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Abstract

Methods approximating the square root of a number use recursive sequences. They do not have a simple
formula for generating the seed value for the approximation, so instead they use various algorithms for
choosing the first term of the sequences. Section 1 introduces a new option, based upon the number of digits
of the radicand, for selecting the first term. This new option works well at all scales. This first term will then
be used in a traditional recursive sequence used to approximate roots. Section 2 will apply the method shown
in Section 1 to approximate 𝜋 using Archimedes’ method, which then no longer requires different algorithms
at different scales for seed values. Section 3 will introduce new recursive sequences for approximating roots
using Pythagorean triples. Section 4 will then use the same new method to approximate 𝜋.

1 Seed value based on digits
The first-century Greek Heron’s method Heath
(1921) showed that if the first approximation is 𝑥0,
and 𝑥∞ =

√
𝑆𝑑 , then the recursive sequence 1 will

converge to the square root of 𝑆𝑑 .

𝑥𝑛 = 𝑥𝑛−1 +
𝑆𝑑 − 𝑥2

𝑛−1
2𝑥𝑛−1

(1)

How fast sequence 1 converges depends upon the
choice of 𝑥0 Ercegovac (2005). Equation 2 closely
approximates 𝑥 =

√
𝑆𝑑 . It is important to note

that floor(log 𝑆𝑑), or ⌊log 𝑆𝑑⌋, is simply one less
than the number of digits in 𝑆𝑑 . This may be
important if using this formula in programming,
or if doing manual calculations.

𝑥 = 1.652.3⌊log 𝑆𝑑 ⌋ (2)

The divergence is slow enough that the rela-
tive error between

√
10200 and 1.652.3⌊log (10200) ⌋(

1.652.3⌊200⌋ = 1.65460) is less than 11%. Next, the
exponent is rounded up using the ceiling function
so as to provide an integer exponent. The first ap-
proximation for sequence 1 is shown in equation
3.

𝑥0 = 1.65⌈2.3⌊log 𝑆𝑑 ⌋ ⌉ (3)

No relative error greater than 76% has been found
when using equation 3 over the interval from 1 –

Table 1: Demonstration of root approximation√
2

√
997

True: 1.414213562373 31.575306807694
𝑥0 = 1 12.229810312500
𝑥1 = 1.5 46.875962544891
𝑥2 = 1.416666666666 34.072429568256
𝑥3 = 1.414215686275 31.666812200182
𝑥4 = 1.414213562375 31.575439016089
𝑥5 = 1.414213562373 31.575306807971
𝑥6 = 1.414213562373 31.575306807694

10200. "Near" zero, the maximum errors occur at
values just below integer powers of ten. For ex-
ample, 997 is just below 103 = 1000. The ini-
tial seed (to 10 decimal places) for

√
997 would be

1.65⌈2.3⌊log 997⌋ ⌉ = 1.655 = 12.2298103125, when
the true value is ≈ 31.5753. Even using this seed
value, which has the largest known error, only 6 iter-
ations of sequence 1 are necessary to achieve accu-
racy to 12 decimal places. Note that at least 5 more
digits of accuracy are added with each iteration. Ta-
ble 1 shows the iteration results for approximating√

2 and
√

997 to 12 decimal places of accuracy.
What about the square root of an extremely large

number that also has the largest possible error as
the initial guess? The first approximation (𝑥0 in
equation 3) of

√
10217 gives the maximum relative

error found thus far: ≈ 75%. Table 2 shows that only
5 more iterations are needed to arrive at a value
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Table 2: Largest known error in 𝑥𝑛√
10217

True: 3.162277660 × 10108

𝑥0 = 5.520419826 × 10108

𝑥1 = 3.665938129 × 10108

𝑥2 = 3.196876426 × 10108

𝑥3 = 3.162464886 × 10108

𝑥4 = 3.162277666 × 10108

𝑥5 = 3.162277660 × 10108

Figure 1: Triangles inscribed in a circle of diameter
2 units

accurate to 9 decimal places, with each iteration
adding 5 decimal places of accuracy.

2 𝜋: Archimedes’ method
This section will imitate Weisbart (2020) in present-
ing an adaptation of Achimedes’ method approxi-
mating 𝜋. Archimedes used inscribed and circum-
scribed regular polygons within and around a circle
in order to bound the value of 𝜋. The disadvantage
had been that the sequence generated utilized square
roots, and algorithms to calculate square roots de-
pended upon obtaining seed values that were con-
sistently helpful at all scales. Section 1 introduced
a simple equation (3) that provides consistently use-
ful seed values at all scales. Using these seed val-
ues along with the ancient algorithm of sequence 1,
Archimedes’ method may again be useful. A sim-
plified version of it is presented here, using only
inscribed polygons to approach the value of 𝜋.

The blue 30◦/60◦/90◦ triangle in figure 1 is in-
scribed within a circle of diameter 2 units. Side
A would be one side of a hexagon to be inscribed
within this circle. The first approximation for 𝜋,

Table 3: Archimedes’ 𝜋
𝜋 True: 3.141592654
𝜋1 = 3.105828541
𝜋2 = 3.132628613
𝜋3 = 3.139350203
𝜋4 = 3.141031951
𝜋5 = 3.141452472
𝜋6 = 3.141557608
𝜋7 = 3.141583892
𝜋8 = 3.141590463
𝜋9 = 3.141592106
𝜋10 = 3.141592517
𝜋11 = 3.141592619
𝜋12 = 3.141592645
𝜋13 = 3.141592651
𝜋14 = 3.141592653
𝜋15 = 3.141592653
𝜋16 = 3.141592654

given by the first iteration of Archimedes method,
would be 6𝐴

2 , which is the perimeter of the hexagon
divided by the diameter of the circle. The right hand
angle of the green triangle would be half that of the
first triangle. This green triangle would then pro-
vide side B, which is used in the second iteration
by generating an inscribed 12-gon. The second ap-
proximation would be 12𝐵

2 . The ratio of the sides of
such triangles to a diameter of 2 units can be repre-
sented by sequence 4. This is then multiplied by the
number of sides of the appropriate polygon for that
iteration according to 6 × 2𝑛−1.

𝑟𝑛 =
2√√√√√©­«

2+(𝑟𝑛−1 )
√︂

4
𝑟2
𝑛−1

−1

𝑟𝑛−1

ª®¬
2

+ 1

𝑟0 = 1

(4)

The value of the 𝜋 approximation given by each
iteration is given by sequence 5.

𝜋𝑛 =

(
6 × 2𝑛−1

)
(𝑟𝑛) (5)

Table 3 shows Archimedes’ 𝜋 approximation car-
ried to 9 decimal places of accuracy. Note once
again that since equation 3 provides the seed values
for approximating roots with sequence 1, the approx-
imation of 𝜋 using this method no longer presents
any difficulty.
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Note that Archimedes’ method requires about 3
iterations to add each decimal place of accuracy.
The next few sections will introduce a new method
of approximating roots and 𝜋 using Pythagorean
triples.

3 Pythagorean triples to ap-
proximate roots

3.1 Generating triples
The following sections use the method discussed in
Poet (2005) to generate Pythagorean triples. 𝑎 and
𝑏 are the legs, and 𝑐 is the hypotenuse of a right
triangle. 𝑎, 𝑏, and 𝑐 must satisfy equation 6.

M and N are any two odd integers with M > N

𝑎 = 𝑀𝑁 𝑏 =
𝑀2 − 𝑁2

2
𝑐 =

𝑀2 + 𝑁2

2
(6)

3.2
√

2
The method consists of seeking Pythagorean trian-
gles where the ratio 𝑐

𝑎
approximates

√
2. The re-

cursive sequence 7 supplies a sequence of triangles
such that that the ratios 𝑐

𝑎
and 𝑐

𝑏
within each succes-

sive triangle become better approximations of
√

2
than those of the previous triangle.

𝑀𝑛 = 2𝑀𝑛−1 + 𝑀𝑛−2

𝑁𝑛 = 𝑀𝑛−1
(7)

One of the ratios 𝑐
𝑎

and 𝑐
𝑏

from each of these tri-
angles will be greater than

√
2, and one will be less

than
√

2. The best approximation is provided by
averaging these ratios in each iteration. Algebraic
manipulation dispenses with 𝑁 . Further rearrange-
ment in order to average the ratios 𝑐

𝑎
and 𝑐

𝑏
, and then

to simplify, delivers the pair of sequences in 8.

𝑀0 = 1 𝑀1 = 3 𝑀𝑛 = 2𝑀𝑛−1 + 𝑀𝑛−2

√
2𝑛 =

35𝑀4
𝑛 + 58𝑀3

𝑛𝑀𝑛−1 + 36𝑀2
𝑛𝑀

2
𝑛−1 + 10𝑀𝑛𝑀

3
𝑛−1 + 𝑀4

𝑛−1
24𝑀4

𝑛 + 44𝑀3
𝑛𝑀𝑛−1 + 24𝑀2

𝑛𝑀
2
𝑛−1 + 4𝑀𝑛𝑀

3
𝑛−1

(8)

Table 4: Pythagorean Triple Approximation for
√

2
True: 1.41421356237 𝑀𝑛 𝑀𝑛−1√

21 1.41547619048 3 1√
22 1.41425070028 7 3√
23 1.41421465558 17 7√
24 1.41421359455 41 17√
25 1.41421356332 99 41√
26 1.41421356240 239 99√
27 1.41421356237 577 239

Table 4 shows the first 7 iterations for
√

2 using the
sequences in 8. Note that the first iteration at

√
21 is

accurate to two decimal places. Each iteration then
adds about two decimal places of accuracy.

3.3
√

3 and
√

5

The sequence generating approximations for
√

3 is
considerably more complex. Although it may not
be a convenient method for calculating this value, it
suggests that the ability to approximate all irrational
numbers with similar Pythagorean sequences might
be a postulate of mathematics. If true, the uses
for this general postulate remain to be seen. As
before, a recursive sequence is used to generate 𝑀

and 𝑁 . These in turn are used in equation 6 to
generate the sides of a right triangle. The sequence
used to approximate

√
3 will supply triangles that

are nearly similar to a right 30◦/60◦/90◦ triangle, so
that

√
3 ≈ 𝑎

𝑏
. 𝑀 and 𝑁 will then generate triangles

such that the ratio 𝑎
𝑏

moves closer to
√

3 with each
iteration.

𝑀1 = 3 𝑁1 = 1 𝑀2 = 5 𝑁2 = 3

𝑀𝑛 =(
1
2
(−1)𝑛+1 + 1

2

)
(3𝑁𝑛−1) +

(
1
2
(−1)𝑛 + 1

2

)
(2𝑁𝑛 − 𝑁𝑛−2)

𝑁𝑛 =

𝑀𝑛−1

(
1
2
(−1)𝑛+1 + 1

2

)
+
(
1
2
(−1)𝑛 + 1

2

)
(2𝑁𝑛−2 + 𝑁𝑛−1)

(9)
Using the sequences in 9 when 𝑛 = 3 provides

𝑀 = 9 and 𝑁 = 5. This in turn, using equation
6, would generate the triangle with sides 𝑎 = 45,
𝑏 = 28, and 𝑐 = 53.

√
33 = 𝑎

𝑏
= 45

28 ≈ 1.607. Each
further iteration will move closer to the true value.
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Table 5: First 6 Pythagorean triples
n 𝑀𝑛 𝑁𝑛 a b c
1 3 1 3 4 5
2 5 1 5 12 13
3 5 3 15 8 17
4 7 1 7 24 25
5 7 3 21 20 29
6 7 5 35 12 37

𝑀1 = 3 𝑁1 = 1 𝑀2 = 7 𝑁2 = 3 𝑁3 = 5 𝑁4 = 13

𝑀𝑛 = 2𝑁𝑛 + 𝑁𝑛−2

𝑁𝑛 = 2𝑀𝑛−2 − 𝑁𝑛−4

(10)

The sequences in 10 provide a Pythagorean ap-
proximation for

√
5 using the same process.

4 Pythagorean approximation
for 𝜋

4.1 The function P used to generate M
The Pythagorean triple approximation for 𝜋 is sim-
ilar to Archimedes’ method in that it uses triangles
inscribed within a circle. In this case the triangles
are inscribed within the unit circle. First, a way must
be found to list all possible Pythagorean triples in
a specified order using an explicit sequence. Any
two odd integers 𝑀 and 𝑁 , with 𝑀 > 𝑁 , will form
a triple using the equations in 6. The natural order
that suggests itself shown in table 5.

𝑀𝑛 is generated as a function of 𝑃𝑛, which is
rounding the square root of 2𝑛 − 1 to the nearest
integer as in equation 11. 𝑃𝑛 will also be used to
later generate 𝑁𝑛.

𝑃𝑛 =

⌊√
2𝑛 − 1

⌉
𝑀𝑛 = 2𝑃𝑛 + 1 = 2

⌊√
2𝑛 − 1

⌉
+ 1

(11)

4.2 N
Finding 𝑁𝑛 is more difficult, and will require using
the nested functions within the sawtooth function 𝐽𝑛
as shown in equation 12. 𝑃𝑛 is the varying period
that was also used to generate 𝑀𝑛. 𝐷𝑛 is the varying

horizontal shift, which has the functions 𝑔𝑛, 𝑘𝑛, and
𝑤𝑛 nested within it.

𝐽𝑛 =

⌊
𝑛 − 𝐷𝑛 − 𝑃𝑛

⌊
1
2
+ 𝑛 − 𝐷𝑛

𝑃𝑛

⌋
+ 𝑃𝑛

2
+ 1

⌋
𝑃𝑛 =

⌊√
2𝑛 − 1

⌉
𝐷𝑛 = 𝑘𝑛𝑤𝑛 + 𝑔𝑛

𝑘𝑛 =

⌊
𝑃𝑛 + 1

2

⌉
𝑔𝑛 =

(−1) ⌈𝑃𝑛−.5⌉

4
𝑤𝑛 =

(−1) ⌊𝑃𝑛−.5⌋

2
(12)

All possible Pythagorean triples are generated in
the systematic order suggested by table 5. This is
done by using equations 11 and 12 to produce the
equations in 13.

𝑀𝑛 = 2
⌊√

2𝑛 − 1
⌉
+ 1

𝑁𝑛 = 2𝐽𝑛 − 1

(13)

4.3 Visual demonstration of the
method

Note that the variable 𝑃 is used to generate both
𝑀𝑛 and 𝑁𝑛. Also note that 𝑃 increases in a help-
ful way: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5 ... etc.
These facts are used to generate distinct groups of
triples for use in approximating 𝜋 using a finite sum
of the hypotenuses of a particular group of trian-
gles. The method will first be visually introduced
in figures 2 and 3, before presenting the formal sum
formula.

The first group generated only has one triangle in
it. This is a 3/4/5 triangle. (3, 4) is the only non-
quadrantal point used, so it is not necessary to scale
this calculation to the unit circle. The length of the
line from (0, 5) to (3, 4) is added to the length of
the line from (3, 4) to (5, 0). The approximation for
𝜋 would be 2

5 of the sum of the lengths.
The second group generated uses two triangles:

5/12/13 and 15/8/17. They must be scaled to the unit
circle in order to use them together. They become
5
13/

12
13/

13
13 and 15

17/
8
17/

17
17 . In this case, there are three

lengths to add, and the approximation for 𝜋 would
be 2 times the sum of these lengths.

4



Approximating roots and 𝜋

Figure 2: Group 1: Using a single 3/4/5 triangle to
approximate 𝜋

Figure 3: Group 2: Scaling 5/12/13 and 15/8/17
triangles to the unit circle in order to approximate 𝜋
in the 2nd iteration

4.4 A list of all possible Pythagorean
triples

The function 𝑃𝑛 =

⌊√
2𝑛 − 1

⌉
is useful to generate

a table listing all Pythagorean triples. It generates
a pair, 𝑀𝑛 and 𝑁𝑛, that in turn generate the triples
𝑎𝑛, 𝑏𝑛, and 𝑐𝑛. 𝑃 is also used in the approxima-
tion formula in equation 19, where 𝑃 represents the
number of triangles used for the approximation. The
more triangles used, the better the approximation be-
comes. The equations in 14 and 15 will choose the
appropriate 𝑀 along with its associated 𝑁 values
for that particular group of triangles.

𝑃 = number of triangles chosen

𝑀𝑛 = 2𝑃 + 1
𝑁 (𝑥)𝑛 = 2𝐽 (𝑥) − 1

(14)

𝑠1 =
1
2
𝑃2 − 1

2
𝑃 + 1

𝑓1 =
1
2
𝑃2 + 1

2
𝑃

𝐽 (𝑥) =
⌊
𝑥 − 𝐷 − 𝑃

⌊
1
2
+ 𝑥 − 𝐷

𝑃

⌋
+ 𝑃

2
+ 1

⌋
𝐷 = 𝑘𝑤 + 𝑔

𝑘 =

⌊
𝑃 + 1

2

⌉
𝑔 =

(−1) ⌈𝑃−.5⌉

4
𝑤𝑛 =

(−1) ⌊𝑃−.5⌋

2

(15)

4.5 Scaling to circle of radius 1
The equations in 16 will use the output of 𝑀 and
its 𝑁 values to generate triangles with side lengths
a,b, and c. These triangles will then be scaled to
the unit circle, giving triangles with sides 𝑎

𝑐
, 𝑏
𝑐
, and(

𝑐
𝑐
= 1

)
.

𝑎(𝑥) = 𝑀𝑁 (𝑥)

𝑏(𝑥) = 𝑀2 − (𝑁 (𝑥))2

2

𝑐(𝑥) = 𝑀2 + (𝑁 (𝑥))2

2

𝐴𝑢 (𝑥) =
𝑎(𝑥)
𝑐(𝑥)

𝐵(𝑥) = 𝑏(𝑥)
𝑐(𝑥)

(16)

5
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4.6 The first and last length
The equations in 17 deliver the starting first length
and the last length used for that particular approxi-
mation. Note that 𝑥 = 𝑠1 in function 𝑆; 𝑥 = 𝑛 in
function 𝑈; 𝑥 = 𝑓1 in function 𝐹.

𝑆 =
√︁
(𝐴𝑢 (𝑠1))2 + (1 − 𝐵(𝑠1))2

𝐹 =

√︃
(1 − 𝐴𝑢 ( 𝑓1))2 + (𝐵( 𝑓1))2

(17)

4.7 The sum of all the middle lengths
The sum formula in equation 18 gives the sum of
all of the middle lengths used for that particular
approximation.

𝑈 =

.5𝑃2+.5𝑃−1∑︁

.5𝑃2−.5𝑃+1

√︃
(𝐴𝑢 (𝑛 + 1) − 𝐴𝑢 (𝑛))2 + (𝐵(𝑛 + 1) − 𝐵(𝑛))2

(18)

4.8 The composite approximation
function

The approximation for 𝜋 using P triangles is given
by equation 19.

𝐴𝑝 ≈ 𝜋 using P triangles

𝐴𝑝 = 2(𝑆 +𝑈 + 𝐹)
(19)

Table 6 shows the composite sum formula (𝐴𝑝 =

2(𝑆 +𝑈 + 𝐹)) approaching the true value of 𝜋 as 𝑃
(the number of triangles used) increases.

The hypertext Pythagorean 𝜋 approximation is a
link to a web page where this approximation may be
used or demonstrated. On this site the variable 𝑃 is
the number of triangles to be used in the approxima-
tion. 𝑃 is the only variable that should be changed.
The output 𝐴𝑝 will be the approximation using 𝑃

triangles.

5 Conclusion
Section 1 introduced an equation delivering seed
values for all recursive sequences used for calcu-
lating square roots. This is useful because it re-
moves ambiguity in algorithms used to accomplish
this task. Section 2 demonstrated this by recom-
mending its use for Archimedes’ approximation of

Table 6: 𝐴𝑝 = 2(𝑆+𝑈 +𝐹); Where 𝑃 = the number
of triangles used

𝜋 True: 3.141592654
𝐴1 = 3.053765446
𝐴2 = 3.099952629
𝐴3 = 3.117962783
𝐴4 = 3.126484857
𝐴5 = 3.131132028
... ...

𝐴10 = 3.138519318
... ...

𝐴100 = 3.141556959
... ...

𝐴1000 = 3.141592291
... ...

𝐴10000 = 3.141592650

𝜋. The remaining sections of the paper introduced
a new method entirely.

Other methods might converge to 𝜋 faster, so why
is this method useful? This method shows that pat-
terns in the generation of Pythagorean triples can
be used to approximate both irrational and transcen-
dental numbers. Because the method is new, it is
difficult to guess what insights might be gained by
exploring it further.

All mathematics is a type of counting. Counting
only involves integers. In some sense the expres-
sion

√
2 might be interpreted as "undefined," or "no

solution," because there is no integer which can be
squared to equal 2. Taking the square root of such a
number is an act of imagination. Pretend that 2 can
be divided into 196 equal parts (since 196 is close to
200). Since the square root of 196 is 14, one might
then declare that the square root of 2 is 1.4.

Irrational numbers might better be thought of as
an algorithm or method rather than a "number."
Saying "the side length of a square whose area is
2" sends the mind on a quest to approximate this
quantity. It is a never-ending quest. Transcendental
numbers like 𝜋 send their seekers on similar quests.

The method of Pythagorean approximation in-
troduced in this paper may lead to further insight
about how all such numbers are related to one an-
other. This might in turn lead to better approxima-
tion methods in the future.
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