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Abstract. In this paper, we discovered a new sequence contains only ones and the prime numbers, which 

can be calculated in two different ways that give the same result, the first way  using the greatest common 

divisor (gcd) and Kurepa left factorial function, the second way consisting of using the denominator of 

the  continued fraction defined by 

𝑚𝑏(𝑛 − 3) − 𝑛𝑏(𝑛 − 4)

𝑛(𝑚 − 𝑛 + 2) − 𝑚
=

1

2 −
3

3 −
4

4 −
5
⋱

(𝑛 − 1) −
𝑛
𝑚

 

Our sequence  defined by 

𝑎𝑚(𝑛) =
|𝑛(𝑚 − 𝑛 + 2) − 𝑚|

𝑔𝑐𝑑(𝑛(𝑚 − 𝑛 + 2) − 𝑚, 𝑚𝑏(𝑛 − 3) − 𝑛𝑏(𝑛 − 4))
 

Where |𝑥| denotes the absolute value of 𝑥. 
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1. Introduction and  preliminaries 

A continued fraction is an expression of the form 

𝑎0 +
𝑏0

𝑎1 +
𝑏1

𝑎2 +
𝑏2
⋱

 

Other notation 

𝑎0 +
𝑏0

𝑎1 +
 

𝑏1

𝑎2 +
 

𝑏2

𝑎3 +
⋯ 

Where 𝑎𝑖 and 𝑏𝑖 are either rational numbers, real numbers or complex numbers. 

In  1971, Kurepa introduced the left factorial function, with the symbol ! 𝑛. For more details and 

formulas see [4], the Kurepa function is defined by 
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𝐾(0) = 0 , 𝐾(𝑛) = ! 𝑛 = ∑ 𝑖!

𝑛−1

𝑖=1

 , 𝑛 ∈ ℕ 

In this paper, We establish a connection between the left factorial function of Kurepa 𝐾(𝑛) and the 

continued fraction in the theorem (1.1) and (1.3). We define the recursive formula  

𝑏(𝑛) = (𝑛 + 2)(𝑏(𝑛 − 1) − 𝑏(𝑛 − 2)) 

Such that 

𝐾(𝑛) = ! 𝑛 =
2𝑏(𝑛 − 1)

𝑛 + 1
 

With the initial conditions  𝑏(−1) = 0 and 𝑏(0) = 1. Some few values of 𝑏(𝑛) 

0, 1, 3, 8, 25, 102, 539,3496, 26613, 231170, 2250127, 24227484, …(see A051403) 

Similarly, we define the second recursive formula  

𝑐(𝑛) = (𝑛 + 2)(𝑐(𝑛 − 1) − 𝑐(𝑛 − 2)) 

With the initial conditions  𝑐(1) = 1 and 𝑐(2) = 4. Some few values of 𝑐(𝑛) 

1, 4, 15, 66, 357, 2328, 17739, 154110, 1500081, 16151652, 190470423,… 

The objective  of this paper is to construct a new sequence for the distribution of prime numbers which 

takes only ones and primes in order. The distribution of prime numbers has been analyzed for a 

formula helpful in generating the prime numbers or testing if the given numbers is prime. In this 

paper, we present some known formulas. 

Mills showed that there exists a real number 𝐴 > 1 such that 𝑓(𝑛) = [ 𝐴3𝑛
 ]  is a prime number for any 

integers n, approximately A=1.306377883863,.. (see A051021). The first few values 

𝑓(𝑛) = {2, 11, 1361, 2521008887, 16022236204009818131831320183,..}, (see A051254) 

Euler’s quadratic polynomial  𝑛2 + 𝑛 + 41 is prime for all n between 0 and 39, however, it is not prime 

for all integers. 

In 2008, Rowland introduce an explicit sequence that contains only ones and primes, the sequence 

defined by the recurrence relation 

𝑟(𝑛) = 𝑟(𝑛 − 1) + gcd ( 𝑛 , 𝑟(𝑛 − 1));   𝑟(1) = 7 

The sequence of differences 𝑟(𝑛 + 1) − 𝑟(𝑛) 

1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1,1, 1, 1, 47, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 101, 3, 1, 1, 7, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 

1, 1, 1, 1, 1,.. (see A132199). 

For more details and formulas see [1] and [2]. In this  paper, we present an interesting sequence which 

plays the same role as Rowland's sequence composed of a prime number or 1. Moreover, our sequence 

gives all distinct prime numbers in order. 

In this section, we give an explicit formula for the continued fraction in the following theorem 

Theorem 1.1. For all integers 𝑛 ≥ 3. The continued fraction 
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𝑚𝑏(𝑛 − 3) − 𝑛𝑏(𝑛 − 4)

𝑛(𝑚 − 𝑛 + 2) − 𝑚
=

1

2 −
3

3 −
4

4 −
5
⋱

(𝑛 − 1) −
𝑛
𝑚

                   (1) 

Where 𝑚 is a polynomial in term n. 

Proof. Let  

     𝑎1 = 2𝑎2 − 3𝑎3 ;  𝑎2 = 3𝑎3 − 4𝑎4 ; 𝑎3 = 4𝑎4 − 5𝑎5 ;  𝑎4 = 5𝑎5 − 6𝑎6  

Then we have 

𝑎2

𝑎1
=

𝑎2

2𝑎2 − 3𝑎3
=

1

2𝑎2 − 3𝑎3
𝑎2

=
1

2 −
3𝑎3
𝑎2

=
1

2 −
3

3𝑎3 − 4𝑎4
𝑎3

 

=
1

2 −
3

3 −
4𝑎4
𝑎3

=
1

2 −
3

3 −
4

4𝑎4 − 5𝑎5
𝑎4

=
1

2 −
3

3 −
4

4 −
5𝑎5
𝑎4

 

After some simplification, we find 

                                
𝑎2

𝑎1
=

1

2 −
3

3 −
4

4 −
5
⋱

(𝑛 − 1) −
𝑛𝑎𝑛
𝑎𝑛−1

                                  (2) 

From (1)  and (2), we have 

                                                  𝑚𝑎𝑛 = 𝑎𝑛−1                                                        (3) 

We write 𝑎1 in terms of 𝑎𝑛−1 and 𝑎𝑛 

                    𝑎1 = 2𝑎2 − 3𝑎3 = ⋯ = (𝑛 − 1)𝑎𝑛−1 − (𝑛2 − 2)𝑎𝑛             (4) 

Substituting (3) in (4), we find  

𝑎1 = (𝑛(𝑚 − 𝑛 + 2) − 𝑚)𝑎𝑛 

Using the same procedure for 𝑎2, we have 

      𝑎2 = 3𝑎3 − 4𝑎4 = 8𝑎4 − 15𝑎5 = 25𝑎5 − 48𝑎6 = ⋯     

We observe that  

                   𝑎2 = 𝑏(𝑛 − 3)𝑎𝑛−1 − 𝑛𝑏(𝑛 − 4)𝑎𝑛                                           (5) 

Substtiting (3) in (5), we get 

   𝑎2 = (𝑚𝑏(𝑛 − 3) − 𝑛𝑏(𝑛 − 4))𝑎𝑛                                   

Returning to  (2), we obtain 
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𝑎2

𝑎1
=

𝑚𝑏(𝑛 − 3) − 𝑛𝑏(𝑛 − 4)

𝑛(𝑚 − 𝑛 + 2) − 𝑚
=

1

2 −
3

3 −
4

4 −
5
⋱

(𝑛 − 1) −
𝑛
𝑚

          (6) 

This complet the proof. 

Theorem 1.2. For all integers 𝑛 ≥ 3. The denominator of the continued fraction is as follows 

𝑛(𝑚 − 𝑛 + 2) − 𝑚 = 2(𝑚𝑏(𝑛 − 3) − 𝑛𝑏(𝑛 − 4)) − 3(𝑚𝑐(𝑛 − 3) − 𝑛𝑐(𝑛 − 4)) 

Where 𝑚 is a polynomial in term n. 

Proof. Similarly, using the same procedure as that of proving the theorem 1. 

We have  

𝑎3 = 4𝑎4 − 5𝑎5 = 15𝑎5 − 24𝑎6 = 66𝑎6 − 105𝑎7 = ⋯ 

We observe that  

                     𝑎3 = 𝑐(𝑛 − 3). 𝑎𝑛−1 − 𝑛𝑐(𝑛 − 4). 𝑎𝑛                                              (7) 

Substituting (3) in (7), we find 

                                 𝑎3 = (𝑚𝑐(𝑛 − 3) − 𝑛𝑐(𝑛 − 4))𝑎𝑛                                             

Then, we have 

𝑎1 = 2𝑎2 − 3𝑎3 

(𝑛(𝑚 − 𝑛 + 2) − 𝑚)𝑎𝑛 = [2(𝑚𝑏(𝑛 − 3) − 𝑛𝑏(𝑛 − 4)) − 3(𝑚𝑐(𝑛 − 3) − 𝑛𝑐(𝑛 − 4))]. 𝑎𝑛 

Then, we get 

𝑛(𝑚 − 𝑛 + 2) − 𝑚 = 2(𝑚𝑏(𝑛 − 3) − 𝑛𝑏(𝑛 − 4)) − 3(𝑚𝑐(𝑛 − 3) − 𝑛𝑐(𝑛 − 4)) 

This complet the proof. 

Theorem 1.3. For all integers 𝑛 ≥ 3. The continued fraction 

               
2. (𝑚𝑏(𝑛 − 3) − 𝑛𝑏(𝑛 − 4))

𝑛(𝑚 − 𝑛 + 1)
=

1

1 −
1

2 −
2

3 −
3
⋱

(𝑛 − 1) −
𝑛 − 1

𝑚

                   (8) 

Where 𝑚 is a polynomial in term n. 

Proof. Similarly, Using the same procedure of proof the theorem (1.1) 

Putting 

     𝑎1 = 𝑎2 − 𝑎3 ;  𝑎2 = 2𝑎3 − 2𝑎4 ; 𝑎3 = 3𝑎4 − 3𝑎5 ;  𝑎4 = 4𝑎5 − 4𝑎6 ;… 
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And we obtain the desired result. 

Remark 1 

For 𝑚 = 𝑛, the Kerupa left factorial function is as continued fraction 

𝐾(𝑛) = ! 𝑛 =
1

1 −
1

2 −
2

3 −
3
⋱

(𝑛 − 1) −
𝑛 − 1

𝑛

 

The sequence which is actually important is the next one. 

2. The sequence 𝒂𝒎(𝒏) 

The sequence of the unreduced  denominator of the continued fraction (theorem 1.1) is as follows 

𝑎𝑚(𝑛) =
|𝑛(𝑚 − 𝑛 + 2) − 𝑚|

𝑔𝑐𝑑(𝑛(𝑚 − 𝑛 + 2) − 𝑚, 𝑚𝑏(𝑛 − 3) − 𝑛𝑏(𝑛 − 4))
 

Where gcd(x, y) denotes the greatest common divisor of x and y. 

3. Main results 

In this section we present some new results for our sequence in the following conjectures 

Conjecture 3.1. For all integers 𝑛 ≥ 3 and 𝑚 = 𝑛 + 1. The sequence of the unreduced  denominator 

is as follows 

𝑎(𝑛) =
2𝑛 − 1

𝑔𝑐𝑑(2𝑛 − 1, 𝑏(𝑛 − 2) + 𝑏(𝑛 − 3))
; 𝑛 ≥ 2 

The values of 𝑎(𝑛) 

3,   5, 7, 3, 11, 13, 1, 17, 19,  1, 23, 1, 1, 29, 31, 1, 1, 37, 1, 41, 43, 1, 47, 1, 1, 53, 1, 1, 59, 61, 1, 1, 67, 

1, 71, 73, 1, 1, 79, 1, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 1, 1, 1, 127, 1, 131, 

1, 1, 137, 139, 1, 1, 1, 1, 149, 151, 1, 1, 157, 1, 1, 163, 1, 167,…  

Every term of this sequence is either a prime number or 1. 

For  𝑛 ≥ 2, 𝑎(𝑛) = 2𝑛 − 1 if 2𝑛 − 1 is prime (except for n=5), 1 otherwise . 

Conjecture 3.2. For all integers 𝑛 ≥ 4 and 𝑚 = 𝑛 − 3. The sequence of the unreduced  denominator 

is as follows 

𝑎(𝑛) =
2𝑛 − 3

𝑔𝑐𝑑(2𝑛 − 3, 3𝑏(𝑛 − 3) − 𝑏(𝑛 − 2))
; 𝑛 ≥ 2 

The values of 𝑎(𝑛) 

1,   1, 5, 7, 1, 11, 13, 1, 17, 19,  1, 23, 1, 1, 29, 31, 1, 1, 37, 1, 41, 43, 1, 47, 1, 1, 53, 1, 1, 59, 61, 1, 1, 

67, 1, 71, 73, 1, 1, 79, 1, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 1, 1, 1, 127, 1, 

131, 1, 1, 137, 139, 1, 1, 1, 1, 149, 151, 1, 1, 157, 1, 1, 163, 1, 167,…  

Every term of this sequence is either a prime number or 1. 
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For  𝑛 ≥ 4, 𝑎(𝑛) = 2𝑛 − 3 if  2𝑛 − 3 is prime, 1 otherwise . 

Conjecture 3.3.  For all integers 𝑛 ≥ 3 and 𝑚 = −1. The sequence of the unreduced  denominator is 

as follows 

𝑎(𝑛) =
𝑛2 − 𝑛 − 1

𝑔𝑐𝑑(𝑛2 − 𝑛 − 1, 𝑏(𝑛 − 3) + 𝑛𝑏(𝑛 − 4))
  ;  𝑓𝑜𝑟 𝑛 ≥ 2 

The values of 𝑎(𝑛) 

1, 5, 11, 19, 29, 41, 11, 71, 89, 109, 131, 31, 181, 19, 239, 271, 61, 31, 379, 419, 461, 101, 29, 599, 59, 

701, 151, 811, 79, 929, 991, 211, 59, 41, 1259, 1, 281, 1481, 1559, 149, 1721, 1, 61, 1979, 2069, 2161, 

1, 2351, 79, 2549, 241, 1, 2861, 2969, 3079, 3191,…(see A356247) 

We conjectured that : 

∗ Every term of this sequence is either a prime number or 1. 

∗ Except for 5, the primes all appear exactly twice, such that  

𝑎(𝑛) = 𝑎(𝑎(𝑛) − 𝑛 + 1) 

Consequently, let us consider the values of n and m such that we get: 

𝑎(𝑛) = 𝑎(𝑚) = 𝑛 + 𝑚 − 1 

And 

𝑎(𝑛) = 𝑎(𝑚) = gcd(𝑛2 − 𝑛 − 1, 𝑚2 − 𝑚 − 1)  

Conjecture 3.4.  For all integers 𝑛 ≥ 3 and 𝑚 = −2. The expression of the sequence 𝑎(𝑛) is as 

follows 

𝑎(𝑛) =
𝑛2 − 2

𝑔𝑐𝑑(𝑛2 − 2, 2𝑏(𝑛 − 3) + 𝑛𝑏(𝑛 − 4))
  ;  𝑓𝑜𝑟 𝑛 ≥ 3 

The values of  𝑎(𝑛). 

7, 7, 23, 17, 47, 31, 79, 7, 17, 71, 167, 97, 223, 127, 41, 23, 359, 199, 439, 241, 31, 41, 89, 337, 727, 1, 

839, 449, 137, 73, 1087, 577, 1223, 647, 1367, 103, 1, 47, 73, 881, 1, 967, 1, 151, 2207, 1151, 2399, 

1249, 113, 193, 401, 1, 3023, 1567, 191, 41, 71… 

The sequence 𝑎(𝑛) takes only 1’s and primes. 

Conjecture 3.5.  For all integers 𝑛 ≥ 3 and 𝑚 = 𝑛 + 2. The expression of the sequence 𝑎(𝑛) is as 

follows 

𝑎(𝑛) =
3𝑛 − 2

𝑔𝑐𝑑(3𝑛 − 2, (𝑛 + 1)𝑏(𝑛 − 3) − 𝑏(𝑛 − 4) − (𝑛 − 1)𝑏(𝑛 − 5))
  ;  𝑓𝑜𝑟 𝑛 ≥ 3 

The values of  𝑎(𝑛) for 𝑛 ≥ 3 

7 , 5, 13, 2, 19, 11, 5, 1, 31, 17, 37, , 1, 43, 23, 1, 1, 1, 29, 61, 1, 67, 1, 73, 1, 79, 41, 1, 1, 1, 47, 97, 1, 

103, 53, 109, 1, 1, 59, 1, 1, 127, 1, 1, 1, 139, 71, 1, 1, 151, 1, 157, 1, 163, 83, 1, 1, 1, 89, 181, 1, 1, 1, 

193, 1, 199, 101, 1, 1, 211,… 
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The sequence 𝑎(𝑛) contains only ones and the primes. 

Conjecture 3.6.  For all integers 𝑛 ≥ 3 and 𝑚 = 𝑛 + 3. The expression of the sequence 𝑎(𝑛) is as 

follows 

𝑎(𝑛) =
4𝑛 − 3

𝑔𝑐𝑑(4𝑛 − 3, (𝑛 + 2)𝑏(𝑛 − 3) − 𝑏(𝑛 − 4) − (𝑛 − 1)𝑏(𝑛 − 5))
  ;  𝑓𝑜𝑟 𝑛 ≥ 3 

The values of  𝑎(𝑛) for 𝑛 ≥ 3 

3, 13, 17, 7, 5, 29, 11, 37, 41, 1, 7, 53, 19, 61, 1, 23, 73, 1, 1, 1, 89, 31, 97, 101, 1, 109, 113, 1, 1, 1, 43, 

1, 137, 47, 1, 149, 1, 157, 1, 1, 1, 173, 59, 181, 1, 1, 193, 197, 67, 1, 1, 71, 1, 1, 1, 229, 233, 79, 241, 1, 

83, 1, 257, 1, 1, 269, 1, 277,… 

The sequence 𝑎(𝑛) takes only 1’s and primes. 

Remark 2 

There are many sequences that contain’s only ones and the primes related to the values of m. 
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