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Abstract

In this article, we classify positive integers step by step, and use the

formulation to represent a certain class therein until all classes.

First, divide all integers ≥2 into 8 kinds, and formulate each of 7 kinds

therein into a sum of 3 unit fractions.

For the unsolved kind, again divide it into 3 genera, and formulate each

of 2 genera therein into a sum of 3 unit fractions.

For the unsolved genus, further divide it into 5 sorts, and formulate each

of 3 sorts therein into a sum of 3 unit fractions.

For two unsolved sorts i.e. 4/(49+120c) and 4/(121+120c) where c≥0, let us

depend on logical deduction to prove them separately.

AMS subject classification: 11D72; 11D45; 11P81
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1. Introduction

The Erdös-Straus conjecture relates to Egyptian fractions. In 1948, Paul

Erdös conjectured that for any integer n≥2, there are invariably
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4/n=1/x+1/y+1/z, where x, y and z are positive integers; [1].

Later, Ernst G. Straus further conjectured that x, y and z satisfy x≠y, y≠z

and z≠x, because there are convertible formulas 1/2r+1/2r=1/(r+1)+

1/r(r+1) and 1/(2r+1)+1/(2r+1) =1/(r+1)+1/(r+1)(2r+1) where r≥1; [2].

Thus, the Erdös conjecture and the Straus conjecture are equivalent from

each other, and they are called the Erdös-Straus conjecture collectively.

As a general rule, the Erdös-Straus conjecture states that for every integer

n≥2, there are positive integers x, y and z, such that 4/n=1/x+1/y+1/z. Yet

it remains a conjecture that has neither is proved nor disproved; [3].

2. Divide integers≥2 into 8 kinds and formulate 7

kinds therein
First, divide integers≥2 into 8 kinds, i.e. 8k+1with k≥1, and 8k+2, 8k+3,

8k+4, 8k+5, 8k+6, 8k+7, 8k+8, where k≥0, and arrange them as follows:

K\n: 8k+1, 8k+2, 8k+3, 8k+4, 8k+5, 8k+6, 8k+7, 8k+8

0, ①, 2, 3, 4, 5, 6, 7, 8,

1, 9, 10, 11, 12, 13, 14, 15, 16,

2, 17, 18, 19, 20, 21, 22, 23, 24,

3, 25, 26, 27, 28, 29, 30, 31, 32,

…, …, …, …, …, …, …, …, …,

Excepting n=8k+1, formulate each of other 7 kinds into 1/x+1/y+1/z:

(1) For n=8k+2, there are 4/(8k+2)=1/(4k+1)+1/(4k+2)+1/(4k+1)(4k+2);

(2)For n=8k+3, there are 4/(8k+3)=1/(2k+2)+1/(2k+1)(2k+2)+1/(2k+1)(8k+3);
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(3) For n=8k+4, there are 4/(8k+4)=1/(2k+3)+1/(2k+2)(2k+3)+1/(2k+1)(2k+2);

(4) For n=8k+5, there are 4/(8k+5)=1/(2k+2)+1/(8k+5)(2k+2)+1/(8k+5)(k+1);

(5) For n=8k+6, there are 4/(8k+6)=1/(4k+3)+1/(4k+4)+1/(4k+3)(4k+4);

(6) For n=8k+7, there are 4/(8k+7)=1/(2k+3)+1/(2k+2)(2k+3)+1/(2k+2)(8k+7);

(7) For n=8k+8, there are 4/(8k+8)=1/(2k+4)+1/(2k+2)(2k+3)+1/(2k+3)(2k+4).

By this token, n as above 7 kinds of integers be suitable to the conjecture.

3. Divide the unsolved kind into 3 genera and

formulate 2 genera therein
For the unsolved kind n=8k+1 with k≥1, we divide it by 3 and get 3

genera: (1) the remainder is 0 when k=1+3t; (2) the remainder is 2 when

k=2+3t; (3) the remainder is 1 when k=3+3t, where t≥0, as listed below.

k: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...

8k+1: 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, ...

The remainder: 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, ...

Excepting the genus (3), the author formulates other 2 genera as follows:

(8) For (8k+1)/3 to the remainder=0 when k=1+3t with t≥0, there are

4/(8k+1)=1/(8k+1)/3+1/(8k+2)+1/(8k+1)(8k+2). Since there are

(8k+1)/3=8t+3, so we confirm that (8k+1)/3 in the equation is an integer.

(9) For (8k+1)/3 to the remainder=2 when k=2+3t with t≥0, there are

4/(8k+1)=1/(8k+2)/3+1/(8k+1)+1/(8k+1)(8k+2)/3. Since there are

(8k+2)/3=8t+6, so we confirm that (8k+2)/3 in the equation is an integer.
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4. Divide the unsolved genus into 5 sorts and

formulate 3 sorts therein
For the unsolved genus (8k+1)/3 to the remainder=1 when k=3+3t with

t≥0, i.e. 8k+1=25, 49, 73, 97, 121 etc. let us divide them into 5 sorts:

25+120c, 49+120c, 73+120c, 97+120c and 121+120c where c≥0, as

listed below.

C\n: 25+120c, 49+120c, 73+120c, 97+120c, 121+120c,

0, 25, 49, 73, 97, 121,

1, 145, 169, 193, 217, 241,

2, 265, 289, 313, 337, 361,

…, …, …, …, …, …,

Excepting n=49+120c and n=121+120c, formulate other 3 sorts as follows:

(10)Forn=25+120c, there are 4/(25+120c)=1/(25+120c)+1/(50+240c)+1/(10+48c);

(11) For n=73+120c, there are 4/(73+120c)=1/(73+120c)(10+15c)+1/(20+30c)+

1/(73+120c)(4+6c) ;

(12) For n=97+120c, there are 4/(97+120c)=1/(25+30c)+1/(97+120c)(50+60c)+

1/(97+120c)(10+12c).

For each of listed above 12 equations which express part 4/n=

1/x+1/y+1/z, please each reader self to make a check respectively.

5. Proving the sort 4/(49+120c)=1/x+1/y+1/z

For a proof of the sort 4/(49+120c), it means that when c is equal to each
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of positive integers plus 0, there always are 4/(49+120c)=1/x+1/y+1/z.

After c is given any value, 4/(49+120c) can be substituted by each of

infinite more a sum of an unit fraction plus a proper fraction, and that

these fractions are different from one another, as listed below:

4/(49+120c)

= 1/(13+30c) + 3/(13+30c)(49+120c)

= 1/(14+30c) + 7/(14+30c)(49+120c)

= 1/(15+30c) + 11/(15+30c)(49+120c)

…

= 1/(13+α+30c) + (3+4α)/(13+α+30c)(49+120c), where α≥0 and c≥0

…

As listed above, it is observed that we can first let 1/(13+α+30c)=1/x.

In addition to 1/(13+α+30c)=1/x, we will go to prove

(3+4α)/(13+α+30c)(49+120c) = 1/y +1/z, where c≥0 and α≥0, ut infra.

Proof· First, let us analyse 3+4α on the place of numerator. We can be

seen that except 3+4α as one numerator, it can also be expressed as the

sum of an even number plus an odd number to act as two numerators, i.e.

(4α+3), (4α+2)+1, (4α+1)+2, (4α)+3, (4α-1)+4, (4α-2)+5, (4α-3)+6, ...

If there are two addends on the place of numerator, then, these two

addends are regarded as two matching numerators, and two matching

numerators are denoted by ψ and φ, also, there is ψ>φ between them.
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In numerators of a denominator, largest ψ is denoted as ψ1. In is obvious

that ψ1matches with smallest φ, so there are ψ1=4α+2 and smallest φ=1.

Second, let us look at (13+α+30c)(49+120c) as the denominator, in reality,

it merely needs us to take 13+α+30c as the denominator, and still reserve

49+120c for later.

In the fraction (4α+3)/(13+α+30c), let each α be assigned a number for

each time, according to the order α= 0, 1, 2, 3, ...

Then, the denominator of the fraction (4α+3)/(13+α+30c) is able to be

assigned into infinite more consecutive positive integers. As the value of

α goes up, accordingly, numerators are getting more and more, and new

adding numerators for each time are getting bigger and bigger.

When α =0, 1, 2, 3 and otherwise, 13+α+30c as denominators and 4α+3,

ψ and φ as numerators are listed below.

13+α+30c, α, (4α+3), (4α+2)+1, (4α+1)+2, (4α)+3, (4α-1)+4, (4α-2)+5, (4α-3)+6, ...

13+30c, 0, 3, 2+1, 1+2

14+30c, 1, 7, 6+1, 5+2, 4+3, 3+4 , 2+5, 1+6

15+30c, 2, 11, 10+1, 9+2, 8+3, 7+4, 6+5, 5+6, ...

16+30c, 3, 15, 14+1, 13+2, 12+3, 11+4, 10+5, 9+6, ...

17+30c, 4, 19, 18+1, 17+2, 16+3, 15+4, 14+5, 13+6,...

..., ..., ..., ..., ..., ..., ..., ..., ..., ...

As can be seen from the list above, every denominator as (13+α+30c)

corresponds with two special matching numerators as ψ1 and 1, from this,
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we get the unit fraction 1/(13+α+30c).

For the unit fraction 1/(13+α+30c), multiply its denominator by 49+120c

reserved in the front, then, we get the unit fraction

1/(13+α+30c)(49+120c), and let 1/(13+α+30c)(49+120c) be equal to 1/y.

After that, we go to prove that ψ1/(13+α+30c) is an unit fraction, namely

prove that (4α+2)/(13+α+30c) is an unit fraction.

Since 4α+2 as numerators be even numbers, such that the denominators

(13+α+30c) must be even numbers. Only in this case, it is going to be

able to reduce the fraction. Thus, α in the fraction (4α+2)/(13+α+30c)

must be odd numbers.

After assign odd numbers 1, 3, 5 and otherwise to α and each resulting

fraction divided by 2, the fraction (4α+2)/(13+α+30c) is turned into the

fraction (3+4t)/(k+15c) identically, where c≥0, t≥0 and k≥7. The point is

that 3+4t and k+15c after the valuations coexist within a fraction in the

sense that they have same ordinal number in order from small to large, i.e.

(3+4t)/(k+15c)=3/(7+15c), 7/(8+15c), 11/(9+15c), ...

Such being the case, let us divide the numerator and denominator of the

fraction (3+4t)/(k+15c) by 3+4t, then, we get a temporary indeterminate

unit fraction, and its denominator is (k+15c)/(3+4t) and its numerator is 1.

Thus, we are necessary to prove that (k+15c)/(3+4t) as the denominator

can be a positive integer in which case c≥0, t≥0 and k≥7.
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For the fraction (k+15c)/(3+4t), due to k≥7, k+15c after the valuations

are infinite more consecutive positive integers, while 3+4t =3, 7, 11 and

otherwise positive odd numbers. The key is that each number of 3+4t

after the valuations can seek its integer’s multiples within infinite more

consecutive positive integers of k+15c, in which case c equals each of

positive integers plus 0.

As is known to all, there is a positive integer that contains the odd factor

2n+1 within 2n+1 consecutive positive integers, where n=1, 2, 3, ...

Like that, there is a positive integer that contains the odd factor 3+4t

within 3+4t consecutive positive integers of k+15c, whatever odd number

3+4t is equal to. It is obvious that a fraction that consists of such a

positive integer as the numerator and 3+4t as the denominator is an

improper fraction.

Undoubtedly, every such improper fraction that is found in this way, via

the reduction, it is surely a positive integer. That is to say, (k+15c)/(3+4t)

as the denominator of the aforementioned temporary indeterminate unit

fraction can become a positive integer, and represent the positive integer

as μ. Then, in this case, the fraction (3+4t)/(k+15c) is expressed as 1/μ.

For the unit fraction 1/μ, multiply its denominator by 49+120c

reserved in the front, then, we get the unit fraction 1/μ(49+120c), and let

1/μ(49+120c) be equal to 1/z.
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If 3+4α serve as one numerator, then, we can still prove

(3+4α)/(13+α+30c)(49+120c)=1/y by the same principles and methods as

in the proof concerning ψ1/(13+α+30c)(49+120c)=1/z.

When 3+4α serve as one numerator and from this get an unit fraction, we

can multiply the denominator of the unit fraction by 2 to make a sum of

two identical unit fractions, afterwards, convert them into the sum of two

each other’s -distinct unit fractions by the formula 1/2r+1/2r=1/(r+1)+1/r(r+1).

Thus it can be seen, (3+4α)/(13+α+30c)(49+120c) is absolutely able to be

expressed into a sum of two each other’s -distinct unit fractions, where

c≥0 and α≥0.

To sum up, we have proved 4/(49+120c)=1/x+1/y+1/z, where c≥0.

6. Proving the sort 4/(121+120c)=1/x+1/y+1/z

The proof in this section is exactly similar to that in the section 5. Namely,

for a proof of the sort 4/(121+120c), it means that when c is equal to each

of positive integers plus 0, there always are 4/(121+120c)=1/x+1/y+1/z.

After c is given any value, 4/(121+120c) can be substituted by each of

infinite more a sum of an unit fraction plus a proper fraction, and that

these fractions are different from one another, as listed below.

4/(121+120c)

= 1/(31+30c) + 3/(31+30c)(121+120c),

= 1/(32+30c) + 7/(32+30c)(121+120c),
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= 1/(33+30c) + 11/(33+30c)(121+120c),

…

= 1/(31+α+30c) + (3+4α)/(31+α+30c)(121+120c), where α≥0 and c≥0.

…

As listed above, it is observed that we can first let 1/(31+α+30c)=1/x.

In addition to 1/(31+α+30c)=1/x, we will go to prove

(3+4α)/(31+α+30c)(121+120c) =1/y +1/z, where c≥0 and α≥0, ut infra.

Proof· First, let us analyse 3+4α on the place of numerator. We can be

seen that except 3+4α as one numerator, it can also be expressed as the

sum of an even number and an odd number to act as two numerators, i.e.

(4α+3), (4α+2)+1, (4α+1)+2, (4α)+3, (4α-1)+4, (4α-2)+5, (4α-3)+6, ...

If there are two addends on the place of numerator, then, these two

addends are regarded as two matching numerators, and two matching

numerators are denoted by ψ and φ, also, there is ψ>φ between them.

In numerators of a denominator, largest ψ is denoted as ψ1. In is obvious

that ψ1matches with smallest φ, so there are ψ1=4α+2 and smallest φ=1.

Second, let us look at (31+α+30c)(121+120c) as the denominator, in

reality, it merely needs us to take 31+α+30c as the denominator, and still

reserve 121+120c for later.

In the fraction (4α+3)/(31+α+30c), let each α be assigned a number for

each time, according to the order α= 0, 1, 2, 3, ...
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Then, the denominator of the fraction (4α+3)/(31+α+30c) is able to be

assigned into infinite more consecutive positive integers. As the value of

α goes up, accordingly, numerators are getting more and more, and new

adding numerators for each time are getting bigger and bigger.

When α =0, 1, 2, 3 and otherwise, 31+α+30c as denominators and 4α+3,

ψ and φ as numerators are listed below.

31+α+30c, α, (4α+3), (4α+2)+1, (4α+1)+2, (4α)+3, (4α-1)+4, (4α-2)+5, (4α-3)+6, ...

31+30c, 0, 3, 2+1, 1+2

32+30c, 1, 7, 6+1, 5+2, 4+3, 3+4 , 2+5, 1+6

33+30c, 2, 11, 10+1, 9+2, 8+3, 7+4, 6+5, 5+6, ...

34+30c, 3, 15, 14+1, 13+2, 12+3, 11+4, 10+5, 9+6, ...

35+30c, 4, 19, 18+1, 17+2, 16+3, 15+4, 14+5, 13+6,...

..., ..., ..., ..., ..., ..., ..., ..., ..., ...

As can be seen from the list above, every denominator as (31+α+30c)

corresponds with two special matching numerators as ψ1 and 1, from this,

we get the unit fraction 1/(31+α+30c).

For the unit fraction 1/(31+α+30c), multiply its denominator by

121+120c reserved in the front, then, we get the unit fraction

1/(31+α+30c)(121+120c), and let 1/(31+α+30c)(121+120c) be equal to 1/y.

After that, we go to prove that ψ1/(31+α+30c) is an unit fraction, namely

prove that (4α+2)/(31+α+30c) is an unit fraction.

Since 4α+2 as numerators be even numbers, such that the denominators
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(31+α+30c) must be even numbers. Only in this case, it is going to be

able to reduce the fraction. Thus, α in the fraction (4α+2)/(31+α+30c)

must be odd numbers.

After assign odd numbers 1, 3, 5 and otherwise to α and each resulting

fraction divided by 2, the fraction (4α+2)/(31+α+30c) is turned into the

fraction (3+4t)/(m+15c) identically, where c≥0, t≥0 and m≥16. The point

is that 3+4t and m+15c after the valuations coexist within a fraction in the

sense that they have same ordinal number in order from small to large, i.e.

(3+4t)/(m+15c)=3/(16+15c), 7/(17+15c), 11/(18+15c), ...

Such being the case, let us divide the numerator and denominator of the

fraction (3+4t)/(m+15c) by 3+4t, then, we get a temporary indeterminate

unit fraction, and its denominator is (m+15c)/(3+4t) and its numerator is 1.

Thus, we are necessary to prove that (m+15c)/(3+4t) as the denominator

can be a positive integer in which case c≥0, t≥0 and m≥16.

For the fraction (m+15c)/(3+4t), due to m≥16, m+15c after the valuations

are infinite more consecutive positive integers, while 3+4t=3, 7, 11 and

otherwise positive odd numbers. The key is that each number of 3+4t

after the valuations can seek its integer’s multiples within infinite more

consecutive positive integers of m+15c, in which case c equals each of

positive integers plus 0.

As is known to all, there is a positive integer that contains the odd factor
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2n+1 within 2n+1 consecutive positive integers, where n=1, 2, 3, ...

Like that, there is a positive integer that contains the odd factor 3+4t

within 3+4t consecutive positive integers of m+15c,whatever odd number

3+4t is equal to. It is obvious that a fraction that consists of such a

positive integer as the numerator and 3+4t as the denominator is an

improper fraction.

Undoubtedly, every such improper fraction that is found in this way, via

the reduction, it is surely a positive integer.

That is to say, (m+15c)/(3+4t) as the denominator of the aforementioned

temporary indeterminate unit fraction can become a positive integer, and

represent the positive integer as λ. Then, in this case, the fraction

(3+4t)/(m+15c) is expressed as 1/λ.

For the unit fraction 1/λ, multiply its denominator by 121+120c

reserved in the front, then, we get the unit fraction 1/λ(121+120c), and let

1/λ(121+120c) be equal to 1/z.

If 3+4α serve as one numerator, then, we can still prove

(3+4α)/(31+α+30c)(121+120c) = 1/y by the same principles and methods

as in the proof concerning ψ1/(31+α+30c)(121+120c)=1/z.

When 3+4α serve as one numerator and from this get an unit fraction, we

can multiply the denominator of the unit fraction by 2 to make a sum of

two identical unit fractions, afterwards, convert them into the sum of two
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each other’s -distinct unit fractions by the formula 1/2r+1/2r=1/(r+1)+1/r(r+1).

Thus it can be seen, (3+4α)/(31+α+30c)(121+120c) is absolutely able to

be expressed into a sum of two each other’s -distinct unit fractions, where

c≥0 and α≥0.

To sum up, we have proved 4/(121+120c)=1/x+1/y+1/z, where c≥0.

The proof was thus brought to a close. As a consequence, the Erdös-

Straus conjecture is tenable.
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