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Abstract

Earlier this century, when SOHO and WMAP were in the news, Lagrange points L1 and L2 on the Sun-
Earth axis were topics of interest, in addition to L3, the supposed location of mythical Planet X.  Now 
that the James Webb Telescope has been successfully deployed, there is comparable interest in the off-
axis points L4 and L5.
 
The relevant orbital mechanics is that of the restricted three-body problem, in which two massive 
objects are orbiting each other, and a third body, of negligible mass, is introduced.  The present note is 
an exercise in numerically integrating the relevant equations of motion.  This approach results in 
physically realistic depictions of orbits and other features of interest.
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axis points L4 and L5.

The relevant orbital mechanics is that of the restricted three-body problem, in which two massive 
objects are orbiting each other, and a third body, of negligible mass, is introduced.  A comprehensive 
mathematical theory for this case exists, but it is expressed in terms of gravitational and dynamic quasi- 
potentials.   And it provides no visual tutorial aids, beyond contour plots of equipotential surfaces.  The 
present note takes the alternative approach of numerically integrating the equations of motion directly.  
This method produces physically realistic depictions of orbits and other features of interest.

METHOD

The computations take place in the center-of-mass (CM) system, whose origin lies on the line joining 
masses m1 and m2. m0=0. At each time-step of the computation, the acceleration of each particle mi is 

calculated by summing the contributions ∑ j≠i
G m j / Rij

2 of the other particles, at their current, 

updated, relative positions.  Here, G is the gravitational constant, scaled appropriately for the model.

The method of integration is fourth-order Runge-Kutta, similar to the code in reference NR.  Initial 
values of  2-D position and velocity are required for each particle.  Then the program propagates the 
system forward in time, taking tiny steps.  The size and number of steps is a technical issue that does 
not concern us here.

A model is defined by the values of m1 and m2, and the initial xi and yi coordinates of every particle, 
relative to the CM.  Each velocity then is set to be proportional to, and perpendicular to, a radius 
joining that body to the CM.  Finally, the scale model value of G is determined.  The criterion is that 
the total potential energy shall equal negative twice the total kinetic energy.  This produces perfectly 
circular orbits centered on the CM.

As the computation steps along, several checks are available to detect possible errors:  The CM cannot 
move;  total momentum must remain zero; total angular momentum must remain constant; and, of 
course,  total energy must be conserved.

EXAMPLES

Fig. 1 displays the orbits for a model having a mass ratio m2/ m1=4, perhaps like a binary star 
system.  Rotation is clockwise, and the computation stopped just short of one complete revolution.  Red 
denotes the path of m2 , blue is m1 , and green is the L5 trajectory.  The star marks the CM.  The 
interval between any two dots represents one time-step.  It might be a surprise that L5 is not a point, but 
a distinct orbit that lies entirely outside the orbit of the lesser mass.

Fig. 2 presents the same orbits, but as seen from the viewpoint of m0  as it moves along its path.  The 



green dot is the coordinate origin, on m0 .  The red and blue orbits of m2 and m1 appear as perfect 
circles, superimposed.  We can check that the radius of the circles is equal to the initial separation 
between m1 and m2 on Fig. 1.  For that matter, the radius equals the initial separation of any two of 
the masses.  We understand that, as the particles move, they maintain the same relative separations that 
they had initially.  That is, all the orbits are synchronized so that the entire system rotates rigidly.  

A second model amplifies this conclusion.  Fig. 3 presents the result for a system with m2/ m1=10.
The color-coding is more festive here, with red for m1 , dark blue for m2 .  As the larger mass 
becomes more dominant, the difference between the red and green orbits becomes smaller.  In the limit, 
they will coincide.  Fig. 4 re-runs this same model for just the first half-revolution.  The red triangle 
connects the initial positions of the three bodies.  The green triangle connects their final positions.  The 
triangles are equilateral, as suggested by Fig. 2.  The motion of the system rotates the red triangle into 
the position of the green.

We conclude that if the Sun-Earth system orbits were perfect circles, L4 and L5 would share Earth's 
orbit, but lead or lag by ±60 degrees, or two months.

NOTES & REFERENCES

NR: Numerical Recipes in C, Press et al., 1995.

The Lagrange Points, Neil J. Cornish, WMAP Education and Outreach, 1998.

Plotting program: Veusz 1.24, Jeremy Sanders et al., GNU Public License, 2016.

L5 and L4 are mirror images of each other.

Draftman's dividers is the tool of choice for comparing distances.



Fig. 1 Orbits in the CM system for a mass ratio of 4:1.  The green orbit is L5.     



Fig. 2 Orbits of m1 (blue) and m2  (red) in relation to the L5 orbit of m0 .



Fig. 3 Orbits in the CM system for a mass ratio of 10:1.  Red is the lighter mass.
          Green is L5.



Fig. 4 The first half-revolution.  The red triangle connects the initial positions of
the three bodies.  The green triangle connects their final positions.



Appendix

How It Works

Fig. A.  The reader can verify that mS , mL , and L5 define the vertices of an equilateral triangle.  The 
length R of one side is divided at the CM into L and S, and S/L = mS /mL . The altitude rising from L5 
to the midpoint of that side bisects the triangle into two 30-60-90 right triangles, whose sides are in the 
proportions 1: √3 :2. By construction, L = R – S, and the base of the red isosceles triangle is L – S.  
The tangent of the half-angle φ at the apex of the red triangle is

tan ϕ=
( L−S )/2

√3( L+S ) /2
=

(1−ρ)

(1+ρ)√3
, where* ρ=S / L=mS /mL .

The magnitude of the acceleration aS directed toward mS is ρ times that of aL directed toward mL.  The 
total acceleration at L5 is the vector sum of aS and aL.  Proceeding by components, where a is the 
magnitude of aL.

A x=a (1−ρ)/2 and Ay=a√3(1+ρ)/2 .

The numerical factors arise from the sine and cosine of 30  degrees.  Total acceleration A is directed at 
an angle whose tangent is 

A x / A y=(a (1−ρ)/2)/(a√3(1+ρ)/2)=
(1−ρ)

√3(1+ρ)
=tan ϕ .

Thus the vector total acceleration A is directed from L5 along the red dotted line toward the CM of the 
binary pair.  The direction is correct.  The magnitude of A is the square root of

A2
=A x

2
+ A y

2
=(a2

/4)((1−ρ)
2
+3(1+ρ)

2
)=a2

(1+ρ+ρ
2
) .   

Similarly, the squared length of the red dotted line connecting L5 to CM is

hyp2
=3( L+S )

2
/4+( L−S )

2
/ 4=L2

+ LS+S2
=L2

(1+ρ+ρ
2
).

A readout of the initial accelerations confirms the expression for A.  If we attribute A to a fictitious 
equivalent mass located at the CM, so that 

A=G M eq /hyp2 ,    then   M eq=mL (1+ρ+ρ
2
)

3/2 .

As regards stability, I find that if I change the initial y coordinate of m0 by a part in a thousand, its orbit 
does not close, and it leaves the picture before completing a second revolution.

* Short / Long = small / large.



Fig. A: mS , mL , and L5 define the vertices of an equilateral triangle.  The length R of one side is divided 
at the CM into L and S, with S/L = mS /mL . The altitude rising from L5 to the midpoint of the top side 
bisects the triangle into two 30-60-90 right triangles,.  


