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Abstract
Solving quartics via Ferrari’s method

Introduction: Ferrari’s method for quartic equation

. The basic idea: We will reduce the main quartic equation in two quadratic equation
and as method for solution of quadratic equation is known we can easily solve main
equation.

. Let the quartic equation is given as

f (x)=ax*+4bx’ +6cx* +4dx+e=0 (1)

. We use the fact that

M2-N?=0=(M+N)(M-N)=0=(M+N)=00r(M-N)=0 (2)

. We start with

(ax2+2bx+s)2—(2mx+n)2 =0 (3)

for some s,m,n

(3) = (a’x* +4b°X* +5” + 4abx® + 2asx” + 4bsx ) — (4m’x” +n’ + 4mnx) =0 (4)

(4)= a’x‘ +4abx’ +(4b? + 2as—4m? ) x* +(4bs—4mn)x+ (s’ —n’) =0 (5)
By equation (1) we have
a- f (x)=a’x*+4abx’ +6acx’ +4adx+ae=0 (6)



Comparing equation (5) and (6) we get

2as+4b> —4m* =6ac , 4bs—4mn=4ad , s’-n’=ae (7)
So we have
as+2b°-2m*=3ac , bs-mn=ad , s°-n’=ae (8)
Now we have
(8)= (bs—ad)’ :(%Z—Bacj(sz —ae) 9)

Simplifying and solving this equation for one value of s with trial and error method or as it
will be cubic equation in s we can use cardano method to find one real value of s, using that
find value of m& n.

Then using (3) we can have two quadratic equations and hence we can solve the main quartic
equation.

Main Example

X —3x? —2x+1=0 (10)
Roots
1 1 4
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Ve Ty ° \/3+25 (1)
=__\/3 25 += [3-2s5— 12
+ S+ S m ( )
1 1
—=3+25-= [3-2 13
> +ZS 5 S+m ( )
1 1 4
==3¥25+= [3-25+ ——— 14
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On U=X,

Recall that
= 4(1—1 l—l+1—i+...j (16)
3 57 9 11
Let
1 1 4
U=X,=—+/3+25—= [3—-25+ 17
) 2J J3+2s 17
We have

realm s[4 (M8 }( ] 18)
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Sequence for U =X,

w3 m} k-
— Z 2n—2m—2k3—m+k [ k j(n k ZmJ n =1’ 2'3,.“ (20)
k

m=0 k=0 m k
=U =X, (21)
n—>oou
{un 'n }z {1, 2,7,20,60, 178 529,1572,4671,13880, .. } (22)
u, ‘n>0 {1 g l E 30 178 529 524 4671 } (23)
Uy, 2'7'20'3'89'529 15721557 13880

Remark: [x]= floor (x), is the floor function.
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