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Abstract

The equivalent system of equations corresponding to the Duffin-Kemmer-Petiau (DKP)
equation is derived and the WKB approximation of this system is found. It is proved that
the Lorentz equation follows from the new DKP-Pardy system.
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1 Introduction

The Duffin-Kemmer equation, or, rigorously Duffin-Kemmer-Petiau (DKP) equation is a
first-order relativistic wave equation for spin 0 and 1 bosons (Duffin, 1938; Kemmer, 1939;
Petiau, 1936). For the vector case, the DKP equation with minimal coupling is equivalent
to the Maxwell or Proca equations.

In the DKP formalism, a wave function is multicomponent. That is why the simplest
non-minimal interactions with external fields have a more complicated structure than in
usual formalism. It has applications in describing of interactions of mesons with nuclei
(Clark, et al., 1985), for studies of pionic atoms etc.

The Klein-Gordon equation in the the DKP form for the motion of the spin zero
particles was presented in some monographs and articles (Akhiezer et al., 1969, 1981;
Pardy 1973a). Now, we follow the five decades old original article by author (Pardy,
1973a) and the monograph by well-known experts (Akhiezer et al., 1969; 1981). The
cited equation is of the form:
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ϕ1 + ϕ2 +mcΨ = 0, (1)

where

ϕ1 = h̄βµ
∂Ψ

∂xµ
; ϕ2 = −ie

c
AµβµΨ. (2)

Here Ψ is the five-component spinor and the explicite form of the β-matrices are as
follows:

β1 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

 (3)

β2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 (4)

β3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 (5)

β4 =


0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0

 (6)

Rafanelli and Schiller (1964) proved that the Lorentz equation od the equation or spin
motion followed from the Dirac equation as a result of the so called WKB approximation,
where spin is defined as the axial vector constructed from the γ-matrices and wave
functions. The deep understanding what is spin is involved in the well-known texts
(Ohanian, 1986; Ternov, 1988; Thomas, 1926; Tomonaga, 1997; Uhlenbeck et al., 1926).
In this paper we perform a similar procedure with the the DKP equation. However, it is
advantageous to derive the equivalent system of equations for the DKP equation and then
to perform WKB approximation in this system. Therefore we first approach the deriving
of this equivalent system of equations.

2 The equivalent system of equations to the DKP equation

In deriving the equivalent system to equation (1), we proceed as follows: we put
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Σ11 =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

Σ12 =


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , ... (7)

Σ21 =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

Σ22 =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , .. (8)

Σ31 =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

Σ32 =


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 , ... (9)

It means that for the elements of Σ-matrices the following relation holds good:

(Σαβ)γ% = δαγδβ% (10)

With regard to system of equation (7–9), we can write for the DKP matrices β the
relation:

β1 = Σ25 + Σ52

β2 = Σ35 + Σ53

β3 = Σ45 + Σ54
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β4 = −iΣ15 + iΣ51 (11)

Further, we can easily see that

Σ55 =
1

3

(
β2
µ − I

)
(12)

If we put
α1 = β4, α2 = β1, α3 = β2, α4 = β3, Σ55 = P, (13)

we can see that the following holds good:

Σµν = αµPανF (µν), (14)

where

F (µν =


i; µ = 1, ν 6= 1

−i; µ 6= 1, ν = 1, µ 6= 5
1; µ 6= 1, ν 6= 1, ν 6= 5

1; µ = 1, ν = 1

(15)

Σµ5 = αµP ; Σ5µ = Pαµ, (16)

Using the relation (10) we find that

(Σµν)σ% (Σνµ)ελ = δσλδ%ε (17)

With regard to relation (15) we can see that the following holds good:

F (µν)F (νµ) = 1; (no sum up over µ, ν). (18)

Now, if we substitute eq. (15) and eq. (16) into eq. (17) and if we return to the matrix
β, we get:

4∑
µ,ν=1

(βµPβν)σ% (βνPβµ)ελ +
4∑

µ=1

(Pβµ)σ% (βνP )ελ +

4∑
µ=1

(βµP )σ% (Pβµ)ελ + (P )σ% (P )ελ = δσλδ%ε (19)

Now, let us still remark that equation (1) involving the electromagnetic interaction
has the explicit form:

h̄βλ
∂Ψ

∂xλ
− ie

c
AλβλΨ +mcΨ = 0, (20)

Let us put further according to Akhiezer (1969) the following denotaions Ψ̄ =
Ψ+ω,Ψ+ = (Ψ∗)T , ω = 2β2

4 − I, where we denote by means of the symbol ∗ the complex
conjugate quantity and by means of the symbol T the operation of transposition and let
us accept the designation:

Tµν = βµPβν , Vµ = βµP, Wµ = Pβµ (21)
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Now, let us multiply eq. (19) by spinors Ψ̄, ϕ,Ψ. With regard to the designation (21)
we get:

TνµΨ.Ψ̄Tµνϕ+ VµΨ.Ψ̄Vµϕ+WµΨ.Ψ̄Wµϕ+ PΨ.Ψ̄Pϕ = ϕ(Ψ̄Ψ) (22)

and simultaneously for ϕ = Ψ:

TνµΨ.Ψ̄TµνΨ + VµΨ.Ψ̄VµΨ +WµΨ.Ψ̄WµΨ + PΨ.Ψ̄PΨ = Ψ(Ψ̄Ψ) (23)

Finally let us multiply eq. (1) gradually by spinors Ψ̄Tµν , Ψ̄Vµ, Ψ̄Wµ, Ψ̄P . We get
following system of equations:

Ψ̄Tµνϕ1 + Ψ̄Tµνϕ2 +mcΨ̄TµνΨ = 0 (24)

Ψ̄Vµϕ1 + Ψ̄Vµϕ2 +mcΨ̄VµΨ = 0 (25)

Ψ̄Wµϕ1 + Ψ̄Wµϕ2 +mcΨ̄WµΨ = 0 (26)

Ψ̄Pϕ1 + Ψ̄Pϕ2 +mcΨ̄PΨ = 0 (27)

After applying eq. (24) by the spinor TµνΨ, eq. (25) by the spinor VµΨ, eq. (26) by
the spinor WµΨ, eq. (27) by the spinor PΨ and after by the summing uo the resulting
equations, we get with regard to relations (22) and (23):

(Ψ̄Ψ)(ϕ1 + ϕ2 +mcΨ) = 0, (28)

If we assume now that (Ψ̄Ψ) 6= 0, then

ϕ1 + ϕ2 +mcΨ = 0, (29)

which is the original equation (1).
We have seen therefore, that the system of equations (24–27) follows from eq. (1) and

at the same time eq. (1) follows from equation system (24–27). Therefore the system
of equation (24–27) and equation (1) are equivalent to each other. In the theoretical
applications it is possible to proceed both from eq. (1) and from the equivalent system
(24–27). For our purpose it is more advantageous to use the majestic system (24–27).

3 The WKB approximation of the majestic form of the Duffin-
Kemmer-Petiau equation

Before we start to find the WKB solution of the system (24–27), let us determine the
transformation properties of the mathematical objects Ψ̄TµνΨ, Ψ̄VµΨ, Ψ̄WµΨ, Ψ̄PΨ.

It is known that the Lorentz transformation (Muirhead, 1965)

x′λ = aλαxα; aαλaα%δλ% (30)

implies the transformation of the wave function Ψ̄, or Ψ respectively in the following way:
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Ψ′(x′) = ΛΨ(x), Ψ̄′(x′) = Ψ̄(x)Λ−1, (31)

where Λ is the unitary matrix. As a result of a Lorentz invariance, the relations for the
matrices follows (Muirhead, 1965):

βα = aαλΛβλΛ
−1 (32)

Using eq. (30) and (32) we easily find that

P = ΛPΛ−1 (33)

By means of equations (31) (32) and (33) we can easily see that we get:

Ψ̄′(x′)TµνΨ
′(x′) = aµαaνβΨ̄(x)TαβΨ(x) (34)

Ψ̄(x′)VµΨ′(x′) = aµνΨ̄VνΨ(x) (35)

Ψ̄(x′)WµΨ′(x′) = aµνΨ̄WνΨ(x) (36)

Ψ̄(x′)PΨ′(x′) = Ψ̄PΨ(x) (37)

Let us write now equations (24– 27) in the explicit form

Ψ̄Tµνh̄βλ
∂Ψ

∂xλ
− iΨ̄Tµν

e

c
AλβλΨ.+mcΨ̄TµνΨ = 0 (38)

Ψ̄Vµh̄βλ
∂Ψ

∂xλ
− iΨ̄Vµ

e

c
AλβλΨ +mcΨ̄VµΨ = 0 (39)

Ψ̄Wµh̄βλ
∂Ψ

∂xλ
− iΨ̄Wµ

e

c
AλβλΨ +mcΨ̄WµΨ = 0 (40)

Ψ̄Ph̄βλ
∂Ψ

∂xλ
− iΨ̄P e

c
AλβλΨ +mcΨ̄PΨ = 0 (41)

Now, let us try to find the WKB solutions of eqs. (38–41). This method is named
after physicists Wentzel, Kramers, and Brillouin, who all developed it in 1926. In 1923,
mathematician Harold Jeffreys had developed a general method of approximating solu-
tions to linear, second-order differential equations, a class that includes the Schrödinger
equation. Early quantum mechanics contained any number of combinations of their ini-
tials, including WBK, BWK, WKBJ, JWKB and BWKJ. The critical survey has been
given by Dingle (1973).

This asymptotic solution is the series in the small parameter h̄ of the following form
(Akhiezer et al., 1969; 1981):

Ψ = e
i
h̄
S(a0 + h̄a1 + h̄2a2 + ...), Ψ̄ = e−

i
h̄
S(ā0 + h̄ā1 + h̄2ā2 + ...), (42)

where S is the scalar real function and the coefficients a0, a1, a2, .. are the four-component
complex spinors.
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It will suffice for our purposes, if we restrict series to the first term. For this reason
we replace the function by the following one

ΨWKB = a0e
i
h̄
S (43)

in the system (38–41). If we annul the coefficients with h̄0 we get:(
∂λS −

e

c
Aλ

)
a0Tµνβλa0 = imca0Tµνa0 (44)

(
∂λS −

e

c
Aλ

)
a0Vµβλa0 = imca0Vµa0 (45)

(
∂λS −

e

c
Aλ

)
a0Wµβλa0 = imca0Wµa0 (46)

(
∂λS −

e

c
Aλ

)
a0Pβλa0 = imca0Pa0 (47)

Let us put further

a0 = RΦ, (48)

where R is the scalar function and Φ is the unit spinor, which we normalize in the following
way

Φ̄PΦ = 1. (49)

Now, let us consider that the particle with the spin zero does not perform the spin
motion. Therefore, in order to obtain some information on the motion of this particle, it
is sufficient to keep the vector equation (45), or, (46). Putting

vµ = icΦ̄PβµΦ (50)

(
∂µS −

e

c
Aµ

)
= mvµ (51)

we get with regard to the relation vµβλ = Pδµλ from equation (45) and (46)

vµvµ = c2 (52)

and we can therefore interpret the quantity vµ as a four-vector of velocity (Landau, 1988).
If we put Fµν = ∂µAν − ∂νAµ and if we take account of the identity which holds for

the proper time (Rafanelli et al., 1964)

vµ∂µ =
d

dτ
, (53)

we get from the equations (51) and (52) the following equation:

−e
c
Fµνvν = m

dvµ
dτ

(54)

The last equation is the Lorentz equation for motion of the charged particle in the
electromagnetic field expressed by the tensor Fµν .
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4 Discussion

We have derived the equivalent system of equations corresponding to the DKP equation
and the WKB approximation of this system has been found. The new tensor equation
was derived and it is not excluded that the verification of this author original equation
will be performed by such adequate laboratories as CERN. Equation (42) is the original
tensor equation following from DKP-Pardy majestic system. This author equation was
not considered in physics for five decades (Pardy, 1973a, 1973b). We have analogy in the
history of science, where the Mendel, Heaviside, Planck, Moessbauer, Sommerfeld, and
so on, ideas were ignored for some decades. Nevertheless, the experimental verification of
the author ideas will be, no doubt, interesting and the grand DKP-Pardy system will be
considered as relevant.
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