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We treat the geometrical optics as an Abelian U(1) local gauge theory the same as the Abelian U(1)
Maxwell’s gauge theory. We propose there exists a knot in a 3-dimensional Euclidean (flat) space of the
geometrical optics (the eikonal equation) as a consequence there exists a knot in the Maxwell’s theory in a
vacuum. We formulate the Chern-Simons integral using an eikonal. We obtain the relation between the knot
(the geometric optical helicity, an integer number) and the refractive index.
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It is commonly believed there exists no topological ob-
ject in the linear theory, such as the Maxwell’s theory. It
is because of a topological theory must be a non-linear the-
ory1. The existence of topological object, a knot, in the
Maxwell’s linear theory so far has not been well known2.
How could a knot exist in the Maxwell’s linear theory?

In the Maxwell’s theory, the electromagnetic fields (the
set of the solutions of Maxwell equations) in vacuum has
a subset field with a topological structure1. Any electro-
magnetic field is locally equal (except in a zero measure
set) but globally different to a subset field1. The elec-
tromagnetic field is a linear field, but a subset field is a
non-linear field. Both fields, the electromagnetic field and
a subset of the electromagnetic field, are equal in the case
of the weak field3. It means that a non-linear subset field
theory reduces to the Maxwell’s linear theory in the case
of the weak field. A knot could exist in the Maxwell’s
theory because of the Maxwell’s theory is the weak field
limit3 of a non-linear subset field theory.

In this brief article, we propose there exists a knot
in the geometrical optics, as a solution of the eikonal
equation. The reason is, in fact, there exists a knot in
the Maxwell’s theory1–3 and the geometrical optics (the
eikonal equation) can be derived from the Maxwell’s the-
ory (Maxwell equations)4–6. We treat the geometrical
optics as an Abelian U(1) local gauge theory7,8, the same
as the Abelian U(1) Maxwell’s gauge theory. To the best
of our knowledge, the formulation of a knot in the geo-
metrical optics has not been done yet1,2,9,10.

Let us consider a map of a subset field (consists of a
complex scalar field) from a finite radius r to an infinite
r which implies from the non-linear subset field to the
linear field, the weak field. A scalar field has, by defini-
tion, the property that its value for a finite r depends on
the magnitude and the direction of the position vector ~r,
but for an infinite r it is well defined3 (depends on the
magnitude of ~r only). In other words, for an infinite r, a
scalar field is isotropic. Throughout this article we will
work with the classical field.

The property of such a scalar field can be interpreted
as a map S3 → S21 where S3 and S2 are 3-dimensional
and 2-dimensional spheres, respectively. As maps of this

kind can be classified in homotopy classes, labelled by a
topological invariant called the Hopf index 1, an integer
number. We see there exists (one) dimensional reduc-
tion in such map. We consider this dimensional reduc-
tion related to the isotropic (well defined) property of a
scalar field for an infinite r. The property of a scalar field
as a function of space seem likely in harmony with the
property of space-time. The space-time could be locally
non-isotropic, but globally isotropic (the distribution of
matter-energy in the universe is assumed to be homoge-
neous).

In physics, the idea of a knot, topologically stable mat-
ter, had been proposed in 1868 by Lord Kelvin that the
atoms could be knots or links of vorticity lines of aether2.
A knot is a smooth-embedding of a circle in R310, a 3-
dimensional Euclidean space11. Two knots are equivalent
if one knot can be deformed continuously into the other
without crossing itself 10.

In electrodynamics, a knot could be formed by bending
the electric and magnetic field lines (the geometric con-
cept of magnetic lines of force - those lines of force are

today designated by the symbol ~H, the magnetic field
- is due to Faraday12) so that they could form closed
loops2. A set of closed loops in space forms a link13.
These closed loops can be linked2 (although links do not
actually need to be linked14). If two closed loops of field
lines are linked then we have a non-vanishing Gauss inte-
gral (Gauss linking integral). This linking could provide
the topological structure2. The self-linking number (an
integer number) i.e. a non-vanishing Gauss integral de-
scribes the knottedness2.

In mathematics, especially in algebraic topology, a
knot is defined by the Hopf index 2. The Hopf index is
related to the Hopf invariant1. In turn, the Hopf invari-
ant is related to a non-trivial Hopf map15.

Suppose that we have a scalar field as a function of
position vector, φ(~r), with a property that, as we men-
tioned, can be interpreted using the non-trivial Hopf map
written below1,3

φ(~r) : S3 → S2 (1)

This non-trivial Hopf map is related to the Hopf



invariant15, H, expressed as an integral15–17

H =

∫
S3

ω ∧ dω (2)

where ω is a 1-form on S315. The relation between the
Hopf invariant and the Hopf index, h, can be written as1

H = h γ2 (3)

where γ is the total strength of the field, that is the sum
of the strengths of all the tubes formed by the integral
lines of electric and magnetic fields1.

The Hopf invariant have a deep relationship with the
Abelian Chern-Simons action15 (the Chern-Simons inte-
gral) and self-helicity in magnetohydrodynamics15. The
Abelian Chern-Simons integral related to the electromag-
netic helicity2, hem, can be written as18,19

hem = SCS =

∫
R3

εαµν ~Aα ~Fµν d
3x (4)

where SCS denotes the (Abelian) Chern-Simons action,
εαµν is the Levi-Civita symbol, α, µ, ν = 1, 2, 319 de-

note a 3-dimensional space, ~Aα is the U(1) gauge po-

tential19 and ~Fµν is the U(1) gauge field tensor19 (the
field strength tensor) written below20

~Fµν = ∂µ ~Aν − ∂ν ~Aµ (5)

Using the scalar field, φ, the U(1) field strength can be
written as1

~Fµν = fµν(φ) =
1

2πi

∂µφ
∗ ∂νφ− ∂νφ∗ ∂µφ

(1 + φ∗φ)2
(6)

where1

φ = a ei2πσ (7)

We interpret that the scalar field as the scalar compo-

nent of the gauge potential, ~Aµ = (φ, ~A), (µ = 0, 1, 2, 3),
where the gauge potential is the component of the field
strength. We consider a (7) as the scalar amplitude as
the consequence φ is the scalar field. We write down the
scalar field (7) (also we will see the gauge potential) in
”the wave notation” to describe the wave point of view
we follow throughout this article.

The equation (6) is valid for the weak field only. It
means that in the case of the weak field, i.e. φ∗, φ << 1,
fµν(φ) has a linear form. But in general, fµν(φ) has a
non-linear form. The nonlinearity of fµν(φ) is shown by
φ∗φ. If the field is weak then φ∗φ << 1, so the denom-
inator in eq.(6) can be taken as being equal to one and
fµν(φ) is equivalent to the Maxwell linear theory1. We
interpret the Maxwell’s theory in a vacuum is the same
as the weak field theory due to the field is taken far away
from the source (electric charge or current).

Any electromagnetic field is locally equal to a subset
field (i.e. any electromagnetic field can be obtained by
patching together subset fields), except in a zero measure
set1. This means that the difference between the set

of the subset fields and all the electromagnetic fields in
the Maxwell’s theory in a vacuum is global instead of
local, since the subset fields obey the topological quantum
condition that the electromagnetic helicity (consists of
electric and magnetic helicities) is equal to an integer
number1.

In Ranada works1,3, because of the subset fields have
well-defined property at infinity, so the subset fields can
be interpreted as maps S3 → S2, after identifying, via
stereographic projection, R3 ∪ {∞} with the sphere S3

and the complete complex plane C∪{∞} with the sphere
S2. These maps can be classified in homotopy classes, la-
belled by the value of the corresponding Hopf indexes, the
topological invariants1,3. The other names of the topolog-
ical invariant are the topological charge, the winding num-
ber (the degree of a continuous mapping)21. In physics,
the topological charge which is independent to the space
metric tensor is interpreted as energy22.

Let us consider the geometrical optics as the gauge the-
ory where the relation between the U(1) gauge potential
and the eikonal (phase)23, ψ1, is given by7

~Aα = ~A U(1)
α = ~aα e

iψ = ~aα e
i
fθ
c (ψ1−ct) (8)

ψ1 =

∫ x2

x1

n dx (1-dimensional space) (9)

~Aα = ~aα e
iX
(∫ x2
x1

n dx−ct
)

(10)

where ~aα is four-vector amplitudo, fθ is angular fre-
quency, c is the speed of light in vacuum, t time and
n the refractive index, X = fθ/c. Note here the phase,
ψ1, obeys the Fermat’s principle δψ1 = 0. Eq.(10) shows
explicitly the relation between the U(1) gauge potential
and the refractive index.

We see from eqs.(5), (6), (10) there exists the implicit
relation between the scalar field and the refractive index.
It looks like

∂µφ
∗ ∂νφ ∼ ∂µ

{
~aν e

iX
(∫ x2
x1

n d3x−ct
)}

(11)

where the scalar field is a function of the refractive index
also.

The refractive index (9) is the real scalar function of
coordinates with positive values, the slowness at a point7.
We consider from eq.(11) that the slowness of the refrac-
tive index corresponds to the weakness of the scalar field.
The space of the weak field approximately represents the
vacuum space. The weaker scalar field (in the area of
infinite radius from the source), the smaller refractive in-
dex.

By substituting eqs.(5), (10) into (4), in the case of
the 3-dimensional space, we obtain the Abelian Chern-
Simons integral expressed in the refractive index related
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to the geometric optical helicity, hgo, as follow∫
R3

εαµν ~aα e
iX
(∫ x2
x1

n d3x−ct
)

{
∂µ

[
~aν e

iX
(∫ x2
x1

n d3x−ct
)]
− ∂ν

[
~aµ e

iX
(∫ x2
x1

n d3x−ct
)]}

d3x = hgo (12)

where we replaced the electromagnetic helicity (4) to the
geometric optical helicity or the geometric optical knot.
Both, hem and hgo, are integer numbers.

Eq.(12) shows explicitly the relation between the geo-
metric optical knot and the refractive index. The refrac-
tive index is typically supplied as known input, given, and
we seek the solution, the phase, ψ1

7. It means that the
geometric optical knot as an integer restricts the choice
of the value of refractive index, so it makes the phase be-
comes singular. This phase singularity24 where the phase
is undefined24 is the geometric optical knot solution. In
our case, the geometric optical knot could exist in the
weak field only. We consider eq.(12) as a topological
quantum condition1.

So far, we formulate the theoretical existence of
the geometric optical knot. Does the electromagnetic
(geometric optical) knot exist in universe or laboratory?
Ball lightning25, probably, is an electromagnetic knot
in universe26. Tokamaks and devices constructed to
produce fireball are two possible laboratory settings to
observe ball lightning26. Knot of light may be generated
using tightly focused circularly polarized laser beams27

or via holographic metasurfaces24. We could observe
the phase singularity at a location where the phase is
undefined and the intensity of the field is zero24.
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