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Abstract:

The n?+1 conjecture states that there are infinitely many natural numbers n such that
n*+1 is a prime number.

This paper defines the distribution type of prime numbers as deterministic random
distribution. The distribution is characterized by limited degrees of freedom and a
certain degree of predictability. This paper proves that the number of prime numbers
in an interval is equivalent to the cumulative probability value. According to this, the
number of prime numbers in a certain region can be determined by calculating the
cumulative probability value. Therefore, the problems related to prime numbers can
be studied, analyzed and proved by using probability and statistics methods.

The conjecture is proved by judging the convergence of the series using probability
statistics method.
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The n?>+1 conjecture states that there are infinitely many natural numbers n such that
n’+1 is a prime number.

This paper uses the probability and statistics method to prove the conjecture, and now
the method is introduced as follows:

1. Proof method of the n?>+1 conjecture

Since prime numbers do not have any mathematical model to represent them with
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complete accuracy, prime numbers are randomly distributed on the number line. The
existing prime number theorem and many related studies show that the number of
prime numbers smaller than the integer x is always greater than x/In(x). In fact, the
value of the function x/In(x) is the infimum of the actual number of prime numbers in
the interval. When x tends to infinity, the ratio of the number of prime numbers
predicted by the function x/In(x) to the actual number of prime numbers is close to
1[1][2]. Anyone who counts at any time, the prime numbers appear in a fixed number
and in a fixed position, rather than appearing in the way of dice. A large amount of
data indicates that the probability of the existence of prime numbers in adjacent
regions has a certain degree of similarity, so the distribution type of prime numbers
can be defined as deterministic random distribution. The distribution is characterized
by limited degrees of freedom and a certain degree of predictability, and the number
of interval prime numbers is equivalent to the cumulative probability value. For
example, the probability that an integer less than an integer x is a prime number is
1/In(x), because there are x integers in the interval, so the number of prime numbers
and the cumulative probability value are both x/In(x). According to this, the number
of prime numbers that appear in a certain area can be determined by calculating the
cumulative probability value. Therefore, the problems related to prime numbers can
be studied, analyzed and proved by means of probability and statistics [3][4].

Let n be any positive integer. According to the prime number theorem, the probability
of n>+1 being a prime number is about 1/In(n*+1), so when n is any positive integer,
the number of prime numbers (cumulative probability) not greater than n is about for
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Because as x increases, In(x2+1) approaches the value of In(x2), the above formula

can be simplified to
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And because when n approaches infinity, each term of the function is greater than the
corresponding term of the harmonic series, and therefore the function value, that is,

the number of prime numbers, tends to infinity. This proves the n2+1 prime number
conjecture, there are infinitely many prime numbers in that form.

2. Experimental verification

See Table 1 for the predicted number and actual number of prime numbers of n’>+1
types in different integer regions.



Table 1 Number of prime numbers of n>+1 types in different integer regions

Number of prime Actual number of
Integer value .
numbers less than or prime numbers less
n
© equal to n>+1 than or equal to n?+1
a (cumulative probability)
20 4.9 8
40 7.9 12
60 104 14
80 12.8 16
100 15.0 18
120 17.1 21
140 19.2 24
160 22.2 27
180 23.1 30
200 25.0 31
220 26.9 34

3. Conclusion

Among the positive integers n?+1, there are infinitely many prime numbers.
Conjecture: Among the positive integers less than or equal to n>+1, the more accurate
estimate of the n>+1 type prime number is about
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