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We treat the geometrical optics as a U(1) gauge theory the same as the U(1) Maxwell’s gauge theory.
We propose there exists a knot in a 3-dimensional Euclidean flat space of the geometrical optics (eikonal
equation) as a consequence there exists a knot in the Maxwell’s theory in a vacuum. We formulate Chern-
Simons integral using an eikonal. We obtain the relation between the knot (the geometrical optics helicity,
an integer number) and the refractive index. We consider this relationship as a topological quantum condition.
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It is commonly believed there exists no topological ob-
ject in the linear theory, such as the Maxwell’s theory. It
is because of a topological theory must be a non-linear the-
ory1. The existence of topological object, a knot, in the
Maxwell’s linear theory so far has not been well known2.
So, how to obtain a knot from the Maxwell’s linear the-
ory? Roughly speaking, the electromagnetic fields (the
set of the solutions of Maxwell equations) in vacuum has
a subset field with a topological structure1. Any electro-
magnetic field is locally equal (except in a zero measure
set) but globally different to a subset field1. The elec-
tromagnetic field is a linear field, but a subset field is a
non-linear field. Both fields are equal in the case of the
weak field3. So, in the weak field we can say that a non-
linear subset field theory reduces to the Maxwell’s linear
theory. A knot could exist in the Maxwell’s linear the-
ory because the Maxwell’s linear theory is the weak field
limit3 of a non-linear subset field theory.

Why must a topological theory be a non-linear theory?
Let us consider a map of a subset field (consists of a
complex scalar field) from a finite radius r to an infinite
r which implies from the non-linear subset field to the
linear field, the weak field. A scalar field has, by defini-
tion, the property that its value for a finite r depends on
the magnitude and the direction of the position vector ~r,
but for an infinite r it is well defined3 (depends on the
magnitude of ~r only). In other words, for an infinite r,
a scalar field is isotropic. The property of such a scalar
field can be interpreted as a map S3 → S21 where S3 and
S2 are 3-dimensional and 2-dimensional spheres, respec-
tively. We see there exists (one) dimension reduction in
such map. We consider this dimension reduction related
to the isotropic (well defined) property of a scalar field
for an infinite r. As maps of this kind can be classified
in homotopy classes, labelled by a topological invariant
called the Hopf index 1, an integer number.

What is a knot? A knot is a smooth-embedding of a cir-
cle in R34. Here, R3 denotes a 3-dimensional Euclidean
(flat) space5. Two knots are equivalent if one knot can
be deformed continuously into the other without cross-
ing itself 4. In electrodynamics, a knot could be formed
by bending the electric and magnetic field lines (the ge-

ometric concept of magnetic lines of force - those lines

of force are today designated by the symbol ~H, the mag-
netic field - is due to Faraday6) so that they could form
closed loops2. A set of closed loops in space forms a link7.
These closed loops can be linked2 (although links do not
actually need to be linked8), and this linking could pro-
vide the topological structure2. Suppose that we have two
closed loops of field lines. These two closed loops have
a non-vanishing Gauss integral (Gauss linking integral)
if they are linked. The self-linking number (an integer
number) i.e. a non-vanishing Gauss integral describes
the knottedness2.

Where does the origin of a knot idea come from? In
physics, the idea of a knot, topologically stable matter,
had been proposed in 1868 by Lord Kelvin that the atoms
could be knots or links of vorticity lines of aether2. In
mathematics, especially in algebraic topology, a knot is
defined by the Hopf index 2. We will see that the Hopf
index is related to the Hopf invariant1.

As we mentioned, suppose that we have a scalar field
as a function of position vector, φ(~r), with a property
that can be interpreted using non-trivial Hopf map as
written below1,3

φ(~r) : S3 → S2 (1)

This non-trivial Hopf map is related to the Hopf invari-
ant9. The Hopf invariant, H, can be expressed as an
integral9,10 below9,11

H =

∫
S3

ω ∧ dω (2)

where ω is a 1-form on S39. The relation between the
Hopf invariant and the Hopf index, h, can be written as1

H = h γ2 (3)

where γ is the total strength of the field, that is the sum
of the strengths of all the tubes formed by the integral
lines of electric and magnetic fields1.

The Hopf invariant have deep relationships with the
Abelian Chern-Simons action9 (the Chern-Simons inte-
gral) and self-helicity in magnetohydrodynamics9. We



will see that the Abelian Chern-Simons action is related
to electromagnetic helicity.

In this article, we propose there exists a knot in the
geometrical optics, as a solution of the eikonal equation.
The reason is, in fact, there exists a knot in the Maxwell’s
theory1–3 and the geometrical optics (the eikonal equa-
tion) can be derived from the Maxwell’s theory (the
Maxwell equations)12. We treat the geometrical optics
as the U(1) gauge theory13,14, the same as the U(1)
Maxwell’s gauge theory. To the best of our knowledge,
the formulation of a knot in geometrical optics has not
been done yet1,2,4,15.

How does a knot appear in the geometrical optics? The
Abelian Chern-Simons integral related to the electromag-
netic helicity2, hem, can be written as16,17

hem = SCS =

∫
R3

εαµν ~Aα ~Fµν d
3x (4)

where εαµν is the Levi-Civita symbol, α, µ, ν = 1, 2, 317

denote a 3-dimensional space, ~Aα is the U(1) gauge po-

tential17 and ~Fµν is the U(1) gauge field tensor17 (field
strength tensor) or its curvature16 written below18

~Fµν = ∂µ ~Aν − ∂ν ~Aµ (5)

The U(1) field strength tensor is related to the scalar
field, φ, as1

~Fµν = fµν(φ) =
1

2πi

∂µφ
∗ ∂νφ− ∂νφ∗ ∂µφ

(1 + φ∗φ)2
(6)

where1

φ = a ei2πσ (7)

We consider a as a scalar amplitude as a consequence φ is
a scalar field. The relation (6) is valid for the weak field
only. It means that in the case of the weak field, fµν(φ)
is linear. But in general, fµν(φ) is non-linear. The non-
linearity of fµν(φ) (6) is shown by φ∗φ. If the field is
weak then φ∗φ << 1 so the denominator in eq.(6) can be
taken as being equal to one and fµν(φ) is equivalent to
the Maxwell theory1.

In the case of the geometrical optics, the relation
between the U(1) gauge potential13 and the eikonal
(phase)19, ψ1, is given by

~Aα = ~A U(1)
α = ~aα e

iψ = ~aα e
i
fθ
c (ψ1−ct) (8)

ψ1 =

∫ x2

x1

n dx (1-dimensional space) (9)

where ~aα is four-vector amplitudo, c is the speed of light
in vacuum and n denotes the refractive index, a num-
ber. Eq.(8) shows explicitly that we treat the geometrical
optics as the U(1) gauge theory13, the same as the U(1)
Maxwell’s gauge theory. The phase, ψ1, obey the Fer-
mat’s principle δψ1 = 0.

By substituting eqs.(5), (8), (9) into (4), in the case of
the 3-dimensional space, we obtain the Abelian Chern-
Simons integral expressed in the refractive index related
to the geometrical optics helicity, hgo, as follow∫
R3

εαµν ~aα e
i
fθ
c

(∫ x2
x1

n d3x−ct
)

{
∂µ

[
~aν e

i
fθ
c

(∫ x2
x1

n d3x−ct
)]
− ∂ν

[
~aµ e

i
fθ
c

(∫ x2
x1

n d3x−ct
)]}

d3x = hgo (10)

where we replaced the electromagnetic helicity to the ge-
ometrical optics helicity or the geometrical optics knot.
Both, hem and hgo, are integer numbers.

The Chern-Simons form of a connection was originally
used to study secondary characteristic classes before it
was interpreted as the Lagrangian of a field theory on
compact 3-manifold20. The characteristic classes play
an important role in the index theory of Atiyah-Singer21

where in the case for even-dimensional oriented compact
Riemannian manifold, the Gauss-Bonnet-Chern theorem
is a special case of the Atiyah-Singer index theory22. So,
could the Chern-Simons integral be formulated in even di-
mensional Euclidean flat space? Could the Chern-Simons
integral be formulated in even dimensional oriented com-
pact Riemannian manifold? Does there exist a rela-
tion between the Chern-Simons integral and the Gauss-
Bonnet-Chern theorem?

Inspired by the knot solution in the Maxwell’s linear
theory, roughly speaking, could every linear equation in
physics be constructed as weak field limit of a non-linear
equation?

If the self-linking number and the helicity are related to
the knot then can we show explicitly the relations between
the Gauss linking integral, the Hopf invariant and the
Chern-Simons integral, the self-linking number and the
helicity?

Eq.(10) shows explicitly the relation between the geo-
metrical optics helicity (the geometrical optics knot) and
the refractive index. We consider eq.(10) as a topolog-
ical quantum condition1. What is the consequence to a
choice of a number of the refractive index if the geomet-
rical optics helicity is an integer number? Could topo-
logical invariant, such as the geometrical optics helicity,
be complex integer number? What is the physical inter-
pretation if the geometrical optics knot is complex integer
number? Could helicity fluctuate?23 If helicity could fluc-
tuate, how do we choose and interpret a number of the
refractive index to accomodate the fluctuation of helicity?

We see from eqs.(2),(4), both equations are identical

where ω, dω are identical with ~Aα, ~Fµν respectively.
Does it mean that the Hopf invariant (2) is identical with
the Abelian Chern-Simons integral (4)? If there exists
a non-Abelian Chern-Simons integral, what is its conse-
quence to the form of the Hopf invariant formulation?

Eq.(6) show us the implicit relation between the U(1)

gauge potential, ~Aµ, and the scalar field, φ. Can we
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write the explicit relation between the U(1) gauge vector
potential and the scalar field?

We see from eqs.(7),(8), the amplitudes, ~aα and a, are
vector and scalar respectively. We consider that the am-
plitude is very important (probably, the most important)
quantity in physics. If the amplitude is zero then the
scalar field, the gauge potential are zero and we have no
physical information from both. Other example is the
most fundamental principle in quantum mechanics, i.e.
the Heisenberg uncertainty principle, can be written in
the commutation relation of amplitude24.

We write explicitly in eq.(8) the gauge potential of ge-

ometrical optics as the U(1) gauge potential, ~A
U(1)
α . It

has an interesting consequence if we relate the gauge the-
ory to the fibre bundle (global geometry) and formulate
the geometrical optics using the fibre bundle language14.

So far, we show the theoretical existence of the
geometrical optics knot only. Does the electromagnetic
(geometrical optics) knot exist in universe or laboratory?
Ball lightning25, probably, is an electromagnetic knot
in universe26. Tokamaks and devices constructed to
produce fireball are two possible laboratory settings to
observe ball lightning26. Knot of light may be generated
using tightly focused circularly polarized laser beams27.
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