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Abstract

To help fill the need for examples of introductory-level problems that

have been solved via Geometric Algebra (GA), we show how to calculate

the angle through which a given vector must be rotated in order that

its endpoint be at a given distance d from a specified point P. The

three solution methods that are employed here start from a trigonometric

equation is derived from GA’s formula for rotating vectors. The first two

solutions use methods that are “automatic”, but produce formulas that

are not readily interpreted. In contrast, the third method —which does

produce a readily interpreted formula —is based upon an examination of

the geometric significance of terms in the initial trigonometric equation.
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1 Introduction

The ability to express rotations conveniently is one of GA’s strong points, and

offers many opportunities to show newcomers how to use GA identities. For

example, GA can easily express the vector (v′, (Fig. 1)) that results from the

rotation of vector v through the angle θ about an axis that is perpendicular to

the bivector B̂:

v′ =
[

e
-B̂θ/2

]

v
[

eB̂θ/2
]

. (1)

Figure 1: The vector v′ that results when vector v is rotated through the

bivector angle B̂θ : v′ =
[

e
-B̂θ/2

]

v
[

eB̂θ/2
]

.

As explained in Refs. [1] and [2], Eq. (1) can be transformed to obtain

v′ = v⊥ + v‖ cos θ + v · B̂ sin θ, (2)

in which v⊥ and v‖ are as shown in Fig. 2.
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Figure 2: Relations between vector v; its components perpendicular and parallel

to B̂; and the rotated vector v′.

In this document, we show how to determine the specific angle θ at which

the endpoint of v′ is at a specified distance d from a given point P (Fig. 3 ).

For that purpose, we will first use GA identities to further transform Eq. (1),

then use additional identities to simplify the equation that we find for d. In

this way, we will arrive at a trigonometric equation, which we will solve in three

ways. We will see that by investing a little time to understand the geometric

significance of terms in the trigonometric equation, we can arrive quickly at a

solution that is readily interpretable.

Figure 3: At what angle θ will the endpoint of v′ be at a specified distance d

from a given point P? The distance d is equal to ‖p−v′‖, which is

√

(p− v′)
2
.

2 Preliminary Examination

One observation that stands out is that for any given distance d (except for the

maximum and minimum possible distances), there will be two vectors v′ whose

endpoints are at distance d from the endpoint of p. The traces of those two
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vectors upon B̂ will be symmetric with respect to the trace of p (Fig. 4).

Figure 4: For any given distance d (except for the maximum and minimum

possible distances), there will be two vectors v′ whose endpoints are at distance

d from the endpoint of p. The traces of those two vectors upon B̂ will be

symmetric with respect to the trace of p.

3 Some of the Ideas that We Will Use

1. An expression of the form A sin θ +B cos θ can be rewritten as

A sinω +B cosω =
√

A2 +B2

{[
A√

A2 +B2

]

sinω +

[
B√

A2 +B2

]

cosω

}

,

We can then define A/
√
A2 +B2 = cosα, B/

√
A2 +B2 = sinα, so that

A sinω +B cosω =
(√

A2 +B2

)

sin(ω + α).

2. Various half-angle formulas: sinψ = 2 sin
ψ

2
cos

ψ

2
;

cosψ = cos2
ψ

2
− sin2

ψ

2
= 1− 2 sin2

ψ

2
.

3. If {b1,b2} is a set of perpendicular unit vectors, then any vector u that is

parallel to the bivector b1b2 can be written as

u = (u · b1)b1 + (u · b2)b2.

Then,

‖u‖2 = (u · b1)
2
+ (u · b2)

2
.
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4. For any two vectors a and b, ‖a∧b‖2 = a2b2 − (a·b)
2
. A simple proof:

ab = a·b+a∧b, and ba = b·a+b∧a = a·b−a∧b. Therefore, (ab) (ba) =

[a·b+ a∧b] [a·b− a∧b]; a2b2 = (a·b)
2−(a∧b)

2
= (a·b)

2
+-‖a∧b‖2, etc.

5. For any two vectors a and b, a∧b = a·(bi)i, where i is the unit bivector

that is parallel to both a and b.

6. For any two vectors a and b, a∧b = ‖a‖‖b‖ sinψi, where ψ is the angle

of rotation from a to b, and i is the unit bivector that is parallel to both

a and b, and whose sense of rotation is from a to b.

4 Deriving the Trigonometric Equation

The required distance d is equal to ‖p− v′‖, which is

√

(p− v′)
2
. Because our

goal is to identify the necessary value of θ, we will write that requirement more

conveniently as

Why does (v′)
2
= v

2 ? First, be-

cause both of those vectors have

the same length. An algebraic jus-

tification begins by writing (v′)
2

as
[

e

-
B̂θ/2

]

v

[

e
B̂θ/2

]

︸ ︷︷ ︸

v
′

[

e

-
B̂θ/2

]

v

[

e
B̂θ/2

]

︸ ︷︷ ︸

v
′

Then, we can proceed as follows:
[

e
-
B̂θ/2

]

v

[

e
B̂θ/2

] [

e

-
B̂θ/2

]

︸ ︷︷ ︸

= 1

v

[

e
B̂θ/2

]

[

e
-
B̂θ/2

]

vv
︸︷︷︸

= v
2

[

e
B̂θ/2

]

v
2

[

e
B̂θ/2

] [

e

-
B̂θ/2

]

︸ ︷︷ ︸

= 1

d2 = (p− v′)
2

= p2 − 2p · v′ + (v′)
2

= p2 −
[

2p · v⊥ + 2p · v‖ cos θ + 2p ·
(

v · B̂
)

sin θ
]

︸ ︷︷ ︸

=p·v′

+v2.

Therefore,

p · v‖ cos θ + p ·
(

v · B̂
)

sin θ =
p2 + v2 − d2 − 2p · v⊥

2
.

We can simplify the numerator by noting that (p− v)
2
= p2+ v2− 2p ·v. Thus,

p2 + v2 = (p− v)
2
+ 2p · v. In addition,

p · v − p · v⊥ = p · (v − v⊥)

= p · v‖.

Putting all of these ideas together,

p · v‖ cos θ + p ·
(

v · B̂
)

sin θ =
p2 + v2 − d2 − 2p · v⊥

2

=
(p− v)

2
+ 2p · v − 2p · v⊥ − d2

2

=

[

(p− v)
2 − d2

]

+ 2p · (v − v⊥)

2

=

[

(p− v)
2 − d2

]

+ 2p · v‖

2
(3)

We will transform that equation further in each of our three solutions.
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5 Transforming and Solving the Trigonometric

Equation

5.1 The First Solution

If we examine Eq. (3) while keeping the half-angle formulas in mind, we will

see that the occurrence of a p·v‖ term on both side give us the opportunity to

rewrite Eq. (3) as follows:

p·v‖ (cos θ − 1) + p ·
(

v · B̂
)

sin θ =

[

(p− v)
2 − d2

]

2
,

p·v‖

(

-2 sin2
θ

2

)

+ p ·
(

v · B̂
)[

2 sin
θ

2
cos

θ

2

]

=

[

(p− v)
2 − d2

]

2
,

{

2
[

p ·
(

v · B̂
)]

sin
θ

2
cos

θ

2

}2

=







[

(p− v)
2 − d2

]

2
+ 2p·v‖ sin

2
θ

2







2

,

and

4
[

p ·
(

v · B̂
)]2

sin2
θ

2

(

1− sin2
θ

2

)

=







[

(p− v)
2 − d2

]

2
+ 2p·v‖ sin

2
θ

2







2

.

(4)

After solving that quadratic for the two possible values of sin2
θ

2
, we then find

the corresponding values of cos θ from the formula cos θ = 1 − 2 sin2
θ

2
. We

will not delve into the resulting simplifications, except to note that the identity

‖a∧b‖2 = a2b2 − (a·b)
2
is useful.

5.2 The Second Solution

The left-hand side of Eq. (3) is of the form A sin

omega+B cosω. In such a case, we almost automatically use item 1 in Section

3. First, we define

sinα =
(
p · v‖

)
/

√
(
p · v‖

)2
+

[

p ·
(

v · B̂
)]2

, and

cosα =
[

p ·
(

v · B̂
)]

/

√
(
p · v‖

)2
+

[

p ·
(

v · B̂
)]2

That “automatic” choice turns out to be unfortunate, as will become clear

By defining both sinα and sinα,

we have identified the angle α

uniquely.

when we see the third solution. However, we will follow through on that choice

because of the opportunities that it offers for practicing the use of GA identities.
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With sinα and cosα defined as above, we may rewrite Eq. (3) as

[√
(
p · v‖

)2
+

[

p ·
(

v · B̂
)]2

]

sin (θ + α) =

[

(p− v)
2 − d2

]

+ 2p · v‖

2
,

and

sin (θ + α) =

[

(p− v)
2 − d2

]

+ 2p · v‖

2

√
(
p · v‖

)2
+

[

p ·
(

v · B̂
)]2

,

from which

sin θ = sin
-
1







[

(p− v)
2 − d2

]

+ 2p · v‖

2

√
(
p · v‖

)2
+

[

p ·
(

v · B̂
)]2






− α. (5)

We will simplify that result shortly. The ideas that we use will lead directly

to the third solution (Section 5.3), which is not only more efficient, but easier to

interpret.

The range of arcsin (x) is
[
-π

2
,
π

2

]

.

The algebraic sign of sin (θ + α) is a key aspect of the present solution. By

analyzing Eq. (8), we can see that sin (θ + α) ≥ 0 when d2 < (p− v)
2
+ 2p·v‖,

and negative when d2 > (p− v)
2
+ 2p·v‖. For each of these cases, there are

two angles “θ + α” that satisfy Eq. (8). Hence, the angles and their respective

quadrants in the unit circle are

arcsin (θ + α) , in Quadrant I

and

π − arcsin (θ + α) , in Quadrant II







, d2 < (p− v)
2
+ 2p·v‖ ;

arcsin (θ + α) , in Quadrant IV

and

-π + |arcsin (θ + α)| , in Quadrant III







, d2 > (p− v)
2
+ 2p·v‖.

(6)

Therefore, the values of θ are

arcsin (θ + α)− α

and

π − arcsin (θ + α)− α







, d2 < (p− v)
2
+ 2p·v‖ ;

arcsin (θ + α)− α

and

-π + |arcsin (θ + α)| − α







, d2 > (p− v)
2
+ 2p·v‖.

(7)

Simplifying the second solution.
To simplify the denominator of the right-hand side of Eq. (5), we begin

by writing p as the sum of its components perpendicular and parallel to B̂ :
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p = p⊥ + p‖. Thus,

p · v‖ =
(

p⊥ + p‖

)

· v‖

= p⊥ · v‖
︸ ︷︷ ︸

=0

+p‖ · v‖

= p‖ · v‖.

Similarly, because p⊥ is perpendicular to the vector v · B̂,

p ·
(

v · B̂
)

= p‖ ·
(

v · B̂
)

.

Now, we recall that v‖ and v · B̂ are perpendicular to each other, and

that the length of each of these vectors is ‖v‖‖. Thus,
{

v‖

‖v‖‖
,
v · B̂
‖v‖‖

}

is a set of

perpendicular unit vectors. Furthermore, p‖ is parallel to the bivector
v‖

‖v‖‖
∧ v · B̂

‖v‖‖
.

Therefore, according to Item 3 of Section 3, we can write p‖ as

p‖ =

[

p‖ ·
v‖

‖v‖‖

] [
v‖

‖v‖‖

]

+

[

p‖ ·
(

v · B̂
‖v‖‖

)][

v · B̂
‖v‖‖

]

.

Consequently,

‖p‖‖2 =

[

p‖ ·
v‖

‖v‖‖

]2

+

[

p‖ ·
(

v · B̂
‖v‖‖

)]2

;

‖p‖‖2 =

[
p‖ · v‖

‖v‖‖

]2

+




p‖ ·

(

v · B̂
)

‖v‖‖





2

;

‖p‖‖2‖v‖‖2 =
[

p‖ · v‖

]2

+
[

p‖ ·
(

v · B̂
)]2

, and
√

[

p‖ · v‖

]2

+
[

p‖ ·
(

v · B̂
)]2

= ‖p‖‖‖v‖‖.

Because p‖ · v‖ = p · v‖ and p‖ ·
(

v · B̂
)

= p ·
(

v · B̂
)

,

√
[

p‖ · v‖

]2

+
[

p‖ ·
(

v · B̂
)]2

=

√
(
p · v‖

)2
+

[

p ·
(

v · B̂
)]2

= ‖p‖‖‖v‖‖ .

Thus, Eq. (5) becomes

sin (θ + α) =

[

(p− v)
2 − d2

]

+ 2p · v‖

2‖p‖‖‖v‖‖
. (8)
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Figure 5: The angle φ from v‖ to p‖.

5.3 The Third Solution

The ideas that we used to simplify the second solution might lead us to re-examine

Eq. (3), which we reproduce here for convenience:

p · v‖ cos θ + p ·
(

v · B̂
)

sin θ =

[

(p− v)
2 − d2

]

+ 2p · v‖

2
.

In the process of simplifying the second solution, we saw that p·v‖ = p‖·v‖,

and p ·
(

v · B̂
)

= p‖ ·
(

v‖ · B̂
)

. Therefore, Eq. (3) can be rewritten as

p‖ · v‖ cos θ + p‖ ·
(

v‖ · B̂
)

sin θ =

[

(p− v)
2 − d2

]

+ 2p‖ · v‖

2
.

We know that p̂‖·v̂‖ is the cosine of the angle (φ, in Fig. 5) between p‖

and v‖. But what is p‖ ·
(

v‖ · B̂
)

? Might it be ‖p‖‖‖v‖‖ times the sine of

that same angle? When we start to think in this way, we soon see that because

v‖∧B̂ = 0, v‖B̂ = v‖ · B̂. Thus, p‖ ·
(

v‖B̂
)

. From Item 5 of Section 3, we

can see that p‖ ·
(

v‖B̂
)

B̂ would be p‖∧v‖. Hence, from Item 6 of Section 3,

p‖ ·
(

v‖B̂
)

is indeed ‖p‖‖v‖‖ times the sine of the angle of rotation from v‖ to
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Figure 6: The two angles of θ for which the distance between the endpoint of

p and that of v′ is d. “φ+ ” is the angle φ+ cos−1

{[

(p− v)
2 − d2

]

+ 2p · v‖

2‖p‖‖‖v‖‖

}

, and

“φ−” is φ− cos−1

{[

(p− v)
2 − d2

]

+ 2p · v‖

2‖p‖‖‖v‖‖

}

.

p‖. Putting all of these ideas together, Eq. 3 becomes

‖p‖‖‖v‖‖ cos θ cosφ+ ‖p‖‖‖v‖‖ sin θ sinφ =

[

(p− v)
2 − d2

]

+ 2p‖ · v‖

2
;

cos θ cosφ+ sin θ sinφ =

[

(p− v)
2 − d2

]

+ 2p‖ · v‖

2‖p‖‖‖v‖‖
;

and

cos (θ − φ) =

[

(p− v)
2 − d2

]

+ 2p‖ · v‖

2‖p‖‖‖v‖‖
.

To proceed further, we note that by definition, the arc-cosine of a given

number x is an angle between 0◦ and 180◦. In addition, for any angle β,

cosβ = cos (-β). Thus, there are two angles whose cosine is x. Namely, cos−1 x

and - cos−1 x. Hence, there are two values of θ for which the distance between

the endpoint of p and that of v′ is d (Fig. 6):

θ = φ± cos−1







[

(p− v)
2 − d2

]

+ 2p‖ · v‖

2‖p‖‖‖v‖‖






.

In this solution, it is clear that the two angles are symmetric with respect to

the trace of p‖ upon B̂ —a condition that was noted in Section 2 .
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6 Discussion

Perhaps the most important lesson to be learned from this exercise (and more

specifically, from the unfortunate choice upon which the second solution is based)

is that we are well advised to spend a little time considering the geometric

significance of terms in our equations before automatically employing solution

techniques that we have learned from previous subjects.
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