)0 +

(−1)3B3

3!
(−k)(−1− k)0 + · · ·

)]

Rq(k) =

∞∑
m=1

1

mk
⇐⇒ k > 1 (15)

Therefore it is concluded that: when k > 1 the value of Rq(k) converges, and is equal to the sum of k-th power
inverses, and is equal to ζ(k):

Rq(k) = ζ(k) ⇐⇒ k > 1, k ∈ R (16)

Now let k = 1 and apply the limit in equation (13):

Rq(1) =

[ ∞∑
m=1

1

m1
−
(
ln(∞)− ln(0) +

(−1)1B1

1!
0 +

(−1)2B2

2!
(−1)0 +

(−1)3B3

3!
(−1)(−1− 1)0 + · · ·

)]

Rq(1) = ∞− (∞−∞+ 0 + 0 + 0 + · · · )

Rq(1) = undetermined

Therefore it is concluded that: when k = 1 the value of Rq(1) is undetermined, and is equal to ζ(1):

Rq(1) = ζ(1) (17)

Now, if: k > 1 , k ∈ N in equation (13) but for f(m) = mk:
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This time let’s separate the sum of the derivatives into two parts, the first sum from p = 1 to p = k, and the
second sum from p = k + 1 to infinity:

Rq(−k) = lim
n→∞

 n∑
m=1

mk −
∫ n

0

mkdm−
q=k∑
p=1

(−1)pBp

p!
∗ dp−1

dnp−1

(
nk

)
−

q=∞∑
p=k+1

(−1)pBp

p!
∗ dp−1

dnp−1

(
nk

) (18)

We observed that the integral with the first sum of derivatives is equal to the sum of inverse powers according
to equation (9):

Rq(−k) = lim
n→∞

 n∑
m=1

mk −
n∑

m=1

mk −
q=∞∑
p=k+1

(−1)pBp

p!
∗ dp−1

dnp−1

(
nk

)
It can be simplified

Rq(−k) = lim
n→∞

− q=∞∑
p=k+1

(−1)pBp

p!
∗ dp−1

dnp−1

(
nk

)
Extending the series of the equation:

Rq(−k) = lim
n→∞

[
−
(
(−1)k+1Bk+1

(k + 1)!
(k!)n0 +

(−1)k+2Bk+2

(k + 2)!
(k)(k − 1) · · ·n−1 +

(−1)k+3Bk+3

(k + 3)!
(k)(k − 1) · · ·n−2 + · · ·

)]
Applying the limit:

Rq(−k) = − (−1)k+1Bk+1

(k + 1)!
(k!)

Rq(−k) =
(−1)kBk+1

k + 1

As B2j+1 = 0 j ∈ N we can write:

Rq(−k) = −Bk+1

k + 1
⇐⇒ k ∈ N (19)

We conclude that: Equation (19) is equivalent to Equation (4):

Rq(−k) = ζ(−k) ⇐⇒ , k ∈ N (20)

Equation (13) is defined for a function R → R, but when n tends to infinity, it is verified that the
residual term Rq = ζ(k) According to equations: (16), (17) and (20).

5 Conclusions

We are now ready to write the following Theorem:

Theorem 1 Let k ∈ C, from the Euler-Maclaurin formula, for the summation of the function, f(m) = 1
mk :

n∑
m=1

1

mk
=

∫ n

0

1

mk
dm+

q=∞∑
p=1

(−1)pBp

p!
∗ dp−1

dnp−1

[
1

nk

]
+Rq

When the summation is infinite, the residual error Rq = ζ(k):

ζ(k) = lim
n→∞

[
n∑

m=1

1

mk
−
∫ n

0

1

mk
dm−

q=∞∑
p=1

(−1)pBp

p!
∗ dp−1

dnp−1

(
1

nk

)]
(21)
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