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Abstract. A new non-Archimedean approach to interacted qumafiiteids is presentedin proposed approach, a field operator
¢(x,t) no longer a standard tempered operator-valuedhditbn, but a non-classical operator-valued fiorctWe prove using
this novel approach that the quantum field theaith WamiltonianP (¢), exists and that the correspondifig algebra of
bounded observables satisfies all the Haag-Kastiems except Lorentz covariance. We prove thaftge), quantum field
theory model is Lorentz covariant.

INTRODUCTION

Extending the real numbeRsto include infinite and infinitesimal quantitiesginally enabled D. Laugwitz [1] to
view the delta distributiofi(x) as a nonstandard point function. IndependentliRdébinson [2] demonstrated that
distributions could be viewed as generalized patyiads. Luxemburg [3] and Sloan [4] presented aerakte re-
presentative of distributions as internal functiarithin the context of canonical Robinson's themfirponstandard
analysis For further information on nonstandard real analysie refer to [5]-[6].

Abbreviation 1.1.1In this paper we adopt the following notationst &standard sét we often writeE,,. For a set
E let°E,, be a sétE,, = {"x|x € E,}. We identifyz with °z i.e.,z = °z for all z € C. HencelE,, = E,, if E € C,
e.g..’C=C,°R=R,°P =P, 9L, =L, etc. Let'R. "Ry "Rgy,, "Ry, and*N,, denote the sets of infinitesimal
hyper-real numbers, positive infinitesimal hypeatneumbers, finite hyper-real numbers, infinite ésspeal
numbers and infinite hyper natural numbers, respagt Note that R, = "R\"R,,, *C = "R +i'R, *Cgq, =
"Rein + 1" Reip -

Definition 1.1Let {X, 0} be a standard topological space andXebe the nonstandard extensiornXoiLet 0, de-
note the set of open neighbourhoods of peigtX. The monadnon, (x) of x is the subset ofX defined by
mon,(x) =N {*0|0 c 0,}.The set of near standard points'¥fis the subset ofX defined bynst (*X) =U
{mon, (x)|x € X}. Itis shown thafX, 0} is Hausdorff space if and onlyxf= y impliesmon,(x) N mon,(y) =
@. Thus for any Hausdorff spdcg 0}, we can define the equivalence relatignonnst (*X) so thatx =, y if and
only if x € mon,(z) andy € mon,(z) for somez € X.

Definition 1.2 The standard Schwargpace of rapidly decreasing test function®Rdmn € N is the standard
function space is defined b§(R™, C) = {f € C*(R",C)|Va, B € N"[|fllpz < |}, where

Ifllap = supzenn [x* (DPFGO)].
Remark 1.11f f is a rapidly decreasing function, then foreake N™ the integral ofx*D# f (x)| exists

f]Rn|x“D5f(x)|d”x < 0,



Definition 1.3 The internal Schwartzpace of rapidly decreasing test functions®f, n € *N is the function space
defined by *SC'R™, *C) = {*f € *C *('R",*O)|Va, B € "N*[*I"fllap < *o]}, where

Wfllap = sup {x« (DFF () Ix € R™}.

Remark 1.2 If f is a rapidly decreasing functiofi,€ S(R", C), then for alle, B € *N™ the internal integral of
*x*DP*f(x)| exists

e

*x*DP*f(x)| d™x < *oo.

HereD#f(x) = (D £(x)).

Definition 1.4 The Schwartspace of essentially rapidly decreasing test fonston"R"™, n € *N is the function
space defined by

“Stin "R, *C) =
{*f € C'=CRY OV (@ B) (@ B € "N Fcqp(cap € "Ren JVa(x € R |5 ("DF £ ()| < cag]}

Remark 1.3 1f *f € *Sg, ("R™, *C), then for alla € *N™ the internal integral df x*D#*f(x)| exists and finitely
bounded above

o XEDP T (0)| d™x < dyp, dap € R -

Abbreviation 1.2 The standard Schwarspace of rapidly decreasing test function®Rdnwe will be denote by
S(R™). Let'S("R™), n € *N denote the space 8€-valued rapidly decreasing internal test functionsR",n € *N
and let'Sg, (*R™), n € "N denote the set dfCy, -valued essentially rapidly decreasing test funstioriR™, n € *N.
If h(w,x):R X R® andf: R" - C are Lebesgue measurable BA" we shall write{*h, *f) for internal Lebesgue

integral*ﬁRn *h*f d™x with *f € *Sg, (*R™). Certain internal functionsi(w, x): *R X *R™ — *C define classical
distributiont(f) by the rule [3][4]:

() = st(("h, *f)). )

Herest(a) is the standard part afandst({*h, *f)) exists [5].

Definition 1.5 We shall say thath(w, x) with w = @ € "R, is an internal representative to distributidif) and
we will write symbolically 7(x, ..., x,) = "h(w, x4, ..., x,,) if the equation (1) holds.

Definition 1.6 [6] We shall say that certain internal functidhgw, x): "R X *R™ — *C is a finite tempered
distribution if *f € *Sg, "R™) implies|*h, *f| € °R = R. A functions*h(w, x): "R X *R™ - *C is called
infinitesimal tempered distribution iff € *Sg, ("R™) implies|*h, *f| € "R, .The space of infinitesimal tempered
distribution is denotedyb*S. (*R™).

Definition 1.7 We shall say that certain internal functidh$w, x): *R x *R** - *C is a Lorentzs -invariant
tempered distribution if f € *Sg,, "R™) andA € °L%implies (*h, *f (Axy, ..., Ax,)) = (°h, *F (X1, o) X))

Example 1.1 Let us consider Lorentz invariant distribution

1 gy Sin Wt 1 .
D(x) = wa e‘kr¥d3k =;5(r2 — t%)sign(t). 2



Here w = |k| = ki + k3 + k% and r = (x, x5, x3), ¥ = y/x{ + x2 + x5. It easily verify that distributio® (x)
has the following internal representative

D(x,®) = ikr%d% A3)

1 *
(2m)3 flklsw €

Herew € *R.. By integrating in (3) over angle variables we get

1
8m2r

D(x,®) =

*fom{eiw(r—t) 4 e l0r=t) _ pio(r+t) _ e—iw(r+t)} dow. (4)

From (4) by canonical calculation finally we get

o1 sinw(r—t)_ sinw(r+t)] _ S(r-)-6(r+t) _ 1 2 _ $2Ves
D(x,w) ~ 4n2r[ r—t T+t ] - an2r - ZnS(T t9)sign(). (3)
Example 1.2 We consider now the following Lorentz invarianstdibution:
_ 1 ikr COSwt ;3 =Li
D;(x) = G Jrae ——d’k =5 (6)

It easily verify that distributio® (x) has the following internal representative

ikr €OS wt d3k (7)

1 *
Dl(x' m) = (271_)3 flklswe ®

Herew € "R... By integrating in (7) over angle variables we get

Dy(x, @) & = — [{el00D — @00 4 pla(rtD) _ om0} gy, ®)
From (8) finally we get
L _2 -2 2cosw(r—t) | 2cosw(r+t)] 1 1

D,(x,w) ~ -5 [i(r—t) t oo itr=t) ir+t) ] T anta ©

Example 3.We consider now the following Lorentzariant distribution

@)(_; 2
_ 1 ier—eGiolely 4%k _ _ m B2 (-im1x?1)

A (x) 2G2m)? f]R3 e (k) 8t my|x?| (10

Here—x2 < 0, e(k) = /| k2| + m? andHfZ) is a Hankel function of the second kind. It easiyify that
distributionA.(x) has the following internal representative

pillr—e()lt)) Lk (11)

1 *
Ac(x, @) = 2(2m)3 flklsw e(k)

From (10)-(11) it follows*A,(x) = A, (x, @) + A.(x) where

1 pilkr—c(i)tl) Lk (12)

A () = 2(2m)3 flk|>w e(k)

Note that for alA € °L',, A.(Ax) € *S.(*R™) and therefore for al\ € °L', A, (Ax, @) =~ A.(x, @), i.e.,A.(x, @)
is a Lorentzx~ -invariant tempered distribution, see definitiormus we can set= 0 in (11).By integrating in
(11) over angle variables and using substitutionasfables k| = m sinh(u) we get



A (x, @) ~ —— *f_lr;sﬂ exp(imrsinh(u))du. (13)

8n2ir
Note that
*HP (x) = ?f_moo exp(imrsinh(w) )du=A.(x, @) + E(x, @), (14)
E(x,w) = ?f__lgw exp(imrsinh(w))du + flnI; exp(imrsinh(w))du. (15)

From (13)-(15) finally we obtaim, (x, @) ~ H{? (x) , sinceE(x, ) € *S.(‘R™).
Example 1.4 Let us consider Lorentz invariant distribution

A(x — y) = [{exp[—ip(x — )] — exp[ip(x — ¥)]} (p* — m*)I(P*)d*p. (16)
From (16) one obtains(x —y) = E,(x —y) — 2,(x — y), where

d3p

Ei(x =) = [{expllip(x = Y] - i@ =y = (17)
:(x =) = [{exp{[~ip(x = )] + 0@ x° ~ y)}) T, (18)

w(p) = /p? + m2. It easily verify that distribution (17) and (1183s the following internal representatives

B0 =3,0) = fpfexplliG — )] - 0@ G )} e (19)
220 = ,@) = [ pf—exp|lip(x = Y] + 0@ ° — ¥} S (20)

Note that "A(x —y) = [E;(x —y, @) + E,(x —y,@)] + [El(x -y, @) +E,(x—y, w)], where

51(x = 3,0) = fysolexplliptc = 3] - 0@~ Y} s, (21)
5= 3,0) = fyyupl-explipCe =] + 0@ ° ¥} s (22)

Note that for alA € °L%,, Z,(A(x — y), @) + &, (A(x — y), ) € *S.(*R™) and therefore for all
A€ LY A(A(x — y)) = A(A(x — ¥), @) = E,(Alx — y),®) + E,(A(x — ¥), @), i.e.,A(x — y,w) is a Lorentz
~-invariant tempered distribution, see definitiorFom (20) by replacemept— —p we obtain

B (x—y,@) = = [ lexpllip(x — )] + iw®) (x° - y*)}} % . (23)
From (19) and (23) we get

d3p

Ax —y,®) =E(x —y,@) + E(x —y,®) = [, sinlw®) (x° - y")]exp[ip(x — y)] Nz (24)

Thus for any points andy separated by space-like interval from (24) we iokitzat

Alx —y,@w) =0, (25)



sinceA(x — y, w) is a Lorentzs-invariant tempered distribution. From (25) for gigintsx andy separated by
spacelike interval we obtain that(A(x — y,@)) = 0.

Definition 1.8 [8] Let for eachn > 0: H,,, = {p € R*|p - p = m?,m >,p, > 0}, wherep = (p°, —p*, —p?, —p3).
Here thesetsH,, which are standard mass hyperboloids, are invianiagier’L’.. Let j,, be the homeomorphism of
H,, ontoR3 given by j,,: (0o, P1, P2, P3) = (P1, P2, p3) = p. Define a measurg,, (E) onH,, by

d3
Qi (E) = fmmﬁ :
The measur@,,(E) is °L%. -invariant [8].
Theorem 1.1[8] Let u is a polynomially bounded measure with suppo#tinif u is °Ll, = L',- invariant, there
exists a polynomially bounded measpr@n[0,0) and a constantso that for any € S(R*)

Jufdu =cf©@+["dp(m) (f s ""27{:;?;:2"’3”3”) . (26)

Theorem 1.2 Let i is a polynomially boundet!, - invariant measure with supportifp. Let F(f) be a linear
x-continuous functiondF: *Sg, (*R*) - *Rg, defined by*fw *f d u and there exists a polynomially bounded

measurg on[0,00) such thai_;f(:oo d *p (m) € *Rg, and a constant€ “Rg,. Then for anyf € *S . (*R*) and for
anyx € "R, the following property holds

(27)

FCf) = c*f(0) + fo*oo d*p (m)< flpls}{ *f( ’|p|2+m2.p1,pz,p3)d 3p>

JIplZ+m?

Definition 1.9 Let y (%, p) be a function such tha (s, p) = 1 if |p| <, (¢, p) = 0if |p| > x, »x € *R,,.Define
internal measurg,, ,, on*H,, by

T xCep)dip
O (B) = [, SEEE. (28)
Theorem 1.3 [8] Let W, (x4, x,) be the two-point function of a field theory sagisfy the Wightman axioms and the
additional condition thaf,, ¢ (f)y,) = 0 for all f € S(R*). Then there exists a polynomially bounded positive
measurep(m) on [0,00) so that for all for alf € S(R*)

Wa(F) = (o 0 (e (o) = [ F)f () Wyl — x)d*xd*y = ([, fdu, ) dp(m). (29)

Theorem 1.4 Let W, (x4, x,) be the two-point function of a field theory memtgal in Theorem 1.3. Then for all
f € Sin ("R*) and for anyr € *R,, the following property holds

Wo(f) = 1,7 (foy FAms) d'p(m). (30)

Definition 1.10 (1) Let L(H) be algebra of the all densely defined linear dpesan standard Hilbert spadé.
Operator-valued distribution oR™, that is a mapp: S( R™) — L(H) such that there exists a dense subspace

D c H satisfying:

1. for eachlf € S(R™) the domain ofg containsD,

2. the induced mapS —» End(D), f = ¢ (f), islinear,

3. for eachh, € D andh, € H the assignmenf — (h,, p(f)h,) is a tempered distribution.

(2) Certain operator-valued internal functior(*f, @): *S( *Rn) - *L(*H) is an internal representative for standard

operator valued distributiop (f) if for each near standard vectag € *D and h, € *H the equality holds



(ha, @(hy) = st(*(hy, 9 (f, @)hy)), (31)
whereh, ~ h, andh, ~ h,.
Definition 1.11[9] Let H be a Hilbert space and denoteHy then-fold tensor produci™ = HQ H® - QH. Set
H® = Cand definegF(H) = H". F(H) is called the Fock space over Hilbert spHcéoticeF (H) will be
separable iff is. We set now! = L,(R?) then an elemenp € F(H) is a sequence o€ -valued functions
Y = {1, V1), Yo (xq, x5), Yo (g, x5, %3), oo, Wy (x4, ..., )}, n € N and such that the following condition holds

|¢0|2 + ZTLE N(fll)bn(xlﬂ '-"xn)|2d3nx) < .
Definition 1.12 [8] Let us define now external operatdip) onF, with domainDg by
(a@)P)™ = Vn+ TP (p, ky, . hey). (32)

The formal adjoint of the operata(p) reads
@ @™ = =5, D@ — k)™ (ky, s g, K e k) (33)

Definition 1.13 [8] Lety!™ be a vectorfin = {1/;(”)}::1 for whichy™ = 0 for all except finitely many: is
called a finite particle vector. We will denote thet of finite particle vectors . The vectorQ, = (1,0,0, ...) is
called the vacuum.

Definition 1.14 We let now' D-s = {*9|*yp € *F, "™ € *S ("R®"),n € *N} and for eaclp € *R®" we define an
internal operatota(p) on*F, with domain*D-¢ by

Ca@yP)™ = Vn+ TP (p, ky, k). (34)
The formal+-adjoint of the operatdia reads
Cat @Y™ = =T, 6D @~ k) YD Uy ki Ky e, k) (35)

We express the free internal scalar field andithe zero fields with hyperfinite momentum cut-offe *R,, in
terms of*a’(p) and*a(p) as quadratic forms oiD-g by

P, (x, ) =
@02 [, (@)t - ) at @) + (exp@@) + i) a () 2 (36)
"G, 0) = @02 {(exp(=ipx)at () + (exp(ipx)) a ()} J% , (37)
T, ) = @072 [ {(exp(=ip)) "’ (@) + (exp(ip0) e (1)} (38)

Theorem 1.5 Letd,,(x, t) and @,,(x, t), m,,(x,t) be the free standard scalar field and the time felds
respectively. Then for any € *R,, the operator valued internal functions (35)-(3i¥eg internal representatives
for standard operator valued distributiots, (x, t) and ¢,,,(x, t), m,,(x,t) respectively.

Definition 1.15 Let{X, ||-||} be a standard Banach space.Fear*X ande > 0, ~ 0 we define the opes-ball
aboutx of radiuse to be the seB,(x) = {y € *X|*||lx — y|| < &}.

Definition 1.16 Let {{X, ||-||} be a standard Banach spae; X, thus'Y c *X and letx € *X.Thenx is anx-

accumu-lotion point ofY if for anye € *R.. there is a hyper infinite sequer{o&,\L};‘:lin *Y such that{xn};‘:1 n



(B:CO\{x} = ).

Definition 1.17 Let {{X, ||:||} be a standard Banach spaceYlet *X,*Y is * -closed if any--accumulation point of
Y is an element GfY.

Definition 1.18 Let {{X, ||-|[} be a standard Banach space. We shall say thatahteyper infinite sequence
{xn};"ilin *X is*-converges ta € *X asn — *oo if for anye € "R, there isN € *N such that for any >

N:¥lx —y|l < e.

Definition 1.19 Let {{X, ||"l|x}, {{Y, lIlly} be a standard Banach spaces. A linear internahtipel: D(4) € *X -
*Y isx*-closed if for every internal hyper infinite sequel{mn};‘ﬁ1 in D(A) = -converging toc € *X such that
Ax, » y €'Y asn - "o one hasx € D(4) andAx = y. Equivalently A is *-closed if its graph is -closed in the
direct sum'X @ *Y.

Definition 1.20 Let H be a standard external Hilbert space. The grapiheofternal linear transformatidh *H —
*H is the set of pairf{¢, Te)|@ € D(T)}. The graph of’, denoted by (T), is thus a subset 6ff x *H which is
internal Hilbert space with inner produ€to,, Y1), {®,, ¥,)) = (@41, ¢2) + (Y1, ¥,).The operatof is called a
*-closed operator if"(T) is ax* -closed subset of Cartesian produftx *H.

Definition 1.21 Let H be a standard Hilbert space. [gtandT be internal operators on internal Hilbert spdgée
Note that ifl (T1) > I['(T), thenT; is said to be an extension®fand we writdl; S T. Equivalently,T; o T if and
only if D(T;) © D(T) andT,¢ = T¢ for allp € D(T).

Definition 1.22 Any internal operatof on*H is *-closable if it has a-closed extension. Everyclosable internal
operato!T has a smallest-closed extension, called isclosure, which we denote ByT.

Definition 1.23 Let H be a standard Hilbert space. [ebe ax-densely defined internal linear operator on irgérn
Hilbert space€H. Let D(T™*) be the set op € *H for which there is a vectdre *H with (Ty, @) = (¢, &) for all

Y € D(T), then for eaclp € D(T*), we defineT*p = £. T is called the--adjoint ofT. Note thatS c T implies

T c S

Definition 1.24 Let H is a standardiilbert spaceA *-densely defined internal linear operafoon internal Hilbert
space'H is called symmetric (or Hermitian)¥f c T*. Equivalently, T is symmetric if and only ifT ¢, ) =

(¢, TY) for all o, € D(T).

Definition 1.25 Let H be a standard Hilbert spadesymmetric internal linear operatron internal Hilbert space
*H is called essentially self-adjoint if its x-closurex-T is self =-adjoint. If T is =-closed, a subsé c D(T) is
called ax-core forT if - (T D) =T.If T is essentially self-adjoint, then it has one and only one

self «-adjoint extension.

Theorem 1.6 Letn,, n, € N and suppose tha (ky, ... kn,, 1, ..., Pn,) € "Lo("R3M1+m2)) where

W (ky, ... kn,, D1, -oes Py ) is @*C -valued internal function ofR*™1#72), Then there is a unique operafyy on
*F(*L,(*R®)) so that'D«; < D(Ty,) is a* - core forT,, and

(1) as*C-valued quadratic forms GiD«g X *D+g

Ty = *I*R3(n1+n2) W(kp v kn D1y Pnz) (H?:ll *a*(ki))(H?ﬁl *a(pi))dnlkdnzp
(2) As*C-valued quadratic forms dbxg X D+g

Ty = *f*IR3(n1+nz) W(kp vk 015 e 'Pnz) (H?:H “at (kl))(l'IfZl *a(pi))dnlkdnzp

(3) On vectors ifF, the operatordy, and Ty, are given by the explicit formulas

(I-nz+nq) _

(Tw(CY))



K(l,nl,nz)*S[ Jipy1sw *fl |SmW(k1,...knl,pl,...,pnz)*t,b(l)(pl,...,pnz,kl,...knl)d3"2 p], (39)

Pn,

(TV’,‘,(*I/)))n =0ifn <n; —n,,

(I-ni+nz)

(Tw C¥))

K(l,ny;,n,)*S [ fImISw *f|Pn2|Sw W(kl, vk, D1 ---'Pnz)*l,l)(l)(l?p wos Py bt e knl)d3n1 k] (40)

(T{{,(*l/)))n =0,ifn<n, —n,.

U(l+ng —np)1 /2 ;
e ] ,ny,n,; € NI € "N,

Proof. For vectorsy € D-g we defineTy, (*i) by the formula (39). By the Schwarz inequality &nel fact thatS
is a projection we get

HereS is the symmetrization operator defined in [9] &{d n,, n,) = [

2, )
17415 (41)

(9)

* 2

( (T Cypy) ) < K(ny,np)’
Let us now define the operatf}, (1)) onD-¢ by the formula (39), then for &lp, *y € D+, then one obtains
directly *( "o, Ty, "Y) = *(Tyy *@, *Y). Thus,Ty, is * -closable andy;, is the restriction of the -adjoint of T, on

D+g. We will useTy, to denotex -T,,, andTy;, to denote the -adjoint ofT,,,. By the definition ofTy,, D+ is a* -core
and further, sincd, is bounded on theparticle vectors iD-s we get'F, ¢ D(Ty,). Since the right-hand side of
(39) is also bounded on tlgparticle vectors, equation (38) represefison alll-particle vectorsThe proof of the
statement (2) abo®;, is the same.

Definition 1.26 [8] Define standard -space by) =x;_; R. Leto be thes-algebra generated by infinite products
of measurable sets R and selt = @3, 1, with du, = m~*/?exp(—x2/2). Denote the points @f by q =

(91,42, - )- Then(Q, ) is a measure space and the set of the all furectbthe formpP, (q) = P(q1, g2, -, Gn)»
whereP, (q) is a polynomial and € N is arbitrary, is dense ik, (Q, du). Remind that there exists a unitary map
S: F,(H) — L,(Q, du) of Fock spac&;(H) ontoL,(Q, du) so thaSep(f,)S™! = g, andSQ, = 1. Here{f, }r=, is

an orthonormal basis féf. Then by transfer one obtains internal measureesig@cu) = (*Q, *u) and internal
unitary map'S: F,(H) - *L,(*Q,d*u) so that'Se(f,)*S™! = q,, r € *N and*SQ, = 1. Here{fr};‘;"1 is an
orthonormal basis foiH.

Theorem 1.7 Let *¢,,(x, t) be internal free scalar boson field of masat timet = 0 with hyperfinite momentum
cutoff x in four-dimensional space-time. Lgtx) be a real-valued internal functiorfIn (*R®) n *L, (*R?). Then
the operator

Hp(9) = 200 [0 900 "0 £ (0): d?x (42)

is a well-defined internal symmetric operatordng,, . Here: *p ¥ (x) := "¢} (x) + d, () (*(pi(x)) + d; ().

where the coefficientd, (») andd, (x) are independent af LetS denote the unitary map 8f(H) ontoL,(Q, du)
considered in [8]. Thel = *S*H, ,,(9)*S™* is multiplication by internal functioH; ,,(q) which satisfies:

(@) Vi (@) € "L, ("Q.d") for allp € 'N, (b) exp (—tV;,.(q)) € "Ly ("Q,d"p) for all t € [0,"00).
Proof: Note that for each € *R3, the operatofS(*¢,,(x))*S™! is just the operator on internal measurable space
*L,(*Q, d*1) on which this operator acts by multiplying by foection Z;‘Zl ¢ (x, %) qy, Wherec, (x, %) =

(2m)*/2 (fk, ()" 2exp(ipx)). FurthermoreF, e (x, )12 = (2m)*/* [Ju()?||” s0°s (*p () *s~*and




*S (*(pi(x)) *S~1 are in*L,(*Q, d*u) and the correspondirig, (*Q, d*u)-norms are uniformly bounded in

Therefore, sincg € *L, (*R?) the operatofsS (*H,,;,(g)) *S~1 is just the operator on internal measurable space

*L,(*Q, d*u) on which this operator acts by multiplying by ttig(*Q, d *u)-function which we denote B, ; (q).
Let us consider now the expression iy, (g)*Q, obviously this is a vectd0,0,0,0,%*,0, ...) with

A60g () i [xGepy)] exp(—ix $IZ1p; a3

V(01,203 P4) = fopa

(2m)3/2 [T, [2u(p]*/2 (43)
Herex(x,p) = 11if |p| < x, x(3¢,p) = 0if |p| > x, x € *R,,. We choose now the parametes 1(x) =~ 0 such
2 * 2
that*|[y*]13 € R and therefore we obtail| *H,,,{,,l(,f)(g)ﬂo||2 € R, since || *H,_K,A(H)(g)ﬂonz = *|lp*||3. But,
since’S* (), = 1, we get the equalities
I *Hz,x,A(u)(g)ﬂo”z =|’s Hl,}{,l(}t)(g)*s_l||*L2(*Q'd*#) = |Viseaoo (@) |*L2(*Q,d*u)' (44)

From (43) we get tha*l”V,_,f_,l(,{)(q)

LL Cod'w € R and it is easily verify, that each polynomPdlg,, q,, ..., q,,), is
200.a u

n € *Nin the domain of the operatdf; ,, 1., (q) and*S *H, ,, 100 (9)*S™" = V1,100 (q) on that domain. Since,
is in the domain OTHPI,H,A(H)(Q)'I’ € "N, 1 is in the domain of the operati¥, ,, ;,,(q) for allp € *N. Thus, for
allp € *N Vp,.100(q) € "Ly, ("Q,d"w), since’u (*Q ) is finite, we conclude thaf ,, ;.. (q) € "L, (*Q, d"w) for all
p € "N.

(b) Remind Wick's theorem asserts thap;, , (x) = ¥/2(—1) ﬁc;wpf,{,;m (x) with

Cy = *||*<pm,,4(x)*ﬂo||2. Forj = 4 we get—0(c2) <: “pm ,.(x): and therefore — (*f*mg(x) d3x) 0(c?) <

"Hy 100 (). Finally we obtain*f*Q exp (—t(: P () )) d*u < exp(0(c2)) and this inequality finalized the
proof.

Theorem 1.8 [8] Let (M, u) be ag-measure standard space wilfM) = 1and letH, be the generator of a hyper-
contractive semigroup aiy, (M, dp). LetV be aR-valued measurable function ¢M, u) such thaV’ € L,(M, du)

for allp € [1,) andexp(—tV) € L,(M,dp) for allt > 0. ThenH, + V is essentially self-adjoint o68* (H, ) N
D(V) and is bounded below. Hel®” (Hy ) = N,y D(HY).

Theorem 1.9 Let (M, u) be as-measure space with(M) = 1land letH, be the generator of a hypercontractive
semi-group orl., (M, du). LetV’ be a"R-valued internal measurable function{©m, “u) such thav € "L,("M,d"u)
for all p € [1, *0) and*exp(—tV) € *L, (*M,d*w) for all t > 0. Assume that a s€t*(*H, ) n D(V) is internal.
Then operatotH, + V is essentially selé--adjoint internal operator o6 " (*H, ) n D(V) and it is hyper finitely
bounded below. Her€ °(*Hy ) = Nye-n D(*HY).

Proof. It follows immediately by transfer from theorem 8.

Remark 1.4 LetV; ,, ; be operator on internal measurable sgég€™Q, d*u) on which this operator acts by
multiplying by the*L, (*Q, d*u)-functiorV/; ,, ; , see proof to Theorem 1.7. Note that for this afmera set

C°(*Hy) N D(V,M) is not internal and therefore Theorem9 no longgds But without this theorem we cannot
conclude that operatdH, + V;,, , is essentially sel--adjoint internal operator 08 (*Hy ) N D(V,,,M). Thus
Robinson’s transfer is of no help in the case apoading to operatdf;,,, considered above. In order to resolve
this issue, we will use non conservative extensiothe model theoretical nonstandard analysis[E&le[14].

NON CONSERVATIVE EXTENSION OF THE MODEL THEORETICAL

NONSTANDARD ANALYSIS



Remind that Robinson nonstandard analysis (RNA)ynd@veloped using set theoretical objects callgeisu
structures [2]-[7]. A superstructuv&S) over a sef is defined in the following way,(S) = S, V41 (S) = V,,(S) U
P(Vn(S)), V(S) = Unen Vnt1(S). Making S = R will suffice for virtually any construction necesy in analysis.
Bounded formulas are formulas where all quantifarsur in the formvx (x €y » - ),3ax(x €y -» -+ ). A
nonstandard embedding is a mappind/(X) — V(Y) from a superstructur&(X) called the standard universe,
into another superstructuv€Y) called nonstandard universe, satisfying the folfmapostulates:

1LY="X

2. Transfer Principle For every bounded formuth(x;, ..., x,) and elements,, ..., a,, € V(X) the property

®(ay, ...,a,) istrue foray, ..., a, inthe standard universe if and only if it isarfor *a, , ..., *a,, in the
nonstandard univerd&(X) k ®(x,, ..., x,) © V(Y) Fo(*ay, ..., *a,).

3. Non-triviality For every infinite setd in the standard universe, the §&t|a € A} is a proper subset 4.
Definition 2.1 A setx is internal if and only ifc is an element of A for somed € V(R). Let X be a set and

A = {A,;};¢; a family of subsets ok .Then the collectiord has the infinite intersection property, if anyimite sub
collection] c I has non-empty intersection. Nonstandard universe-saturated if whenevéd, },c, is a
collection of internal sets with the infinite inseiction property and the cardinality bis less than or equal to
Remark 2.1 For each standard univerge= V(X) there exists canonical langualgeand for each nonstandard
universeW = V(Y) there exists corresponding canonical nonstandaglage*L = L, [5],[7]

4 Therestricted rules of conclusion If Let A andB well formed, closed formulas so thgtB € *L.If W E A, then
=4 Wryp B. Thus, if a statement holds in nonstandard universee cannot obtain from formula:A any formula
B whatsoever.

Definition 2.2 [10]-[14] A setS c *N is a hyper inductive if the following statementdwinV (Y):

Agern(@ €S - a® €5).
Hereat = a + 1.0bviously a setN is a hyper inductive.
5. Axiom of hyper infinite induction
vS(S € "N){VB(B € "N)[A1zo<p(a €S > a* € 5)| » S = *N}.

Example 2.1 Remind the proof of the following statement: stmie (N, <, =) is a well-ordered set.

Proof. Let X be a nonempty subset &f. Suppose X does not have deast element. Then consider the SgX.
CaselN\X = @. ThenX = N and sd is a< -least element but this is a contradiction.

Case2N\X # @. Thenl € N\X otherwisel is a< -least element but this is a contradiction. Assuow that
there exists some € N\ X such that # 1, but since we have supposed tkiatoes not have & -least element,
thusn + 1 ¢ X. Thus we see that for allthe statement € N\X implies thath + 1 € N\ X. We can conclude by
axiom of induction that € N\ X for alln € N. ThusN\X = N impliesX = @. This is a contradiction t§ being a
non-empty subset &f. Remind that structur€N, <, =) is not a well-ordered set [5]-[7]. We set n&w= *N\N
and thusN\X; = N. In contrast with a séf mentioned above the assumptiog *N\X, implies tham + 1 €
*N\X; if and only ifn is finite, since for any infinite € *N\N the assumption € *N\X; contradicts with a true
statemen? (Y) £ n ¢ "N\X;=N and therefore in accordance with postulate 4 weagobtain frorm € "N\ X, any
closed formula whatsoever.

Theorem 2.1[14] (Generalized Recursion Theorehgt S be a set¢ € S andg: S x *N — S is any function with
dom(g) = S x *N andrange(g) < S, then there exists a functidft *N — S such that: 1lom(F) = *N and
range(F) € S; 2)F(1) =c; 3) forallx € 'N,F(n + 1) = g(F(n), n).

Definition 2.3 [12]-[14] (1) Suppose th&tis a standard set on which a binary operat{ors-) and(-x-) is defined
and under whicl§ is closed. Lefx, },c+y be any hyper infinite sequence of termsSfFor every hyper natural
n € *N we denote b¥xt- Y7 -, x; the element ofS uniquely determined by the following canonical ditions:



(Q)Ext-Yi_ix; = x1; (0)Ext-YH1x, = Ext-Y}_; x; + x4 foralln € *N.

(2) For every hyper natural € *N,, we denote b¥xt-[]i-, x; the element ofS uniquely determined by the
following canonical conditions: (&xt- [1h_, xx = xq; (b) Ext- [[F11 %, = (Ext- 18, %) X x4, for alln € *N.
Theorem 2.2. [14] (1) suppose thatis a standard set on which a binary operaticin-) is defined and under
which S is closed and thdt + -) is associative on S. L&t }re+y be any hyper infinite sequence of termsSf
Then for anyn, m € *N we haveExt- YT x, = Ext- Yoy Xk + EXt-Ypeq Xy ;

(2) suppose that is a standard set on which a binary operatien) is defined and under whichis closed and that
(-x-) is associative on S. L&t },.c+y be any hyper infinite sequence of terms$fThen for anyr, m € *N we
have:Ext- [T}ET x, = (Ext- [1}=1 xx) X (Ext-[Tie, x); (3) for anyz € *S and for anyr € *N,, we have:

z X (Ext-YR-1 %) = Ext-Y}-1 2 X xp.

External non-Archimedean Field *R¥ by Cauchy Completion of the I nternal

Non -Archimedean Fidd *R.

Definition 2.4 A hyper infinite sequence of hyperreal numbersiff® is a functiom: *N - *R from the hyper-
natural number&N into the hyperreal numbetR.We usually denote such a function by~ a,, , so the terms in
the sequence are writtes {a,, a,, ..., a,, ... }.To refer to the whole hyper infinite sequence, vilbwrite {an};‘il
or {an}nen-

Abbreviation 2.1 For a standard sétwe often writeEy,, let °FE, = {*x|x € Es.}.We identifyz with °z i.e.,z = %z
for allz € C. HenceEy = Eg if E € C, €.9.,°C = C, °R = R, etc.Let'RY, "R ., *R¥ _, ,"Rf 5., "R¥ "N, de-
note the sets of Cauchy hyper-real numbers, Caindimtesimal hyper-real numbers, Cauchy positingnitesimal
hyperreal numbers, Cauchy finite hyper-real numk@esichy infinite hyper-real numbers and infiniygérnatural
numbers, respectively. Note tH& ;= "R¥\"R¥ ..

Definition 2.5 Let {an};":1 be a hyper infinitéR- valued sequence mentioned abd¥e shall say tha(an}:’i1
#-tends td if, given anye € R, , there is a hyper natural numbérE *N such that for alln > N, |a,,| < . We
denote this symbolically by,, — 0.

Definition 2.6 Let {an};"i1 be a hyper infinitéR-valued sequence mentioned above. We shall sa){mgi‘il
#-tends tag € "R if, given anys € "R, , there is a hyper natural numlkére *N such that for ath > N,

la, — q| < € and we denote this symbolically by -4 g or by #-lim,,_+, a, = q.

Definition 2.7 Let {an};"i1 be a hyper infinitéR-valued sequence mentioned above. We shall sage¢laence
{an};":1 is bounded if there is a hyperrddle *R suchthat for anyn € *N, |a,| < M.

Definition 2.8 Let {an};‘il be a hyper infinitéR-valued sequence mentioned above. We shall say{ﬁ;laffil is
a Cauchy hyper infinitéR-valued sequence if , given an¥ *R.. , there is a hyper natural numbeégs) € *N
such that for anyn,n > N, |a, — a,,| < &.

Theorem 2.3 If {an};‘fl is a#-convergent hyper infinitéR-valued sequence, i.e., thatdas, -4 q for some hyper-
real numberg, q € "R then {an};"i1 is a Cauchy hyper infinitéR-valued sequence.

Theorem 2.4 If {an};‘:l is a Cauchy hyper infiniteR-valued sequence, then it is finitely bounded quemfinitely
bounded; that is, there is some finite or hypetditd € “R, such thaia,| < M for alln € *N.

Definition 2.8 Let S be a set, with an equivalence relation~ -) on pairs of elements. Fore S, denote byl[s]

the set of all elements fhthat are related to Then for any, t € S, eithercl[s] = cl[t] orcl[s] andcl[t] are dis-
joint.

Remark 2.2 The hyperreal number®¥ will be constructed as equivalence classes of @abigper infinite*R-

valued sequences. LE{*R} denote the set of all Cauchy hyper infirfiRevalued sequences of hyperreal numbers.
We define the equivalence relation on aBER}.



Definition 2.9 Let {an};‘zl and{bn};":1 be inF{*R}. Say they ar¢t-equivalent if a,, — b,, -4 0 i.e., if and only if

the hyper infinite¢’'R-valued sequendt,, — bn};‘ﬁl #-tends ta0.

Theorem 2.5 [14] Definition above yields an equivalence relationeosetF{*R}.

Definition 2.10 The external hyperreal numbéR¥ are the equivalence class#fa,}] of Cauchy hyper infinite
“R-valued sequences of hyperreal numbers, as penititefiabove. That is, each such equivalence itaas

external hyperreal number.

Definition 2.11 Given any hyperreal numbere *R, define a hyperreal numbefto be the equivalence class of the
hyper infinite*R-valued sequende,, = q};‘ﬁlconsisting entirely of € *R. So we viewR as being insideR¥ by
thinking of each hyperreal numbgE *R as its associated equivalence cldbdt is standard to abuse this notation,
and simply refer to the equivalence class as gedls w

Definition 2.12 Lets, t € *R¥, so there are Cauchy hyper infinti-valued sequencésn}::l, {bn};:l of hyper-

real numbers withh = cl[{a,,}] andt = cl[{b,}].

(a) Defines + t to be the equivalence class of the hyper infisdguencéa,, + bn};‘ﬁl.

(b) Defines x t to be the equivalence class of the hyper infiséguencé¢a,, + bn};":l.

Theorem 2.6 [14] The operations-,x in definition above by the requirements (a) andafle well-defined.
Theorem 2.7 Given any hyperreal numbe€ *R¥, s # 0 there is a hyperreal numhee *R¥ such that x t = 1.
Theorem 2.8 If {an};‘:l is a Cauchy hyper infinite sequence which doesgtrend td), then there is someé € *N
such that, for ath > N,a, # 0.

Definition 2.13 Lets € *R¥. Say thak is positive ifs = 0, and ifs = cl[{a,}] for some Cauchy hyper infinite
sequence of hyperreal numbers such that for 96meN, a,, > 0 for all n > N. Thenfor a given two hyperreal
numberss, t, say that > t if s —t is positive.

Theorem 2.9 Let s, t € *R¥ be hyperreal numbers such thats > ¢, and let € *R¥, thens +r >t + 7.
Theorem 2.10 Lets, t € *R# be hyperreal numbers such that > 0. Then there isn € *N such thaim x s > t.
Theorem 2.11 Given any hyperreal numbere *R#, and any hyperreal number> 0, ¢ = 0, there is a hyperreal
numberg € *R¥ such thatr — q| < .

Definition 2.14 LetS & "R¥ be a nonempty set of hyperreal numbers. A hypemn@aberx € *R¥ is called an
upper bound fof if x = s for all s € S. A hyperreal numbet is the least upper bound (or supremunpS) for S if
x is an upper bound fdrandx < y for every upper boung of S.

Remark 2.3 The order< given by definition above obviously {&incomplete.

Definition 2.15 Let S ¢ *R¥ be a nonempty set of hyperreal numbers. We wylttsat:

(1) S is < -admissible above if the following conditions aggisfied:

(a) S is finitely bounded or hyper finitely bounded abopv

(b) letA(S) be a set such thaix[x € A(S) © x = §] then for any > 0,¢ = 0 there arex € S andf € A(S) such
thatf — a < £ = 0.(2) S is < -admissible belov if the following conditions areisted:

(a) S is finitely bounded or hyper finitely bounded belo

(b) letL(S) be a set such thtc[x € L(S) & x < S] then for any > 0,¢ = 0 there arex € S andf € L(S) such
thata — f <e= 0.

Theorem 2.12 [14] (a) Any<-admissible above subset= *R? has the least upper bound property.

(b) Any <-admissible above subsgt= *R¥ has the greatest lower bound property.

Theorem 2.13 [14] (Generalized Nested Intervals Theorem@){l,,},~, = {[an, bul},o1, [an, bn] © *Rf be a hyper
infinite sequence o#-closed intervals satisfying each of the followganditions: (a); 2 L, 2,221, 2 -

(b) b,, — a,, =4 0 asn — *oo, Then n::l I,consists of exactly one hyperreal numbpez "R¥.
Theorem 2.14 [14] (Generalized Squeeze Theordrm) {an};‘zl, {cn};‘:l be two hyper infinite sequenc#scon-
verging toL, and {bn};"i1 a hyper infinite sequence.%h > K,K € *N we havea, < b,, < c¢,, thenb,, also#-con-



verges td..

Theorem 2.15 [14] If #-lim,,_+s, | a,| = 0, then#-lim,,_,+, , a, = 0.

Theorem 2.16 [14] (Generalized BolzandNVeierstrass Theorem)ny finitely or hyper finitely bounded hyper
infinite *R# -valued sequence h&sconvergent hyper infinite subsequence.

Definition 2.16 Let {an};";’1 be*R#-valued sequenc&ay that a sequenc{eetn};‘ﬁ1 #-tends td if, given any

€ >0, e = 0, there is a hyper natural numhbére *N_, N = N(¢) such that, for ath > N, |a,| < €.

Definition 2.17 Let {an};";’1 be*R¥-valued hyper infinite sequendéle call {an};‘jl a Cauchy hyper infinite

sequence if given any hyperreal number *R. ., , there is a hypernatural numbér= N(¢) such that for any
m,n >N, |a,, —ay,| <&

Theorem 2.17 If {an};‘ﬁlis a#-convergent hyper infinite sequence i®,,—4 b for some hyperreal numbkre

“R¥, then{an};":1 is a Cauchy hyper infinite sequence.

Theorem 2.18 If {an};‘il is a Cauchy hyper infinite sequence, then it isroied;that is, there is som¥ € *R¥
such thata,| < M for alln € *N.

Theorem 2.19 [14] Any Cauchy hyper infinite sequen{zxan};"i1 has a#-limit in *R¥; that is there existd € *R¥
such that,, -4 b.

Remark 2.4 Note that there exists canonical natural embeddRg> *R¥.

Remark 2.5 A nonempty set S of Cauchy hyperreal numbRisis unbounded above if it has no hyperfinite upper
bound, or unbounded below if it has no hyperfitgiger bound. It is convenient to adjoin to Cauclpérreal
number systemiR? two points,+oo® = (*+0)#  (which we also write more simply ag' ) and—«*, and to
define the order relationships between them andCauchy hyperreal numbere *R¥ by —oo# < x < oo,
Definition 2.18 We will call —o* andeo* are points at hyper infinity. § ¢ *R¥ is a nonempty set of Cauchy
hyperreals, we writsup(S) = ¥ to indicate thaf is unbounded above, antf(S) = —oo* to indicate thas is un-
bounded below.

Definition 2.19 That is(e, §) definition of the#-limit of a functionf: D — *R¥ is as follows: leff (x) is a

*R¥- valued function defined on a subfet- *R¥ of the Cauchy hyperreal numbers. kdie a#-limit point of D
and letL € *R¥ be Cauchy hyperreal number. We say thalim,_,,. f(x) = L ifforeverye = 0,& > 0 there
existsad =~ 0,6 > O such that, forallx € D,if 0 < |x — c| < §,then |f(x) — L| < e.

Definition 2.20 [13] The functionf: "R¥ — *R#¥ is a#-continuous (or micro continuous) at some poinf its
domain if the#-limit of f(x), asx #-approaches through the domain df, exists and is equal to

fe):#-limy,, o f(x) = f(0).

Theorem 2.20 [14] Let{an};":1 and {bn};‘ﬁ1 be*R¥- valued hyper infinite sequences. Then the followeggalities
hold for anyn, k,l,j,m € *N:

b x (Ext-Y-;a;) = Ext-Y7, b X q (45)
Ext-Y - a; + Ext-27, by = Ext-Y-,(a; £ b;) (46)
Ext-$f%, (Ext- XL, ay) = Ext- 3, (Ext- 32, a;;) (47)
(Ext-Y7, a;) x (Ext-37_ b;) = Ext- ¥} (Ext- 37 a; X b;) (48)
(Ext-TI7=q a;) x (Ext-TIi=, by) = Ext-[[{=, a; X b; (49)
(Ext-Tlie,a)™ = Ext-TI-,a™. (50)

Theorem 2.21 [14] Let{a,}’, and {b,}, be*R¥- valued monotonically non-decreasing hyperfiniteusaes.
Suppose that; < b;, 1 <i < n, then the following equalities hold for anye *N :



Ext-TTL, a; < Ext-T1-, b;. 51
i=1 i=1

Theorem 2.22 [14] Let{a,}", and {b,}, be*R¥- valued hyperfinite sequences. Then the followireginalities
hold for anyn € "N :

(Ext-TI, a; X b))? < (Ext-[TL, a?) x (Ext-[], b?). (52)

Definition 2.21 [13] Assume tha{an};"i1 is a*R#- valued hyper infinite sequence, the symBet- Z;‘ﬁl a, is a
hyper infinite series, andl, is the n-th term of the hyper infinite series.

Definition 2.22 [13] We shall say that a seriEst- Z;‘Zl a,, #-converges to the sume *R¥, and write

Ext-Z;‘Zl a, = A if the hyper infinite sequenc{aéln};"i1 defined by4,,, = Ext- Y-, a,, #-converges to the sum
The hyperfinite sund,, is then-th partial sum ofxt- Z:ﬁl a,. If #-limA4,, = o* or—oo®, we shall say that

m-*oo,
Ext-Y, =, a, #-diverges tao* or to—co¥,
Theorem 2.23 [13] The hyper infinite sunfxt- Z;‘:l a, of a#-convergent hyper infinite series is unique.

Hyper infinite sequences and series of *R¥- valued functions

Definition 2.23 [13] If f1, fo) «e» fior fies1s s fr -1t € *N are*R¥#- valued functions on a subsgtc *R¥ we say
that{fn};‘i1 is a hyper infinite sequence 6R?#- valued functions ob.

Definition 2.24 [13] Suppose tha{tfn};":1 is a hyper infinite sequence @¥- valued functions o® c *R¥ and the
hyper infinite sequence of valugﬁ(x)};‘i1 #-converges for eachin some subset of D. Then we say that
{fn(x)};":1 #-converges pointwise ahto the#-limit function f, defined byf (x) = lim,,_,~ f,, ().

Definition 2.25 [13] If {fn(x)}:f;’1 is a hyper infinite sequence tk#- valued functions o® c *R¥, then

Ext- 2;021 fn(x) (53)

is a hyper infinite series of functions Bn The partial sums of (1), are definedBYx) = Ext- Y.3—, f (x). If hyper
infinite sequencéFn(x)};fl#-converges pointwise to thelimit function F (x) on a subsef c D, we say that
{Fn(x)};‘:l#-converges pointwise to the suiix) onsS, and writeF (x) = Ext-Z;";lfn(x).

Definition 2.26 [13] A hyper infinite series of the forifixt- Z;‘ﬁl(x —x)™, n € *N is called a hyper infinite
power series i — x,.

The #-Derivatives and Riemann #-Integral of *“R#-Valued Functions f: D — *R#?

Definition 2.27 [13] A functionf: D — *R¥ #-differentiableat an#-interior pointx € D of its domainD c *R# if
the difference quotient(x) — f(xo)/x — xo has a#-limit: #-lim,_, ., (f (x) — f(xo)/x — xo). In this case the
#-limit is called the#-derivative off at interior pointx,, and is denoted b (x,) or byd*f (x,)/d*x.
Definition 2.28 If f is defined on a®-open sef c *R¥, we say that f igt-differentiable ors if f is
#-differentiable at every point f If f is #-differentiable ors, thenf# (x) is a function or§.We say thaf is
#-continuously#-differentiable ors if £#(x) is #-continuous or§.

Definition 2.29 If f is #-differentiable on a-neighbourhood of,, it is reasonable to askff’(x) is
#-differentiable at,. If so, we denote thig-derivative off *'(x) atx, by f*’(x,) or by f*®(x,) and this is the
second#-derivative off atx,. Continuing inductively by hyper infinite inductipii f#~ (x) is defined on a
#-neighbourhood ofx,, then then-th #-derivative off atx, denoted by * (x,) or byd*™f (x,)/d*x", where



n € *N.
Theorem 2.24 [13] If f is #-differentiable ai, thenf is #-continuous ak,.
Theorem 2.25[13] If f andg are#-differentiable at,, then so ar¢ + g andf x g with:

@) (f £9)% (o) = ¥ (x0) £ g% (x0), (b) (f X g)* (x0) = f*(26)9 (x0) + g*' (x0) f (x0).

#1 o
(c) The quotienf /g is #-differentiable at, if g(x,) # 0 with (f/g)*" =~ ("°’g(";(’x‘;z (*o)f o)
0

(d) If n € "N andf;, 1 < i < n are#-differentiable atx,, then so ar&xt- Y., f; with:

(Ext-3, fO (xo) = Ext- 3% £ (x).

(e) Ifn € "N and f*™(x,), g*™ (x,) exist, then so do&g§ x g )*™ (x,) and

(F X 9™ (x0) = Ext- X o(")F" (0) g *D (xo)

Theorem 2.26 [13] (The Chain Rule) Suppose thats #-differentiable atc, andf is #-differentiable ag(x,).
Then the composite functidn= f o g defined byh(x) = f(g(x)) is #-differentiable atx, with h*'(x,) =
f*(9(x0))g* (xo)-

Theorem 2.27 [13] (Generalized Taylor's Theorem) Suppose &t (x ), n € *N exists on ar-open interval
I aboutx,, and letx € I. Let B,(x, x,) be then-th Taylor hyper polynomial of aboutx,, B, (x, x,) =

n O -xo)" - _ -
Ext- Zr:(,f Then the remainddt(x, x,) = f(x) — B,(x, x,) can be written as
_ D) (r—xp)"
R(x,x9) = ot (54)

Herec depends upom and is between andx,.

Definition 2.30 [13] Let[a, b] © *R¥. A hyperfinite partition of[a, b] is a hyperfinite set of subintervals

[x0, %11, [Xn—1, x5, ], Withn € *N,, wherea = x; < x4 ... < x,, = b. A set of these pointg), x;, ..., x,, defines a
hyperfinite partitionP of [a, b], which we denote b® = {x;}I-,. The pointsx, x4, ..., x,, are the partition points of
P.The largest of the lengths of the subinteryals,, x;], 0 < i < nis the norm oP = {x;}I-, denoted by|P||;
thus,||P|| = max;<;<n (X — X;-1).

Definition 2.31 Let P andP’ are hyperfinite partitions dfi, b], thenP’ is a refinement o if every partition point
of P is also a partition point ¢f’; that is, ifP’ is obtained by inserting additional points betwtwse ofP.
Definition 2.32 Let f be*R#- valued functiory: [a, b] = *R¥, then we say thaixternal hyperfinite sura®*¢
defined by

o™t = Ext- Y f(c) (o —xi-9), X1 S ¢ S %, (55)

is a Riemann external hyperfinite sumfabver the hyperfinite partitio® = {x;}i,.

Definition 2.33 [13] Let f be*R¥- valued functiorf: [a, b] - *R¥, thenwe say thaf is Riemanr#-integrable on
[a, b] if there is a numbel € *R¥ with the following property: for every =~ 0, > 0, thereis & ~ 0,6 > 0 such
that|L — oF*t| < § if o*t is any Riemann external hyperfinite sunyfadver a partitiorP of [a, b] such that

[IP]| < 6. In this case, we say thaiis the Rieman#-integral off over[a, b], and we shall write

L = Ext- [, f(x)d"x. (56)

Thus the Rieman#-integral of*R#- valued functionf: [a, b] —» *R¥ over[a, b] is defined ag-limit of the
external hyperfinite sums (55) with respect toifiarts of the intervala, b]:

Ext- [? f(x)d*x = #-limy o (Ext- Sy £(e) (i = Xi-1))- (57)



Definition 2.34 A coordinate rectangl® in *R#", n € *N is the external finite or hyperfinite Cartesian gwiot ofn
#-closed intervals; that i® = Ext- X]—; [a;, b;]. The content oR isV(R) = Ext-[]i~,(b; — a;). The hyperreal
numbers; — a;, 1 < i < n are the edge lengths Bf If they are equal, theR is finite or hyperfinite coordinate
cube.lf a; = b; for somer, thenV(R) = 0 and we say that is degenerate; otherwisR,is nondegenerate.
Definition 2.35 If R = Ext-x{_; [a;, b;] andP. = a, < a1 << @y, iS an external hyperfinite partition of
la,,by],1 <7 < n, then the set of all rectanglesRf™ that can be written avt- X[, [a;;,_,a;;,], 1 < j, <m,,
1 <r < nis a partition oR. We denote this partition By = Ext- X}, P. and define its norm to be the maximum
of the norms oP;, 1 < i < n; thus,||P|| = max;{P;|1 < i <n}.

Definition 2.36 If P = Ext- x]—, P, andP’ = Ext- x]—, P; are partitions of the same rectangle, théis a
refinement o if P/ is a refinement oP;, 1 < i < n as defined above.

Definition 2.37 Suppose thaf is a*R#- valued function defined on a rectanglén *R#™, n € *N, P = {P;}¢_,is a
partition ofR, andx; is an arbitrary point iR;, 1 < j < k. Then a Riemann external hyperfinite saft® of f over
the partition P is defined by

oEXt = Ext- Zﬁ‘:lf(xi) V(R;) °8)

Definition 2.38 Let f be a*R¥- valued function defined on a rectanglén *R#", n € *N. We say thaf is Riemann
#-integrable orR if there is a number L with the following properfgr everye = 0,& > 0, thereis & = 0,6 > 0
such thalL — of*f| < § if aE* is any Riemann external hyperfinite sunyadver a partitiorP of R such that

[|P]] < 6. In this case, we say thhtis the Rieman#-integral off overR, and write

L = Ext- [, f (x)d* x. (59)

Thus the Rieman#-integral of*R#- valued functionf defined on a rectangkin "R is defined ag-limit of the
external hyperfinite sums (58) with respect toigiaris of the rectangl@:

Ext- [, f()d*"x = #-lim (Ext- 2, F ) VRD ). (60)

The *R¥-Valued #-Exponential Function Ext-exp(x) and

*R#-Valued Trigonometric Functions Ext-sin(x), Ext-cos(x)
We define thet-exponential functiortxt-exp(x) as the solution of th#-differential equation
fH ) =fC,f(0) =1. (61)
We solve it by settingf (x) = Ext- Z;‘ZO x™, f*(x) = Ext- Z;‘ﬁo nx™. Therefore

Ext-exp(x) = Ext-Y . x (62)

n=0 "
From (1) we gefExt-exp(x))(Ext-exp(y)) = Ext-exp(x + y) for anyx,y € *R¥.

We define thet- trigonometric function€xt- sin x andExt- cos x by

2n+1 x2n

Ext-cosx = Ext- Z:;oo(—l)"— . (63)

o — _ *o0 X
Ext-sinx = Ext-},, _,(—1) T

(2n+1)!"




It can be shown that the series #1yonverges for alt € *R# #-differentiating yields

(Ext-sinx )* = Ext-cosx, (Ext-cosx )* = —(Ext-sinx ). (64)

*R¥ -Valued Schwartz Distributions

Definition 2.39 [13] LetU be an#- open subset diR#™ andf: U — *R¥. The partial derivative of at the point
x = (xq, %, ..., X, ..., X, ) With respect to théth variablex; is defined as

a* X1,X2,.Xi+h, ... X X1,X2, 00Xy X
#f #_1lim f(x1x2, n)—f (X1.X2,-Xi, n)
a h—>40 h

Definition 2.38 A multi-index of sizen € *N is an element ifiN", the length of a multi-index = (a4, ...,a,) €

*N™ is defined agxt-Y[-; a; and denoted bjx|. We introduce the foIIowing notations for a givaulti-index
a#a

#
a = (al, ...,an) € *N™: x%* = Ext- Hl-=1xi l; 0" = Ext- Hl 155, ”‘l or Symbollcallya#“ = Ext-m..
L0y

Definition 2.40 The Schwartapace of rapidly decreasiing’- valued test functions oiR#™ ,n € *N is the function
space defined by

SHCRE, *CE) = {f € C R, “CH|V(a, B)(a, B € NVa(x € "RED[|x% D £(x)| < o]},
Remark 2.6 Note that iff € S*(*RE™, *C¥) the integral ofk®| D* f(x)| exists
Ext- [.pun| x*D*F f(x)|d*" < oo,

Definition 2.41 The Schwartspace of essentially rapidly decreasififj- valued test functions 6iR¥™ ,n € *N is
the function space defined by

S*CREY, *CH) = {f € CCRIY, *CH|Va(a € NY)VA(B € *NM)Vx(x € "REM[|x* D*F f(x)| < 0 |}.
Remark 2.7 Note that iff € S¥("R¥", *C¥) the integral ofc®| D*# f(x)|,a € N™, B € *N" exists and
Ext- f*na#"l x%D*F f(x)|d*" < 0.

Definition 2.42 The Schwartspace of rapidly decreasing - valued test functions o"ﬂRC fin M € "N is the
function space defined by

S#( Rc fin’ *(C#) {f ec oo( IRcﬁn' *(C#)|V(0( .8)(0‘ B € N”)Vx(x € IRcfm)“xol D#Bf(x)l < oo#]},
Remark 2.8 Note that iff € S*(*R¥%,, *C#) the integral ofc®| D*F f(x)|,a € *N", B € *N™ exists and

Ext- [pum | x“D*F f(x)|d*" < oo*.
¢ fin

Definition 28.43 The Schwartapace of essentially rapidly decreasififi- valued test functions o"rRC fin,m €N
is the function space defined by



fm ( Rc fin’ *(C?) =

{f ecC 00( Rc fin» *(C#)|V(0( .8)(0( € Nn .8 € Nn)acaB(CaB € Rcfm)vx(x € Rcﬁn) ”xa (D#B f(x))| <
s}

Remark 2.9 Note that iff € S, ("R#", “C) the integral of *“D*# f(x)| exists and finitely bounded above
Ext- f*mn| x*D*B f(x)|d*" < dgp, dop € "R gy

Abbreviation 2.2 1) The Schwartzpace of rapidly decreasing test functionsRf* we will be denoting by
S*("R#™) and letSE, ("R#") denote the set 6fC#-valued essentially rapidly decreasing test funstion”R#" .

2) The Schwartspace of rapidly decreasiingf- valued test functions o*rRC tin We will be denoting by
S*("R¥%, ) and letSE, ("RE%, ) denote the set dft?-valued essentially rapidly decreasing test function
*Rc fin *

Definition 2.44 A linear functional: S* (*R#") — *C# is a#-continuous if there exig, k € *N and constants,g

such thatu(@)| < C(Ext- X ja < pi<k Cap)- Here vx(x € “REM) [|x“(D#5 <p(x))| < ca,;].
Definition 2.45 A linear functionak: S*(*R¥%,) - “C# is a strongly#-continuous if there exigt, k € "N and
constants,, such thatu(p)| < C(Ext- X4 1< g1k Cap) € "R fin-
Definition 2.46 A generalized function € $* (*R#™) is defined as &-continuous linear functional on vector space
S*(C'R#M), symbolically it written asi: ¢ — (u, ¢). Thus spacs* (*R¥™) of generalized functions is the space dual
to S#(*R#n)
Definition 2.47 A generalized function € S* (*R¥%,,) is defined as a strong#continuous linear functional on
vector spacé*(*R¥%, ), symbolically it written as:: ¢ — (u, ). Thus spacs® (*R¥%,) of generalized functions
is the space dual &' ("R}7%,).
Definition 2.48 Convergence of a hyper infinite seque{nu:,e};"i1 of generalized functions ' (*R#") is defined
as weak#-convergence of the hyper infinite sequence of fonais ins* (*R#") that is u,, —4 0, asn — *o, in
S#(*R¥™) means thatu,, ¢) -4 0, asn —» *oo, forall ¢ € S#(*IR{#”)
Definition 2.49 Convergence of a hyper infinite sequefm;,e} , of generalized functions m#'( R fm) is
defined as weak-convergence of functionals ' (*R¥7,,) that isu, =4 0, asn - “oo, in S¥(*R¥Y,) means
that (u,, @) —4 0, asn - *oo, for all ¢ € S¥(*R¥E,).
Definition 2.50 1) Letu € S*' (*R¥") and letx = Ay + b be a linear transformation oR#" onto*R#". The
generalized function(4y + b ) € S* ("R¥™) is defined by

(w(Ay +b),p) = (u, M). (65)

|detA|

Formula (1) enables one to define generalized fonstthat are translation invariant, sphericallsngyetric,
centrally symmetric, homogeneous, periodic, Lorémeariant, etc.
2) Let the functiom(x) € C*1(*R¥) have only simple zeros, € "R¥ k € "N, the functions(a(x)) is defined by

8(a(x) = Ext-Y.° 200 (66)

k=1 |0(#'( xk)|

3) Letu € S* (*R¥"), the generalized (weak)-derivatived**u of u of ordere is defined as

(0%, ) = (=D (u, 0% ). (67)



4) Letu € S* ("R¥) andg (x) € C*"*(*R#™), The producgu = ug is defined by
(gu, ) = (w, gp). (68)
5) Lety, € S* ("R*™) andu, € S* ("R¥™) then their direct product is defined by the foraul
(ug X Uz, ) = (W ()W), ), (x,y) € S* CRE™ x “RE™). (69)
6) The Fourier transforf[u] of a generalized functiom € S#'(*IR{*C*”) is defined by the formula
(Flul, ) = (w, FleD, (70)

Flgpl = Ext- f-_um ¢ (x) (Ext-expli(§, x)d""x. (71)

Since the operatiop(x) — F[@](§) is an isomorphism & (*R#™) ontoS* (*R#™), the operatiom — F[u] is an
isomorphism ofS* (*R#") ontoS* (*R¥") and the inverse of [u] is given by:F ~1[u] = (2r) "F[u(-&)]. The
following formulas hold fou € S* (*R#™): (a)8#* F[u] = F[(ix)%u], (0) F[ 8#*u] = (i&)*F[ul,(c) if the
generalized function, € S#'(*IR{’C*”) has#-com-pact support, theR[u, * u,] = Fu,|F[u,].

7) If the generalized functiom is periodic withn-periodT = (T, ..., T,), thenu € S#'(*IR{’C*”), and it can be
expanded in a hyper infinite trigonometric series

u(x) = Ext-Z;,:T:O ¢ (W) (Ext-expli(kw, x)]), [c, (W) < AL+ kD™ . (72)

The series (1}-converges tau(x) in S* ("R¥™), herew = (ZT—" j—") andkw = (
1 n

2mkq 27rkn)
T )

A NON-ARCHIMEDEAN METRIC SPACESENDOWED WITH

*R# -VALUED METRIC

Definition 3.1 A non-Archimedean metric space is an ordered @4jl*) whereM a set andl” is a#-metric onM
i.e.,*R¥, - valued functioni®: M x M - *R¥, such that for any triplet, y, z € M, the following holds:

1.d*(x,y) = 0= x =y.2.d%(x,y) = d*(y,x). 3.d%(x,2) < d*(x,y) + d*(y,2).

Definition 3.2 A hyper infinite sequenc{ecn};‘i1 of points inM is called#-Cauchy in(M, d¥) if for every hyperreal
£ € *R¥, there exists som&/ € *N such thatl* (x,,, x,,) < e if n,m > N.

Definition 3.3 A pointx of the non-Archimedean metric spa@dé, d*) is the#-limit of the hyper infinite sequence

{xn};‘il if for all € € *R¥,, there exists som& € *N such thatl®(x,, x) < e if n > N.
Definition 3.4 A non-Archimedean metric spacetfisccomplete if any of the following equivalent condiis are

satisfied: 1.Every hyper infinité-Cauchy sequenc{e&rn};"i1 of points inM has a#-limit that is also inV.
2.Every hyper infinitgt-Cauchy sequence M, #-converges irM that is, to some point @f.

For any non-Archimedean metric sp&a€ d*) one can construct#complete norArchimedean metric space
(M', d*) which is also denoted ##-M, d*) and which containdf a#-dense subspace.

It has the following universal property:Af is any#-complete non-Archimedean metric space And — K is any
uniformly #-continuous function fronM to K, then there exists a unique uniforriycontinuous functiorf’: M’ —
K that extendg.The spaceé-M is determined up té-isometry by this property (among #licomplete metric
spaces#- isometrically containing non-Archimedean metricap@-M,d"), and is called thé-completion

of (M,d").



The#-completion ofM can be constructed as a set of equivalence cla§§ichy hyper infinite sequendasV.

For any two hyper infinite Cauchy sequenbe,s};fl and{yn}:[f1 in M, we may define their distance @& = #-
lim,,_, .+ d* (x,, y,,). This #-limit exists because the hyperreal numi&$ are#-complete. This is only a pseudo
metric, not yet a metric, since two different hypdmite Cauchy sequences may have the distanBait having
distance 0 is an equivalence relation on the sall tifyper infinite Cauchy sequences, and the setjoivalence
classes is a metric space, theompletion of M. The original space is embeddethia space via the identification
of an element of M’ with the equivalence class of hyper infinite seuges il #-converging to i.e., the
equivalence class containing a hyper infinite saqaevith constant value This defines &@-isometry onto a
#-dense subspace, as required.

Example 3.1 Both *R and*C are internal metric spaces when endowed with itarte functionl(x, y) = [x — y|.
Definition 3.5 About any point € M we define thet-open ball of radius € *R¥, aboutx as the sek,(x) =

{y € M|d*(x,y) < r}. These#-open balls form the base for a topologyMn

Definition 3.6 A non-Archimedean metric spat#, d*) is called hyper finitely bounded if there existsre

7 € "R fins SUch thatl® (x,y) < r for allx,y € M.

Definition 3.7 A non-Archimedean metric spat¥, d*) is called finitely bounded if there exists some *R. .
such thati* (x,y) < r for allx,y € M.

Definition 3.8 A non-Archimedean metric spat#, d¥) is called hyper finitely bounded if there existsrse

7 € "Ry SUch that®(x,y) < r for allx,y € M.

Definition 3.9 Let (M,d") be a non-Archimedean metric space. Aset X is called finitely bounded if there
exists some € "R, g, such tha#l c B, (a), a€ X.

Definition 3.10 A non-Archimedean metric spat¥, d*) is called#-compact if every hyper infinite sequence

{xn};":1 in M has a hyper infinite subsequence thaionverges to a point iM. This sort of compactness is
known as hyper sequential compactness and, in-&rdrimedean metric spaces is equivalent to theltaycal
notions of hyper countabke-compactness.

Definition 3.11 A topological spac¥ is called hyper countably-compact if it satisfies any of the following
equivalent conditions: (a) every hyper countableropoverJ of X (i.e.,card(U) = card(*N)) has a finite or
hyperfinite sub-cover.

For a functionf: M; — M, with a non-Archimedean metric spa€es,, d¥) and(M,, d¥) the following definitions
of uniform #-continuity and (ordinaryj-continuity hold.

Definition 3.12 A function f is called uniformly#-continuous if for every € *R?_, there exist$ € *R.., such
that for everyx,y € M; with df (x,y) < & we getd} (f(x), f()) < .

Definition 3.13 A function f is called#-continuous atx € M, if for everye € *R¥_, there exist$ € *R¥_, such
that for everyy € M, with d¥(x,y) < § we getd} (f(x),f(y)) < .

LEBESGUE #-INTEGRATION OF *R# -VALUED FUNCTIONS

Let CF (*R#™) be the space of alR?-valued#-compactly supporte#-continuous functions ofR#". Define a
#-norm onC# by the Riemans-integral [13]:

Iflls = Ext- [1f ()|d*"x, (73)

Note that the Rieman#-integral exists for any-continuous functiorf: *R#* — *R¥ | see [13]. Thed# (*R#¥") is a
#-normed vector space and thus in particular, itne@Archimedean metric space. All non-Archimedewetric
space, have a non-Archimede#completion(#-M, d*). Let L¥ be this#-completion. This spadd is isomorphic

to the space of Lebesg#eintegrable functions modulo the subspace of funstiwith#-integral zero. Furthermore,
the Riemann integral (1) is a uniformfycontinuous linear functional with respect to thaorm onC# (*R#")

which is#-dense inL%. Hence the Rieman# integralExt- [ f(x)d*"x has a unique extension to alll§f This



integral is precisely the Lebesgtientegral.
Definition 4.1 Suppose that < p < *oo, and[a, b] is an interval ifR{. We denote byL¥ ([a, b]) the set of the all

functions f:[a, b] - *R¥ such thaExt- fflf(x)lpd#x < *oo. We define theL’ -#-norm off by

Iflay = (Exe- [1fGOPdrx) ™. (74)

More generally, iff is a subset dfR%", which could be equal tiR¥" itself, thenL! (E) is the set of Lebesgue
#-measurable function: E - *R¥ whosep-th power is Lebesgu-integrable, with thét-norm

Iflp = (Ext- [,If )Pd*mx) """ (75)
Definition 4.2 A setX c *R*" is #-measurable if there exiskxt- [ 1y d*"x, wherely is the indicator function.
Definition 4.3 A *R¥ -valued functiorf on*R#" is a#-measurable if a s¢k|f(x) > t} is a#-measurable set for
all t € "R¥",
Remark 4.1 To assign a value to the Lebesgumtegral of the indicator functiohy of a#-measurable sét
consistent with the give#-measure:”, the only reasonable choice is to it- [ 1,d u#* = pu*(X).
Definition 4.4 A hyperfinite linear combination of indicator furmts f = Ext- Y-, a, 1y, where the coefficients
a, € *R¥ andx, are disjoint#-measurable sets, is called-aneasurable simple function.
Definition 4,5 When the coefficients,, are positive, we séxt- [ fd u* = Ext-Yr_, a, u* (X, ). For a non-
negative#-measurable functiofi, let {fn(x)};‘:lbe a hyper infinite sequence of the simple funaififx) whose
values iszin wheneverzin <fx) < % for k a non-negative hyperinteger less td@nThen we set

Ext- [ fd u®* = #-1im,_,« (Ext- [ f,d u*).

Definition 4.6 If f is a#-measurable function of the g&to the reals including-oo”, then we can writ§ = f* —
f~,where: 1)f*(x) = f(x) if f(x) >0andf*(x) =01if f(x) <0;2)f(x) = f(x) if f(x) <0andf (x) =0
if f(x) = 0. Note that bottf * andf ~ are non-negativé-measurable functions anfl| = f* + f~.

Definition 4.7 We say that the Lebesg#eintegral of thett-measurable functiofi exists, or is defined if at least
one ofExt- [ f*d u* andExt- [ f~d u* is finite or hyperfinite. In this case we define

Ext- [ fd u* = (Ext- [ f*d u*) + (Ext- [ f~d u*).

Theorem 4.1 Assuming thaf is #-measurable and non-negative, the funcfion) = {x € E|f(x) > t} is
monotonically non-increasing. The Lebesgumtegral may then be defined as the improper Rien#aimtegral of

f(x): Ext- Jofdu* = Ext- fo*oof(x)d#x.

Definition 4.8 Let X be any set. We denote BY the set of all subsets &tA family F c 2% is called a#-o-algebra
onX (oro*-algebra orX) if: 1) @ € F. 2) A family F is closed under complements, idec F impliesX\A € F.

3) A family F is closed under hyper infinite unions, i.e{Af, },,c+y iS a hyper infinite sequence fthen

Upen An € F.

Theorem 4.2 If F is a#-o-algebra orX then: (1)F is closed under hyper infinite intersections, ife{A, },,c*y IS @
hyper infinite sequence iA thenN,,c«y 4, € F. (2) X € F.3) F is closed under hyperfinite unions and hyperfinite
intersections.(4F is closed under set differences. $5is closed under symmetric differences.

Theorem 4.3 If {4,},¢, is a collection o&*-algebras on a s&t, then N,¢; 4, , iS also anc*-algebras on a s&t
Theorem 4.4 If K c L theno®(K) c ¢*(L).

Definition 4.9 (Borel s #-algebra) Given a topological spakgthe Borels#-algebra is the#-algebra generated by
the #-open sets. It is denoted By (X). We call sets irB¥(X) a Borel set. Specifically in the cake= *R#" we



have thaB*(*R#") = {U|U is #-open set}. Note that the Boret”-algebra also contains aliclosed sets and is the
smallesio#-algebra with this property.

Definition 4.10 (#- Measures) A paifX, F) whereF is anc*-algebra orX is call a#- measurable space. Elements
of F are called a#-measurable sets. Givertaneasurable spa¢¥, F), a functioru®: F — [0, *] is called a
#-mea-sure oiiX, F) if: 1) u*(@) = 0. 2) For all hyper infinite sequencgs, },.c+y Of pairwise disjoint sets iff

w (UnZy An) = Ext-3,2, 1 (4y). (76)

A NON-ARCHIMEDEAN BANACH SPACESENDOWED WITH

‘R¥ -VALUED NORM

A non-Archimedean normed space Wilk{’ -valued norm#-norm) is a paitX, ||-||) consisting of a vector space
X over a non-Archimedean scalar fielik# or complexfield *C* = *R¥ + i*R¥ together with a norm|:||,: X -
*R¥. Like any norms, this norm induces a translatinariant distance function, called the norm inalioen-
ArchimedeariR? -valued metrial®(x, y) for all vectorsy,y € X, defined byd*(x,y) = |lx — ylls = lly — x|ls-
Thusd*(x, y) makesX into a non-Archimedean metric spa@g d*).

Definition 5.1 A hyper infinite sequenctﬁxn};‘:1 in X is calledd” - Cauchy or Cauchy i¢X, d*) or |||+ -Cauchy
if for every hyperreale € *R¥, there exists som@& € *N such thati”(x,,, y,,) = ||x, — Yulls < €if n,m > N.
Definition 5.2 The metriad® is called a#-complete metric if the paitX, d*) is a#-complete metric space, which

by definition means for every- Cauchy sequenc{an};"i1 in (X,d"), there exists some€ X such that
#-lim, o || x, — x|l = 0.

Semigroups on non-Ar chimedean Banach spaces and their generators

Definition 5.3 A family of bounded operatof§'(t)|0 < t < *co} on external hyper infinite dimensional non-
Archimedean Banach spakeendowed witii R¥ -valued#-norm||-||.; is called a stronglg-continuous semigroup
if: (@) T(0) =1, (b)T(s)T(t) = T(s + t) for alls,t € *R¥ ,, (c) For eachp € X,t — T(t) is #-continuous map-
ping.

Definition 5.4 A family {T(t)|0 < t < *oo} of bounded or hyper bounded operators on extéyr infinite
dimensional Banach spa&eis called a contraction semigroup if it is a sgiyn#-continuous semigroup and
moreovel|T(t)||l4 < 1 for allt € [0, *o0).

Theorem 5.1 Let T(t) is a strongly#-continuous semigroup on a non-Archimedean Banaatesf) letAp =
#-lim, o A ¢ Whered, = r~*(I — T(r)) and letD (4) = {p|3(#-lim,_,, A, )}, then the operatot is #-closed
and#-densely defined. Operatdris called the infinitesimal generator of the semigpT (¢t).

Definition 5.5 We will also say tha#l generates the semigrofift) and writeT (t) = Ext-exp(—tA).

Theorem 5.2 (Generalized Hille -Yosida theorem) A necessany suifficient condition tha#-closed linear operator
A on a non-Archimedean Banach sp&cgenerate a contraction semigroup is that({&)o, 0) c p(A4),

) A +A)7 1y <aforald>o0.

Definition 5.6 Let X be a non-Archimedean Banach spac€ X.An element € X* that satisfied!||ls = |l¢|l4 ,
andl(¢) = ||¢|l2 is called a normalized tangent functionaptdBy the generalized Hahn-Banach theorem, each
@ € X has at least one normalized tangent functional.

Definition 5.7 A #-densely defined operatdron a non-Archimedean Banach sp&de called accretive if for
eachp € D(4), Re(l(Ap)) = 0 for some normalized tangent functionatoOperatod is called maximal
accretive if4 is accretive and has no proper accretive extension.



Remark 5.1 We remark that any accretive operato#islosable. The#t-closure of an accretive operator is again
accretive, so every accretive operator has a sshéHelosed accretive extension.

Theorem 5.3 A #-closed operatad on a non-Archimedean Banach sp&ds the generator of a contraction
semigroup if and only ifl is accretive an®an(4, + A) = X for somei, > 0.

Theorem 5.4 Let A be a#-closed operator on a hon-Archimedean Banach spatken, if both4 and it adjoint4*
are accretived generates a contraction semigroup.

Theorem 5.5 Let A be the generator of a contraction semigron@ non-Archimedean Banach spAcéet D be a
#-dense set) c D(A), so thatExt-exp(—tA): D — D. ThenD is a#-core for4, i.e.#-A T D = A.

Hyper contr active semigroups

In the previous section we discus:{édcontractive semigroups. In this section we givela# adjointness theorem
for the operators of the fordh+ V, wherel is a multiplication operator amtlgenerates Hz-contractive semigroup
that satisfies a strong additional property.

Definition 5.8 Let (M. u*) be a#-measure space wiftif (M) = 1 and suppose thdis a positive self-adjoint
operator o2 (M, d*u*). We say thaExt-exp(—tA) is a hyper contractive semigroup if: @t-exp(—tA) is
L%-contractive; (b) for somk > 2 and some constad}, there is & > 0 so thatl|[Ext-exp(—tA)]@llsp < @42
forallp € LZ(M,d*u®).

Remark 5.2 Note that the condition (a) implies thatt-exp(—tA) is a strongly#-continuous contraction semi-
group for allp < *co. Holder's inequality shows thiidl| 4, < |||l 4, if » = q. Thus thel’.-spaces are a nested family
of spaces which get smalleragets larger; this suggests that (b) is a veryngtimndition. The following
proposition shows that constanplays no special role.

Theorem 5.6 Let Ext-exp(—tA) be a hypercontractive semigroupldifM, d*u*). Then for allp, g € (1, *) there
is a constant, , and at,, ; > 0 so that if> t,, , , then||Ext-exp(—tA)@|l4p < Cpq4ll@ll4q, for allp € Lf;.

Theorem 5.7 Let (M, u*) be ac*-measure space wilf (M) = 1and letH, be the generator of a hypercontractive
semi-group orl, (M, d*u*). LetV be a'R} -valued measurable function M, u*) such thav’ € L% (M, d*u*) for

all p € [1,*) andExt-exp(—tV) € L¥(M, d*u*) for all t > 0. ThenH, + V is essentially se#-adjoint on
C'*(Hy) N D(V) and is bounded below. Hel®@® (Hy ) = Nye-n D(HE).

A NON-ARCHIMEDEAN HILBERT SPACESENDOWED WITH
*C¥ -VALUED INNER PRODUCT

Definition 6.1 Let H be external hyper infinite dimensional vector gpager complex fieldC# = *Rﬁ + i*]Rf. An
inner product o is aC#-valued function{-,-): H x H — *C¥, such that (1jax + by, z) = {ax, z) + (by, z),

(2) (x,¥) = (7, x). 3) lIx]I> = (x, x) = 0 with equality(x, x) = 0 if and only ifx = 0.

Theorem 6.1 (Generalized Schwarz Inequality) g1, (-,-)}be an inner product space, then for@ll € H:

[{x, )| < llx|lllyll and equality holds if and onlyif andy are linearly dependent.

Theorem 6.2 Let {H, (-,-)}be an inner product space, afid||s = +/{x,x) . Then||-||« is a*R¥ -valued#-norm on a
spaceH. Moreover(x, x) is #-continuous on Cartesian prodétix H, whereH is viewed as thé&-normed space

{H, 11113

Definition 6.2 A non-Archimedean Hilbert space igtacomplete inner product space.
Example 6.1 The standard inner product 8&™,n € *N,, is given by external hyperfinite sum

(x,y) =EXt-Y7, %, ;. (77)



Here x = {x;}"~,, vy = {y;}, , withx;,y; € *C¥,1 <i <n, see [14].
Example 6.2 The sequence spatEconsists of all hyper infinite sequences {zi}Zfl of complex numbers irC#
such that the hyper infinite series B¥-,|z;|> #-converges. The inner product Bhis defined by

(zw) =Bxt-3. %, Z,wi. (78)
Herez = {zi}Z:l, w= {wi};:l and the latter hyper infinite seri#sconverging as a consequence of the generalized
Schwarz inequality and theconvergence of the previous hyper infinite series.
Example 6.3 Let C*[a, b] be the space of tH€? - valued#-continuous functions defined on the interialb] c
*R¥, see [14]. We define an inner product on the sig4¢e, b] by the formula

(f.g) = Ext- [ F()g(x) d*x. (79)

This space is nagt-complete, so it is not a non-Archimedean Hilbegp Thet-complettion ofC*[a, b] with
respect to thét-norm

Il = (Bxt-[1FGol %), (80)

is denoted by [a, b].
Example 6.4 Let C*®[q, b]be the space of tH€?- valued functions wittk € *N #-continuous#-derivatives on
[a, b] c *R¥, see [14].We define an inner product on the sgd€€[a, b] by the formula

(f,9) = Ext-Ti, (Ext- [ fFOG0g* D (x) d¥x). (81)

Heref*® and g*® denotes théth #-derivatives off andg respectively.The correspondi#ignorm is

Iflls = (Ext-Zi-Ll (Ext- fab|f#(i)(x)|2 d#x))l/z. 82)

This space is nat-complete, so it is not a non-Archimedean Hilbeecg The non-Archimedean Hilbert space
obtained by#-complettion ofc*®[a, b] with respect to thé&-norm (1) is non-Archimedean Sobolev space, denoted
by H**[a, b].

Definition 6.3 The graph of the linear transformatiBni — H is the set of pair§(¢, T¢)|(¢ € D(T))}. The graph
of the operatoF, denoted by’ (T), is thus a subset &f x H which is a non-Archimedean Hilbert space with the
following inner product(¢,, ), (¢,,P,)). OperatorT is called a #-closed operatof'fT) is a #-closed subset of
H X H.

Definition 6.4 Let T, andT be operators on H. [f(T;) o T'(T), thenT; is said to be an extension @#fand we
write T, D T. Equivalently,T; o T if and only if D(T,) © D(T) andT,¢p = T¢ for all¢ € D(T).

Definition 6.5 An operatofT is #-closable if it has #-closed extension. Evefj-closable operator has a smallest
#-closed extension, called iisclosure, which we denote By T.

Theorem 6.3 If T is #-closable, the (#-T) = #-T'(T).

Definition 6.6 Let D(T™) be the set op € H for which there is ad € H with (Ty, ) = (¢, ¢) forally €

D(T).For eachp € D(T*), we defineT*¢ = £.The operatol* is called thet-adjoint of T. Note thatp € D(T™) if
and only if|(Ty, @)| < C||y||4 for allp € D(T). Note thatS c T impliesT* c S.

Remark 6.1 Note that fo’ to be uniquely determined by the conditi@h, ¢) = (¥, ¢) one need the fact that
D(T) is #-dense irH. If the domainD (T*) is #-dense irH, then we can defingd** = (T*)".

Theorem 6.4 LetT be a#-densely defined operator on a non-Archimedean Hiklggaced. Then: ()" is
#-closed. (b) The operat@tis #-closabie if and only iD(T*) is -dense in which cage=T". (¢c) If T is



#-closable, therf#-T)* = T*.

Definition 6.7 Let T be a#-closed operator on a non-Archimedean Hilbert spad® complex numbek € *C# is

in the resolvent sgt(T), if AI — T is a bijection ofD(T) ontoH with a finitely or hyper finitely bounded inverse.
If complex numbed € p(T), R; = (Al — T)™! is called the resolvent Gfat .

Definition 6.8 A #-densely defined operat@ron a non-Archimedean Hilbert space is called sytrimer
Hermitian ifT < T*, that is,D(T) c D(T*) andT¢ = T*¢ for all ¢ € D(T) andequivalently,T is symmetric if and
only if (Te,y) = (¢, TY) for allp,y € D(T).

Definition 6.9 A #-densely defined operatdrt is called self#-adjoint if T = T*, that is, if and only if" is
symmetric and (T) = D(T").

Remark 6.2 A symmetric operatdF is always#-closable, sinc® (T) #-dense irH. If T is symmetricT* is a
#-closed extension of’ so the smallest-closed extensiofi** of T must be contained iR*. Thus for symmetric
operators, we have c T** c T~, for #-closed symmetric operators we hdve- T** c T* and, for self#-adjoint
operators we have = T** = T". Thus a#-closed symmetric operat@ris self#-adjoint if and only ifT* is sym-
metric.

Definition 6.10 A symmetric operatdF is called essentially sef-adjoint if its#-closure#-T is self#-adjoint. If T
is #-closed, a subsé c D(T) is called a core foF if #-T D =T.

Remark 6.3 If T is essentially selfadjoint, then it has one and only one sefdjoint extension.

Definition 6.11 Let A be an operator on a non-Archimedean Hilbert spic&he setC (4) = ﬂ;‘fl D(A™) is
called theC “®-vectors ford. A vectorg € € *(4) is called ant-analytic vector fod if Ext{foo 1470y

n=0
somet > 0. If A is self#-adjoint, therC " (A) will be #-dense inD(A).
Theorem 6.5 (Generalized Nelson's analytic vector theorem)A_be a symmetric operator on a non-Archimedean
Hilbert space H. ID(A) contains &#-total set offf-analytic vectors, theA is essentially selfadjoint.

< *oo for

Theorem 6.6

Theorem 6.7 Let A be essentially sel#-adjoint on the domairD(A) and letB be a symmetric operator @{A4).

If there exists a constaate *R¥ such that for aliy € D(A) and for allg € *R# such thad < g < 1 andthe
inequality holdg|By||4 < al|(A + BB)y||4, thenA + B is essernéllv self #-adjoint onD(A) and its#-closure has
domainD (#-4).

Theorem 6.8 Let A andB be the same as in Theorem 6.7. THeandA + B have the sam#-cores. If4 is
bounded from below, theh+ B is bounded from below.

GENERALIZED TROTTER PRODUCT FORMULA

Theorem 7.1 Let A andB be self-adjoint operators on non-Archimedean Hiflbpacei®. Suppose that the opera-
tor A + B is self#-adjoint onD = D(A) n D(B), then the following equality holds

s-#-lim,_ o, [(Ext-exp (%)) (Ext-exp (%))]n = Ext-exp[it(4 + B)]. (83)

Theorem 7.2 Let A andB be self-adjoint operators on non-Archimedean Hiflspacei®. Suppose that the opera-
tor A + B is essentially self#-adjoint onD = D(A) n D(B), then the following equality holds

s-#-lim,, o [(Ext-exp (%)) (Ext-exp (%))]n = Ext-exp[it(A + B)]. (84)



Theorem 7.3 Let A andB be the generators of contraction semigroups orAtohimedean Banach
spaceB”.Suppose that the-closure of(4 + B) I D(A) n D(B) generates a contraction semigroup®&h Then the
following equality holds

s-#-1im,,_, e, [(Ext-exp (— %)) <Ext-exp (— %))]n = Ext-exp[—t(#-A + B)]. (85)

FOCK SPACE OVER NONARCHIMEDEAN HILBERT SPACE

Definition 8.1 Let H* be a complex hyper infinite-dimensional non-Archaean Hilbert space over fiel@? and
denote by #™ then-fold tensor productt*™ = Ext-Q7_,H*, n € *N. SetH*©® = *C¥ and defineF (H") =
Ext-@pe-y(H*™). F(H*) is called the Fock space over non-Archimedean Hikgeaceti*. Seti* = L("R"®),
then an elemenp € F(H*) is a hyper infinite sequence W -valued functiong) = {Y, ¥, (x1), Y, (x4, x,),

Y, (1, X, %3), oo, W (x4, ., X)), n € *N and such that

1Wlls = Ihol? + Ext- Enen(Ext- [1h (xy, ..., x,)|2d*"x) < o0,

Actually, it is notF (H*) itself, but two of its subspaces which are useguiantum field theory. These two hyper
infinite-dimensional subspaces are constructedlisAfs: Let B, be the permutation group @ane *N elements and
let {<pk},1°:1be a basis for a spa#é. For eacly € P, we define an operator (which we also denote)gn basis
elements ot/ *™ by o (Ext-®,¢y,) = Ext-®[L1¢y,,- The operator extends by linearity to a boundeztator

(of #-norm one) orH* and we can defing! = (%) (Ext- Y4ep, 0). It is easily to show by definitions that

$#2 = §% and §#* = §# so0S is an orthogonal projectiofihe range o$! is called thei-fold symmetric tensor
product ofH*. We now define* (H* ) = Ext-@®,,cySEH*™. Non-Archimedean Hilbert spacg? (H* ) is called

the symmetric Fock spaoger non-Archimedean Hilbert spadé” or the Boson Fock space over non-Archimedean
Hilbert spacei*.

SEGAL QUANTIZATION OVER NONARCHIMEDEAN HILBERT SPACE

Let H* be a complex non-Archimedean Hilbert space owsd fic# and letF (H*) = Ext-@,c-y(H*™), where
H*™ = Ext-Q}_, H* be the Fock space ovEfand letF,(H*) be the Boson subspace®fH*). Let f € H* be
fixed. For vectors it *™ of the formn = Ext-Q™,1;,n € *N we define a map~(f): H* ™ — H#"-1 py
b=(f)n = (f, Y1) (Ext-®7,y;) andb~ (f) extends by linearity to finite and hyperfinitedar combinations of such
7, the extension is well defined, afpb~ ()nll4 < lIf |lxlInll4- Thusb™(f) extends to a bounded map fhorm
lfll4) of H*™ into H*®~D Since this holds for each€ *N (except fom = 0 in which case we define

b=(f): H*© - {0}), b~ (f) is a bounded operator #fnorm||f||, from F(H*) to F(H*). It is easy to check that
operatoth* (f) = (b~(f)) takes each subspaté™into H***Dwith the actiorb* (f)n = f®Ext-®',1; on
product vectors. Note that the mAap> b*(f) is linear and the may — b~ (f) is antilinearLet S,, be the
symmetrization operators introduced in previousisea@nd then the operatSf = Ext-@,,c+S¥ is the projection
onto the symmetric Fock spag(H") = Ext-@,c-y5" H* ™, we will write §#H#™ = H*™and callH*™then-
particle subspace 6t (H*). Note that operatdr~(f) takes spac;,(H¥) into itself, but the operatdr* (f) does

not. A vectonp = {1p(”)}n°=°1 with ™ = 0 for all except finite or hyperfinite set of nunmbeis called a finite or

hyperfinite particle vector correspondingly. Welwliénote the set of hyperfinite particle vectorsFpyThe vector
Qo = (1,0,0, ...) is called the vacuum vector. Létbe any self-adjoint operator éH with domain of essential self-



#-adjointnesd = D(A). LetD, = {y € Fy|p™ € Ext-®!-,D,n € *N} and define operatatT*(4) onD, n H!™
bydlr*(A)=AQI QI+ IQAR QI+ +QI--QI® A. Note thatdI'* (A)is essentially self-adjoint on
D, . OperatodI'*#(4) is called the second quantization of the operatdior example, lefi = I, then its second
quantizationV# = dI'*#(I) is essentially self<adjoint onF, and fory € H'™, N#y = mp. N* is called the number
operator. IfU is a unitary operator on spaké, we definedI'* (U) to be the unitary operator gh(H*) which
equalsExt-®7-, U when restricted tﬂf(")for n > 0, and which equals the identity ﬂij'(o). If Ext-exp(itA) is a
#-continuous unitary group di*, thenl'*(Ext-exp(itA)) is the group generated dy*(4), i.e., that expressed by
the formulal#(Ext-exp(itA)) = Ext-exp(itd['*(A)).

Definition 9.1 We define the annihilation operator () onF,(H*) with domainF, by the formula

a (f) =+vN+1b~(f). (86)

Operatora™ (f) is called an annihilation operator because itsaachn + 1)-particle subspace into tmeparticle

subspace. For eaghandn in Fy, (VN + 1~ (), 1) = (¥, S*b* (f)VN + 1), then we get
(@ (f)) 1 Fo=S*p*(f)VN + 1. (87)

The operatofa™(f))  is called a creation operator. Bath(f) and(a~(f))" #-closable; we denote their
#-closures bya™(f) and(a‘(f))* also. The equation (1) implies that the Segatifgeratod¥(f) onF, defined
by ®%(f) = \/% [a=(f) + (a= ()] is symmetric and essentially seka#joint. The mapping frori* to the self-
#-adjoint operators off,(H*) given byf —» ®#(f) is called the Segal quantization ov&f. Note that the Segal
guantization is a real linear map.

Theorem 9.1 Let H* be hyper infinite dimensional Hilbert space ovemplex field*C# = *R# + i*R¥ and®Z(f)
the corresponding Segal quantization. Then:

(a) (self#-adjointness) for each € H* the operatodf(f) is essentially self+adjoint onF ,, the hyperfinite
particle vectors;

(b) (cyclicity of the vacuum) the vect@l, is in the domain of all hyperfinite produdist- [T%, ®#(f;),n € *N and
the sef{Ext- [, ®4(f,) |f; € H*,n € *N} is #-total inF,(H*);

(c) (commutation relations) for eaghe F, andf, g € H*: [®Z()®E(g) — E(g)PE(N 1Y = iIm(f, g) y#;

(c") (generalized commutation relations) assuming @iag) ,+ = 0 andy € F is a near standard vector we get
[@£(fHDE(g) — P (g)PE(N]Y ~ 0 and thereforet([Df(f)P§(g) — P (GIPE(N]P) = 0;

(d) letW (f) denotes the external unitary operdiat-exp (id)ﬁ (f)) then

W(f + g) = [Ext-exp (= L1m(f, ), )| W (HIW ();

(e) @#-continuity) if{fn};‘ﬁ1 is hyper infinite sequence such#gim,,_,«, f,, = f in H* then:

1) #-1im,,_,+, W(f,)y exists for allp € F,(H*) and#-lim,,_,+., W(f)p = W ()P

2) #-lim,_+, PE(f) exists for alkp € Fy and#-lim,,_+,, ¥ (f,) = OL(f)y

(e) For every unitary operatoron H*, T*(U): D(#-®£(f)) — D(#-®Z(Uf)) and for ally € D(#-0F(Uf)),
T*(U) (#-E(H)M*1(U)Y = #-DEUS)y for all 3 € F, andf € H*.

Remark 9.1 Henceforth we usab#(f) to denote thét-closure #-®%(f) of ®#(f).

Definition 9.2 For eachm > 0,m € R letHf, = {p € "R¥*|p-p = m?,p, > 0}, wherep = (p°, —p!, —p?, —p3),
the setdf},, are called mass hyperboloids, are invariant undeonical Lorentz grouis!,. Letj,, be the
#-homeomorphism ofi, onto*R#3 given byj,,,: (po, 1, P2, P3) = (D1, P2, P3) = p. Define a#-measured?, on
H} for any#-measurable sé& c H} by



a*3p
m(E) JIpl2+m?
Theorem 9.2 Let u* be a polynomially boundeié:measure with support iV, . If u* is °L, = L% - invariant, there
exists a polynomially boundetimeasure® on[0,.0*) and a constantso that for any’ € S*(*R#*)

Q7 (E) = Ext- [, (88)

(89)

*00 | |2 2' , d#3
Ext- fmmfd### = ¢f(0) + Ext- fo d*p*(m) (Ext- f*m{“ f(\/ pl2+m2,p, pz,ps) P>.

VIpl2+m?

Definition 9.3 Let F(f) be a linea#-continuous functionaf: S &, CR#*) - “R¥. FunctionalF isL',- ~ - invariant
if for any A € L, the following property hold® (f(Ax)) = F(f) for all f € S §,("R#*).

Theorem 9.3 Let u* be a polynomially boundeld, - invariant#-measure with support -V, . Let F(f) be a linear
#-continuous functionaF: S £, CR#*) - "R, defined byExt- f*RgJ d*u® and there exists a polynomially

boundedi¢-measure” on[0,0%) such tha!f(:oo d#p*(m) € "R, and a constante "R 5, so that (1) holds.

Then for anyf € S f,("R#*) and for anyc € *R¥ , the following property holds

N Yo w4 F(VIpPP+m2,p1,p2,p3)d*3p
F(f) = cf(0) + Ext- [~ d*p*(m) (Ext- flplsx T . (90)
Definition 9.4 Let y(», p) be a function such thayy (s, p) = 1 if |p| < x», y(»,p) = 0if |p| > ». Define a
#-measured, , onH} by
# = x(p)a®p
Q. (E) = Ext- fjm(E) N (91)

We use the Segal quantization to define the freenitian scalar field of mass. We taketi* = Li( HE, d*Q# ).
For eachf € Sf, C'R¥#*) we defineEf € H* by Ef = 2m(Ext-f) I H}, where the Fourier transform is defined in
terms of the Lorentz invariant inner prodpet %: Ext-f = #(Ext- f*]RgA} Ext-exp [i(p - J?)]d#‘*x). If ®%,()is

the Segal quantization ovEf( H}, d*Qf, ,,), we define for eachR¥- valuedf € S*("RE*): of . (f) =

®f, (Ef) and for eachiC- valuedf € S*(*R%*) we defined}, . (f) = @}, (Ref) + id}, ,(Imf).

Definition 9.5 The mapping - @5, ..(f) is called the free non-Archimedean Hermitian scédéd of massn.
Definition 9.6 On L%( H}, d*Qf, ) we define the following unitary representatiortiud restricted Poincare

groupL'.: (U,,,(a, D) (p) = (Ext-exp[i(p - @]y (A~'p) where we are using to denote both an element of the
abstract restricted Lorentz group and the corredipgrelement in the standard representatiofiRh

Remark 9.2 Note that by Theorem 9.1(e) for all € F, andf € L§( Hf,, d*Q% ) we get
T#(Up(a, A)) (#-0F . ()T (U (@, 1)) = T#(Upp(a, A) ) (#-DEEN))T* (U (@, A) )ip =
#-0F U (a, DE)p.
A change of variables for gfl € S&, ("R¥*) gives that
Un(a, N)Ef = EU,(a,N)f.

Therefore for ally € Ds;*. c F, such that|y||, € "R¥,,, and for *“R¥, -valued functiorf such that f €
in !

¢ fin
sE ('R**) we obtain that

P (U (@, ) (#- 05 o (F)) T# (U (0, )P = -0, (U (2, MY



Definition 9.7 The#-conjugation on a non-Archimedean Hilbert spHées an antilinea#-isometryC* so that the
following equality hold<#? = 1.

Definition 9.8 Let H* be a non-Archimedean Hilbert space over fi@lfl ®Z(-) the associated Segal quantization.
Let Hy = {f|C*f = f}. For eachf € H z# we definep®(f) = OX(f) andr®(f) = OE(if), the mapf — ¢*(f)
is called the canonical free field over the douligt, C*) and the mayf — =#(f) is called the canonical conjugate

momentum.

Theorem 9.4 Let H* be a non-Archimedean Hilbert space over fi@fi with #-conjugationC*. Letp#(-) andm#(+)

be the corresponding canonical fields. Then: (a)deahf € H ﬁ#, o*(f) is essentially sel-adjoint onF,.

(b) {(p#(f)|f €EH i#} is a commuting family of sel#-adjoint operators. (d), is a#-cyclic vector for the family
{o*(DIf € HE&}. () If {f.3.,2, is hyper infinite sequence such#asim,,_ -, f, = f in H ¥,, then

c#
#-1im,_+ @* ()Y exists for alkp € Fy and#-1lim,_ @* ()¢ = o*(H.
(€) #-1lim,,_,+o, (Ext-exp[iop* (£,) W) = Ext-explio®(f)]y for ally € F,(H?). (f) Properties (a)-(e) hold with
@*(f) replaced byr*(f). (9) If f,g € H [+ , then[o*(No*(9) — *(9)o* (NP = i(f, g) for ally € F,(H*)
and(Ext-exp[ip* (f)]) (Ext-exp[in*(f)]) = (Ext-exp[i(f, g)]) (Ext-exp[ir*(f)]) (Ext-exp[ip* ()]).
Definition 9.9 We write nowf € L{( Hf, d*Q¥ ) asf(p,, p) and define theé-conjugationC* by C* () (po, p) =
f (o, —p) . Note thatC* is well-defined orf € L§( Hf,, d*Q% ) since(py, —p) € Hf, if and only if(p,, p) € Hf,.
Definition 9.10 We denote the canonical fields corresponding’toy ¢* (-) andr” (-) and definep ,, (f) =

o* (Ef) and il ,, (f) = n* (W(P)ES), u(p) = p? + m? for *RE- valuedf € LE(*R%*), extending to all of
LEC'R#*) by linearity. We let nows = {Yly € Fo,p™ € S, CRE™)} and for eachy € "RE® we define the

operatota(p) onF, (L’;(*]REB)) with domainDgs by (@a@)P)™ =Vn+ 19" (p, ky, ... k,) and therefore the

formal #-adjoint of the operatat(p) reads(at(p)y)™ = \/iz 8@ — k)Y (ke o kg, kg, o k).
Note that the formulas

a(g) = Ext- [.gus a(p)g(—p)d*p, (92)
a*(g) = Ext- [.pus a* () g(p)d*p (93)

hold for allg € Sf, ("R#?) if the equalities (92)-(93) are understood ingkase of quadratic formhat is, (92)
means that fog,, Y, € Dgr = (Y1, a(g)y;) = Ext- [.pua(h1, a(@)h;)g(—p)d**p and similarly (93) means that

fory,, P, € Dgs 1, a(g)y,) = Ext- f*m§3(¢1' at(p)y,)g(p)d*p. The particles number operator reads
Nos =Ext-[ at(p)a(p) d*3p. (94)
The generator of time translations in the freeaadétld theory of mass is given by
Hoye = Ext- f,, n(@)a’ (p)a(p) d*p. (95)
We express the free scalar field and the time felds in terms ot (p) anda(p) as quadratic forms O'Ds;ﬁn X
Dsta BY
Df (1, 1) =

at3p

(2m)~3/2Ext- fIPIS”{(Ext-exp(,u(p)t - ipx))a*(p) + (Ext-exp(,u(p)t + ipx))a (p)} ok (96)




(Dg,m,x x) =

(2m)3/?Ext- fIPISH{(Ext-exp(—ipx))aT(p) + (Ext-exp(ipx))a (p)}\/‘% , (97)
T[g,m,u(x) =
(2m)~3/2Ext- fIPISK{(Ext-exp(—ipx))a*(p) + (Ext-exp(ipx))a (p)}% . (98)

Abbreviation 9.1 We shall write for the sake of brevity through thaperd§ , (x, t), @, (x) andnf . (x) instead
of . (x,0), P, (x) andnf . . (x) correspondingly.

Theorem 95 Letn,,n, € N and suppose tha (ky, ...k, Py, ..., Pn,) € L (*Rf3("1+”2)) where
W (ky, . kn,, D1y ey Pny) IS @°Clgy -valued function ofR**™*"2) Then there is a unique operalyy on
F, (L§(*R§3)) o) thatDS# c D(Ty,) is a#- core forTy, .

mn

1) As*C#-valued quadratic forms dhsﬁ X DS#
mn mn

Ty = Ext- f*lR3("1+"2) W(kl, Y S pnz) (H?:ll at(k;, g))(l‘[:l:Zl a(p;, 8))d#3n1kd#3n2p,

2) As *C#-valued quadratic forms dhsﬁ X DS?.
mn mn

Ty, = Ext- f*]R3(n1+nz) W(kl, knl, D1y s pnz) (H’::ll a'l'(kl.’ g))(l‘[:zl a(p;, 8))d#3n1kd#3n2p,
3) If my andm, are nonnegative integers so thgt+ m, = n,; + n,, then
(L+ N*)™™2Ty, (1 + N2 < C(my, mo) Wl 5.

4) On vectors inF, the operatorsy, and Ty, are given by the explicit formulas

l-ny+nq

(TW( 1!’)) =

K(l,ny,ny)S [ Ext- flplls;f .. Ext- fpn2|5% W (ke oo ey P1s oo Py ) OO (D1 s Py Ky o e, A2 p],

(TW(ll}))n =0ifn<n; —n,,

l-ni+n,

(T () =

K(l, nz,n1)§

Ext-f Ext-f W (ky, ks D1s oo Py ) WP (P oo Pryo gy ok )d*3™ ke
Ip1lsx |pn2 |S;{

(T ()" = 0if and only if n < n, — n,. Here$ is the symmetrization operator.



Q"-SPACE REPRESENTATION OF THE FOCK SPACE STRUCTURES

In this section the construction of a non-Archime@®-space and’(Q#, d¥u*) , another representation of the
Fock space structures are presented. In analogitiétone degree of freedom case W€ R? ) is isomorphic
to LY (*R¥,d*x) in such a way thab# (1) becomesnultiplication byr, we will construct a*-measure
spaceQ¥, u*), with u# (Q*) = 1, and a unitary map*: F (H* ) - L%(Q#,d*u") so that for eacli € Hf, S*¢# (f)
S#=1 acts onLE (Q#, d*u*) by multiplication by au*-measurable function. We can then show that irctise of the
free scalar field of mass in 4-dimensional space-tind}, V = S*H{, (¢)S*~* is just multiplication by a function

V(q) which is inL%(Q#, d*u*) for eactp € *N. Let {gn};‘:l be an orthonormal basis f8* so that eaclg € Hf

and let {g,,}'_,, N € *N be a finite or hyperfinite subcollection of the Sﬁ};oil .Let Py be a set of the all external
finite and hyperfinite polynomialBxt-P[uy, ..., uy] andF; be the #closure of the set

{Ext-Ploi(gy),..., 0k (gy)]IP € Py} in F#(H*) and define a sét’ = F§ n F,. From Theorem 55 it follows that
©i(gx) andri(gy), for all1 < k,1 < N are essentially self-&djoint onFY¥ and that

(Ext-expl[itp}; (g,)]) (Ext-explitr}(g)]) =
(Ext-exp|—ist8y,; |)(Ext-explitni(g)]) (Ext-explitpk(gi)]) -

Therefore we have a representation of the genethlieyl relations in which the vectdl, satisfies the equality
(lef(g))? + [ (g)]? — DQ, = 0 and is cyclic for the operatof@ (g,)}4-,. Therefore there is a unitary map

- - #
SHM: Ff - [£('R¥V) such that: 1)5* Mg (g,) (S*M) ™ = xy, 2) S¥Mr# (g, ) (S*M) ™" = =212 and

id#xk

2
3) sty = g=N/4 [Ext-exp (—Ext-Z‘,ﬁ:l%)]. It is convenient to use the non-Archimedean Hitlspace
2 2
Lg (*R?N' T N/4 <Ext-exp (—Ext- Z¥=1 %))) d*N¥ x instead Oﬁé(*R?N) so we |eﬂ#’uz: Ext_exp (— xz—k) d#xk

2
and define the operat6ff)(x) = =V/* <Ext-exp (Ext- Z’,lez—k)), ThenT is a unitary map off (*R#") onto

L5 ("REV, Ext-TTY-, d*uf ) and if we let S = TS*™ we get: 157 ™: % > L5 ("R, Ext-TT)-, duf),
-1 -1 1 a*

2)s{ "0l ™) T = xSV l(g) (1Y) T = =T+ o

function identically one. Note that ea#hmeasurg:; has mass one, which implies that

and 4)s¥™q, = 1, wheret is the

(Qo, (Ext- [1R=1 Px (%ﬁ(gk)))ﬂo) = f*RgN(Ext' [Tk=1 P (i) (Ext- 13- d#.‘iﬁ) = (99)
= Ext-[Ii= f*]RgN P (i) d* gt = Ext-Tli=y f*]thﬁN('Q‘O' P (95(91)00)).

HereP,, ..., Py are external finite and hyperfinite polynomialsaswe can to construct directly thé-measure
space(Q*, u*). We define a spadg” =x;°:1 *R#. Take thes#-algebra generated by hyper infinite products of
#-measurable sets iiR? and sep” =®;_°;’1 u. We denote the points @@ symbolically byg = (g, g5, ... ), then

(Q*, u*y is ac*- measure space and the set of functions of tme gy, g5, ... ), whereP is a polynomial and
n € *N is arbitrary, is¢-dense ik (Q#, d¥u*). Let P be a polynomial inN € *N variablesP(xy, x5, ..., xy) =

Ext-Yi, v cll,._"le,l(l1 x,l(’l‘\’, and defines*: P ((p}f(gkl), ...,wﬁ(gkN)) Qo = P(qk, Qs > Giy )- Then we get

li+mq IN+tmy

(0£(9i), - @5 (9y) ) Q0 = Ext- 3y 18 (00 05(91,) ™™ s 05 (81n) ™ " 20) =



Ext- szCszfR#N qller1 X . X qllVNerN(Ext [T, d*u ) = Ext- fQ#|P(xk1,xk2, ...,ka)|2 d*ut.

By the equation (99) and the fact that each meadilu’rms mass one. Sin€x is cyclic for polynomials in the
fields, S*extends to a unitary map 8§ (H* ) onto LE(Q*, d*u*).

Theorem 10.1[15] Let g} ,,(x), # € *R¥ , be the free scalar field of mass(in 4-dimensional space-time) at time
zero. Letg € L{('R®) n LE('RE) and defin) 100 (9) = A6¢) (Ext- Jogps 9C0): @ ()1 d*3x )

whered(x) € *R¥ .. Let S* denote the unitary mag*: 7 (H* ) - L5(Q*,d*u*) constructed above. Théh=
S*H,,,1(9)S"* is multiplication by a functio, 1 (¢) which satisfies: (alf,. (¢) € L} (Q*, d*u*) for allp € *N.

(b) Ext-exp (—tV,,1(q)) € LE(Q¥,d"u*) for all ¢ € [0, *co).

Proof. (a) Note thatp/ ,,(x) is a well-defined operator-valued functiomo& *R¥3. We define now ¢, (x): by
moving all thea'’s to the left in the formal expression fof, (x). By Theorem 59: /%%, (x): is also a well-
defined operator for eache *R#3. Notice that for each € *R#3 operator o (x): takesF0 into itself. Thus for
eachx € "R¥3 operator g%, (x): reads @/t (x) = @it (x) + d; () @} (x) + d, (3%) where the coefficients
d, (%) andd, () are hyperfinite constant independenkofor eachx € *R§3, S*of . (x)(g)S* tis the operator on
#-measurable spadd (Q*, d*u*) which acts by multiplying by the functidft- Z;":l i (x, ) q, Wherecy, (x, %) =
(2m)~3/2(gy, (Ext-exp(ipx) ) x (¢, p)u(p)~Y/%) andy (»,p) = 1if |p| < 3, x(3¢,p) = 0if |p| > ». Note that

Ext-3,2, (6, 2012 = (2m) =3/ x Ge, D)) 135, (100)

so the function§* gt (x)(g)S* ! andS* %, (x)(g)S*~* are inL{(Q*, d*u*) and thel} (Q*, d*u*) norms are
uniformly bounded inx. Therefore, sincg € L’{( R¥%), $*H, ,, 100 (9)S" *operates on} (Q*, d*u*) by
multiplication by some.} (Q*, d* u*)-function which we denote b, ;) (q). Consider now the expression
for Hy . 160 (9) Q. This is a vecto0,0,0,0,%4,0, ...) with

A() g (x) x (3¢,p)| Ext-exp —iXZ§§4p- d3x /1(%) iy xGep))| Ext-g 21 P
1,[}#4(271, pz' P3’ p4) = Ext- f* #3 ( 4 ( = L)) - = : ( ( ! L)) (101)
Re (2m)3/2 [T, [2u(p)] /2 (2m)°/2 T, [2u(p] /2

Here|p;| < x,1 < i < 4. We choose now the parameler 1(x) ~ 0 such thaf|)**||2, € R and therefore we
obtainl| H,,K,A(K)(g)ﬂoﬂiz € R, since| HI,H,A(}{)(g)Q()”iZ = ||p#*|2,. But, sinceS*Q, = 1, we get the equalities

I Hl,}t,/l(x)(g)ﬂon#z = ||5#H:,x,1(x)(g)s#_1||L§(Q#_d###) = ||V1,x,/1(x)(Q)||L§(Q#_d#u#)- (102)

From (101)-(102) we get thV; ,, 100 (@)|| € R. It is easily verify that each polynomial

Li(e*a*u?)
P(q1,92, -, qn),n € *N is in the domain of the operatigr, ;) (q) andS*H; ,, 140 (9)S* ™ = Vi, 260 (@) on that
domain. Sincl, is in the domain off?,,, ;,1(g),p € "N, 1 is in the domain of the operati6f, ,, (., (q) for all

p € *N. Thus, for allp € *N V;,, 100 (q) € L5,(Q*, d*u*), sinceu® (Q*) is finite, we conclude thaf ,, 1, (q) €

L%(Q*,d*u*) for all p € *N. (b) RemindWick's theorem asserts that

Lo () = T 1) L ekl 2 () with ¢, = 98, (], Forj = 4 we get-0(c3) <
: @it (x): and therefore — (Ext f*R#g g(x) d*x ) 0(c?) < Hy 200 (g)-Finally we obtain
Ext- [, Ext-exp( t(: it () )) d*u* < Ext-exp(0(c2)) and this inequality finalized the proof.

GENERALIZED HAAG KASTLER AXIOMS



Definition 11.1 [15] A non- Archimedean Banach algebtais a complext-algebra over fieldC# (or *(C’;"_ﬁn =
REq, +1"RY ¢, ) which is a non-Archimedean Banach space und®favalued -norm which is sub
multiplicative, i.e. [|lxy|ls < |lx|l4|ly|l4+for all x,y € A4. An involution on a non- Archimedean Banach algebra
is a conjugate-linear isometric antiautomorphismrafer two denoted by - x*, i.e.(x + y)* = x* + y*, and for
allx,y € Au: (xy)* = y*x*, (Ax)* = Ax,(x*)* = x, ||x*||« = x, A € *C*. A Banach#- algebra is a non-
Archimedean Banach algebra with an involution.

Definition 11.2 An C;-algebra is a Banach-algebrad, satisfying theCj-axiom: for allx € A, ||x* x4 = |Ix]|3.
Definition 11.3 1) A linear operatom: H; — Hy on a non-Archimedean Hilbert spaigis said to be bounded if
there is a numbet € *R¥ with ||aé||; < K||¢]|, for all € € Hy. 2) A linear operatoa: H, - H, a non-
Archimedean Hilbert spadé; is said to be finitely bounded if there is a numi§es *R’g’ﬁn with ||aélls < K||€]l4
for all ¢ € H,. The infimum of all suclk if exists, is called th&-norm ofa, written||a|| .

Abbreviation 11.1 The set of all finitely bounded operatarsd, — H, we will be denoting bB# (H.).
Abbreviation 11.2 The set of all finitely bounded operatardf, — Hy we will be denoting bB, (Hy).

Remark 11.1 Note thatBy (H,) is aCj-algebra over fieldC ..

Definition 114 1f S € B*(H,) (or By (H,) ) then the commutast of S isS’ = {x € B¥(H,)|Va € S(xa = ax )}.
Remark 11.2 The algebr&#(H,) of bounded linear operators on a non-Archimededinertispacei, is a
C;-algebra with involutioT” - T*, T € B#(H,). Clearly, any#-closed#-selfadjoint subalgebra @&*(H,) is also a
Ci-algebra.

Remark 11.3 We will be especially concerned withiseparable Hilbert Spaces where there is an orthoeidrasis,
i.e. a hyper infinite sequenc&i}::"1 of unit vectors with(§;, ;) = 0 for i # j and such thal is the only element
of H, orthogonal to all thé;.

Definition 11.5 1) The topology orB*(H,) (or B, (H.) of pointwise#-convergence oH, is called the strong
operator topology. A basis of neighbourhooda & B*(H,) (ora € By (Hy) is formed by the following way

N(a,{§i}iz1, &) = bl — a)ills <& Vi(l <i<n)}
2) The weak operator topology is formed by the dasighbourhoods
N(a, {&:}izy (nidizy, © = (b — a)émy) <& Vi(l < i< n)}

Theorem 11.11f M = M* is subalgebra o8%(H,) (orB4 (Hy) with1 € M, then the following statements are
equivalent: )M = M" ; 2) M is strongly#-closed; 3)M is weakly#-closed.

Definition 11.6 A subalgebra oB*(H,) (or B, (H,) satisfying the conditions of Theorem 61is calletha
Neumann#-algebra.

Theorem 11.2 [15] (Generalized Gelfand-Naimark theorebet A be aCj-algebra with unit. Then there exist a non-
Archimedean Hilbert spadé, and an#-isometric homomorphisrid of A into B(Hy) such thalx* = Ux™, x€A.
Abbreviation 11.3 We denote byf = {*Rf‘*, (-,-)}, the vector spac&#* with the Minkowski product(x,y) =

XoYo — Xi¥i, I = 1,2,3.

Statement of the Axioms [15]. Let M# be Minkowski space over fiel®R¥ of four space-time dimensions.

1. Algebras of Local Observables. To each finitely bounded-épen se0 ¢ M¥ we assign a unitd; -algebra
0 — By(0)
2.1sotony. If 04 € O, , thenB(0,) is the unitalC; -subalgebra of the unit@l,-algebreB(05) :

By(01) € By4(0,).



This axiom allow us to form the algebra of all Ibobservables

Bioc = Uoch B#(O)-
The algebras,,,. is a well-defined’; -algebra because given ay, 0, « M, bothB,(0,) andB,(0,) are
subalgebras of thg, -algebréB; (0, U 0,). From there one can take thenorm completion to obtain

By = #-Byoc
called the algebra of quasi-local observables. Giviss aC;; -algebra in which all the local observaljle-algebras
are embedded.

3. Poincare ~ -Covariance. For each Poincare transformatigre °P] , there is &}- isomorphismz, : By — By
such that

ag(B4(0)) = By(9(0)),
for all boundedt-open0 c M¥. For fixedg € By , the mayy — ay(A) is required to bé-continuous.

3'. For each Poincare transformatige °P] , there is &j- isomorphismz, : By — By such that

st (ag(B#(O))) = st (B#(Q(O)))'

for all bounded¢-open0 c M¥. For fixedg € By , the mayy — a,4(4) is required to bé-continuous.

4. ~-Causality. If 0, and0, are spacelike separated, then all elemens;; 69,) =~ -commute with all elements of a
C; -algebraBy(0,)

[B4(01),B4(0,)] = 0.

4'. If 0, and0, are space-like separated, then the standard fotae all elements df} -algebraB,;(0,) commute
with the standard part of the all elementsCyf-algebraB, (0,)

st(By(0,),B4(0,)) = 0.

Definition 11.7 If 0 ¢ M§, we sayx belongs to the future causal shadov@df every past directed time-like or
light-like trajectory beginning at x intersects 2. Essentially0 separates the past light conecdfikewise, we
sayx belongs to the past causal shadow dff every future-directed timelike or lightlike fectory beginning at
inter-sects witl0. The causal completion or causal envelBpef O is the union of its future and past directed
causal shadows. This definition of the causal cetigi 0 can be reformulated in terms of “causal complesi&n
which are computationally easier to deal with0 Ifc M¥, we define the causal compleméXitof O to be the set of
all points with are spacelike to all pointsdn Then0” = 0 is the causal completion 6f One expects the
observables localized @ to be completely determined by the observableslied to0, carrying the same
information.

5. Time Evolution.

B,4(0) = B4(0).



6. Vacuum state and positive spectrum. There exists a faithful irreducible representatign B, — B(H,;) with a
unique (up to a factor) vectér € H, such thaf2 is cyclic and Poincan@variant, and such that unitary
representation of translations, given by

U)mo (A)Q = m(ax(4)9,

whered € B, anda,(*) is theC;-isomorphism from Axiom 3 associated with translatbyx € M}, has

Hermitian generatorB*, u = 1,2,3 whose joint spectrum lies in the forward light eoifhe last phrase is the most
physically important here; it simply states thatlewe energy-momentum operators whose spectrusfissti

E? —P? » 0,i.e, or in other words, that the enef§y 0 and nothing can move faster than the speedgjlaf. The
vectorQ is the vacuum state This axiom does not appelae fmurely algebraic; we have had to introduce am no
Archimedean Hilbert spad#, . In fact, we can rewrite the axiom in a comphetdbebraic but less transparent way
as follows. We postulate that there exists an vacsiatew, on theCj -algebra (i.e., a normalized, positive,
bounded linear functional) such that the followhads w,(Q*Q) = 0 for all Q € By of the form

Q(f,A) = Ext-[ f()a,(A) d™x

whered € B, andf(x) is a#-smooth function whose Fourier transform has boursdggbort disjoint from the
forward light-cone centered at the originMig.

Remind that in a quantum system with a Hamiltortiathe Heisenberg picture dynamics is given by #reoaical
formula

A(t) = {Ext-exp[itH]}A(0){Ext-exp[—itH]}.

ThenA(t) is the observable at tintecorresponding to the time zero observaiie). In our model we have hyper
finitely locally correct Hamiltonian# (g) but no hyper infinitely global Hamiltonian, and wenstruct the
Heisenberg picture dynamics nonetheless. We ddothisstricting the observables to lie in the Icalgebras
Bx(0) and by using the finite propagation speed impiiciéxiom 3.

Definition 11.8 Let £ be the space of symmetfié("R#3") functions defined ofR#3", F¥ = *C# and letF# =
Ext-ea;ioﬂ-",f, Qo =1 € *C# c F# Let S, be the projection ol (*R¥3") ontoZ*and letD, be the#-dense
domain inF# spanned algebraically I8, and vectors of the fori$y, (Ext- [1%=; fi (kn)) Where

fi € Sty CR¥3,*R¥#3),n € *N.

Definition 11.9 We set now

Hoy = Ext- [ 2: (m2(x) + Vg2 (x) + m?p2(x)): d*x. Qo
Theorem 11.3 As the bilinear form on the domaih, x D,
Hy, = Ext- f|k|s;f“(k) at(k)a(k)d* k. (104)

Theorem 11.4 (1) The operatoH, = H,, leaves each subdomanNF; invariant. (2) The operatdf, = H,,, is
essentially sel#-adjoint as an operator on the domajn
Definition 11.10 We set now

@f o(x, t) = Ext-exp(itHy)p; (x) Ext-exp(—itH,) 08)
il o(x, t) = Ext-exp(itH,)m} (x)Ext-exp(—itH,) (106)

(pf{‘,ﬂ (f' t) = Ext- f*]RigS (Pf;,o (x' t) f(x)d#ax (107)



T[f;,O (f! t) = Ext- f*IRg3 ”ﬁ,o (x! t) f(x)d#sx' (108)

Hereo} (x) andrf(x) is given by formulas (97) and (98) respectively.
Remark 11.4 Note thatp ,(x, t) andrf ,(x, t) are bilinear forms defined dd x D.
Theorem 11.5 As bilinear forms oDy X Dy.

a#
0006 ) = Ext- [.4s B (x = 3, O THO AP + Ext- [y 2 8y (6 = 3,6) 9f(0)dPy (109)

h o (x, t) = Ext- f*ux“ A#(x -y, t)mi(x)d*3y + Ext- f*u@“ A#(x y, O) T (x)d*3y (110)

o*t o*t2

Remark 11.5 HereA,(x — y, t) is the solution of the generalized Klein-Gordon attpn

A#(x t) — A#(x t) — A#(x t) + m2Au(x,t) =0 (111)

%2 ’ a# 2 a# 2 a# 2
with Cauchy data,(x, 0) = O A#(x 0) = §(x).

Remark 11.6 Note the dIStrIbutIOIA#(x t) has support in the double light-cojng < |¢t|.

Theorem 11.6 Let f;, f, € S*(*R%3, *R%3). The operatop? ,(f, t) + nf o (f, t) is essentially self~adjoint on the
domainDy.

Definition 11.11 We introduce now the cIa§s(S”(*]R§3)) of bilinear forms onD, x Dy expressible as a linear

combination of the forms
V=3, (j) Ext- [pysn v(K) @' (ky) - a' (K )a(kye) - alkn)d* k (112)

with symmetric kernels(k) € S*(*R¥3) having real Fourier transforms.

Theorem 11.7 LetV € 3(S*(*R¥%)). ThenVis essentially self-adjoint onDy.

Theorem 11.8 Let 0 be a bounde#-open region of vector spad® and letM,(0) be the von Neumann algebra
generated by the field operatdist-exp[ip/(f)] with f € S¥(*R#3, *R#3) andsuppf < 0. Letg(x) = 0 on
*R#3\0. ThenExt-exp[itH,(g)] € M. (0) for all t € *R¥.

Definition 11.12 Let 0 be a bounde#-open region of space and ®8§(0) be the von Neumann algebra generated
by the operatorBxt-exp[i(pf(fy) + mi(fy))] with £, £, € S*("RE, *R¥%) andsuppf;, suppf, < 0. Let 0, be the
set of points with distance less thahto O for any instant of the time

Theorem 11.9 Ext-exp(itH,)By(0)Ext-exp(—itH,) < By(0,).

Theorem 11.10 If 0, and 0, are disjoint bounded open regions of vector siREethen the standard part of the
operators iB,4(0,) commute with the standard part of the operatompirators irB,(0,).

Theorem 11.11 Letg € L§((*R¥®)), and letg = 0 on open regio®, thenExt-exp[itH,(g)] € B4(0)' for all

t € *RE.

Theorem 11.12 [15] (Free field~-Causality) Letf;, f, € S £, CR**, *R¥#*) with suppf; < 0,, suppf, € 0,. We set
now ¢f o(f1) = Ext- LR,@M @fo(x, ) fi (x, )d*x andef o (f,) = Ext- f*R§4 @fo(x,0) fo (x,t)d*x. If region0,
and regior0, are space-like separated, thst , (f)), ¢ o(f2) ] ~ 0 for all near standard vectgre Hy.

Proof. The commutatofp# (f,), ¢%o(f,)] reads

[Qofr,o(fl)' Qoﬁ,O(fZ)] = Ext- f*RgA: d*3x,d* t, Ext- f*n&?“ d®3x,d*t, A (; — x5, 6 — 6) f1 (g, t1) o (21, ),

Aﬁ(xl — X, tl - tz) = El(xl — X, tl - tz, }f) - Ez(xl — X, tl - tz, }‘f), Where



E1(x — xp,t — ty; %) = Ext- flpIS}{{exp{[ip(xl —x3)] —iw(P)(t; — tz)}}%v

2(X1 — X, ty — ty; ) = Ext- f|p|SH{_eXp[[iP(x1 —x)] +iw(p)(t; — tz)]}\/% .

[1]

Herex € *Rﬁ_oo , (,U(p) = ﬂpz + mz. Deflneil(xl — Xy, tl - tz;}f) andiz(xl — Xy, tl - tz;}f) by

a3y

Ei(xy — Xzt — ty; %) = Ext- f|p|>x{9Xp{[iP(x1 —x3)] = iw(P)(t; — t2)}} Nrereoe

d#3p

{=exp[lipCa — x)] + i@t - ) [} =5

E,(x; — x5, ty — ty; %) = Ext- flpl>%
Note that (ail(xl — Xy, tl - tz; }f) =0 andEZ (x1 — Xy, tl - tz; J’f) = 0, (b) El(xl — Xy, tl - tz;}f) and
Z,(x; — xy,t; — ty; %) are Lorentz=-invariant tempered distribution (see definition gijce the distributions
El(xl - xz, tl - tz) andsz(xl - xz, tl - tz) def'ned by

= . ) 3
E1(xy — X, — ty; %) + B (3 — Xp,t; — ty;) = Ext- {exp[[lp(x1 —x)] —iw(p)(t; — tz)]}\/%

- = . . da#3
Ealxg — Xp, by — ty2) + Ex(xg — Xp, b — by 0) = Ext-f{exp[[—lp(x1 —x)] + iw(p)(t; — tz)]}\/ph%

are Lorentz invariant by Theorem 56. From expaessif the distributior®, (x; — x5, t; — t;; %) by replacement
p — —p we obtain

Ep(xy — xp,ty — ty; ) = —Ext- flp|>%{exp[[ip(x1 —x3)] +iw(p)(t; — tz)]}\/%-

And therefore finally we get

3
A (xy = xp,t; — t5) = Ext- fws” sin[w(p)(t, — t2)]explip(x; — x3)] %-

Thus for any point§x,, t;) and(x,, t,) separated by space-like interval we obtain Mdtc, — x,,t;, — t,) = 0,
sinceAf (x; — x,,t; —t,) is a Lorentzs-invariant tempered distribution.

Theorem 11.13 (Time zero free field- -locality) Letf;, f, € S £, CR#3, *R¥#3) with suppf;  0,, andsuppf,
0, are disjoint bounded open regions of vector sfREE then[gf ,(f1, 0), ¢ o (f2, 0)] = 0.

Proof. It follows immediately from Theorem 11.12.

Theorem 11.14 Let O be a bounde#-open region of vector spadé?, lett € *R? , letg be a nonnegative
function inL¥ ("R#3) n L% ("R#3) and letg be identically equal to one @h.ForA € B,(0), then

0. (A) = {Ext-exp[itH (g)]}A{Ext-exp[—itH (g)]}

is independent of ando;(A) € B,(0,).

Proof. Let 62 (A) = {Ext-exp[itH,|}A{Ext-exp[—itH,]|} ands] (A) = {Ext-exp[itH;|}A{Ext-exp[—itH,]}.
Notice that generalized Trotter's product formslaalid for the unitary groupxt-exp|it(H, + H,(g))]. Thus we
get the following product formula for the assoaibéeitomorphism group:

(A = #-limy, oo [ (0901 )" (A)]. (113)



Each automorphism/ maps eactB,(0,) into itself and is independent gfon B, (0;) for |s| « |t]. To see this, let
x(0,) be the characteristic function of a 8etWe assert that

at’/n(C) = {Ext-exp[i(t/n)H,(X(Os))]}C{Ext-exp[—i(t/n)H, ()((OS))]} (114)

for anyC € B,(0,) and thawt{ (C) € B,(0,). In other words the interaction automorphism hapagation speed
zero and is independent gfon B, (0,) for |s| « |t|. The theorem follows from (113), (114) and TheorEh®. To
prove (113), we rewritdl;(g) = H,()((OS)) + H;(g[1 — x(0,)]) as a sum of commuting seifadjoint operators.
By Theorem 11.15 Ext-exp|itH,(x(0s))] € B4(0) and so the right side of (8.3) belongBid0;). By Theorem
70,

Ext-exp[itH;(g[1 — x(0:)])] € By(05)'

and (114) follows.
Definition 11.13 Let B be a bounde#-open region of spacetindf and for any time, letB(t) = {x|x,t € B}
be the time time slice ofB. We defineB,(B) to be the von Neumann algebra generated by

Usa. (Ba(B®)). (115)

Theorem 11.16 The generalized Haag-Kastler axioms (1)-(5) atiel ¥ar all these local algebr& (B).

Proof (Except Lorentz rotations) The axioms (1) andai@) obvious, while (4) follows easily from the fii
propagation speed, Theorem 11.10, together withiriee zero~-locality, Theorem 11.12. Because the time zero
fields coincide with the time zero free fields, dretause the time zero fields gene®fdy Theorem 11.12 and the
definition of the local algebras, the free fielduk carries over to our scalar model with inteiact; + 0. In the
Poincaré covariance axiom (3), the time translasagiven byo,. Let B + t be the time translate of the space time
regionB c M}. Then(B + t)(s) = B(s — t) and so

0 |Us 5 (Bu(B())| = Usosse (Bu(B())) = Us 0 (Ba(BGs = 0)) = Usanne (Bo(B +1))  (116)

Thusat(B#(B)) = B.(B + t) and axiom (3) is verified for time translationin& the local algebras at#enorm
dense irB; and since automorphisms @f-algebras preserve thienorm, s, extends to an automorphism of
algebraB,.

Definition 11.14 To define the space translation automorphignwe set now

P* = Ext- f"p"«%p“af(p)a(p) d*p,u = 1,2,3; 0,(4) = {Ext-exp[—ixP]}A{Ext-exp[ixP]}. (117)

Then we get {Ext-exp[—ixP]}@, (x){Ext-exp[ixP]} = @,,(x +y), {Ext-exp[—ixP]}m, (x){Ext-exp[ixP]} =
p(x+y).

The following theorem completes the proof of Theorem 11.16 except for Lorentz rotations.

Theorem 11.17 The automorphism o, (B# (B)) = By (B + x), st(o,) extends up to (j-automorphism of By, and
{x,t) - st(o,)st(o,) = = st(o;)st(o,) defines a 4-parameter abelian automorphism group of By.

Theorem 11.18 Let O be a boundeé-open region of space and ®t(0) be the von Neumann algebra generated
by the operatorBxt-exp|i( ¢, (fi) + m,(f2))] wherefy, f, € £f, ("R¥) andsuppf, < B, suppf, € B. Then

Ext-exp(itHy)By(0)Ext-exp(—itH,) € By(0,).

Remark 11.7 We reformulate the theorem by saying tHathas propagation speed at most one.
In order to obtain automorphisms for the full Lazegroup and to completde proof of Theorem 11.16, there are
four separate steps.



1. The first step is to construct a séHadjoint locally correct generator for Lorentz radas. This generator then
defines a locally correct unitagroup and automorphism group.

2. The second step is to prove this staterfuerihe fields, by showing that the fiejg,(x, t), considered as a non-
standard operator valued function on a suitableadonand is transformed locally correctly by ouitary group.

3. The third step is to show that the local algelBa&B) are also transformed correctly.

4. The fourth final step is to reconstruct the lmdregroup automorphisms from the locally correetces given by
the first three steps. This final step is not difft as in in the case of the two dimensional sfiaesd = 2, see [16],
[17],[18].

Let H,, (x) denote the integrand in (103), where
Hy, = Ext-[ Hy, (x)d"x = Ext-f%: (m2(x) + VFpZ(x) + m?p2i(x)): d*x . (118)
The formal generator of classical Lorentz rotatisns
MYk = MQX + MPE = Ext- [ x¥Hy,, (x)d"x + Ext- [ x*: P (¢,,(x)):d"3x, k = 1,2,3. (119)
The local Lorentzian rotations are
MR (g, 957) = eHo + Hon(9:”) + Hin( 957), Hoe(95) = Ext- [ Ho e (2)g{” (x)d*x. (120)

We require thad < & and thatg® (x;, x,, x3), g5 (x1, x5, %3), k = 1,2,3 be nonnegative,” functions. In the
second step we require more, for exampleahatgik) (g, 25, %3) = X, andggk) (xq,%5,%3) = x5, k = 1,2,3in
some local spaaegion. This region is contained in the Cartesiardpct[e,* ) X [g,*0) X [g,"). By using
decomposing Hy,(g{") into a sum of a diagonal and an off-diagonal terenoltaint,,, (g*) =

Ext- [v® (kD) a*(k)a(D)d**kd™L + Ext- [v) (kD [a*(k)a" (D) + a(—=k)a(-=D]d"3kd®1 =

0D,x

= H2,(9) + HE(g).
where

00 (k1) = ¢ U, L)@ + (k1) + mD[RuD] 2G5 (—ky + Ly, —ky + L, —ks + 1),

v® (kD) = cox (e, 1,0) (—p(u(l) — (k, 1) +m?) [u(R)pD] 25" (—ky — L, —k; — Lo, —ks — 1),
and wherdc = (ky, ky, k3), L= (1,15, 1), (k, 1)y = Y3 k; I;, x(k, 1) =1if |k| < » and|l| < x, otherwise
x(k,1,x) = 0.

Theorem 11.19 (a)v (%), € L*Z‘(*Rﬁe‘). (b) Functionw ) is the kernel of a nonnegative operator gugk)s(k —
D+ ng"}{ is the kernel of a positive seff-adjoint operator, fof > 0, these operators are real in configuration

space.
Proof. The statement (a) is obvious. The statement (bjaged by using a finite sequence of Kato pertuobat

Letvék) =eu(k)s(k—1 + ﬁvgf; and let/; andV,, denote the operators with kerneg) andvg?{
correspondingly. The operatdy is a sum of three terms of the fodhM, A in configuration space, whebé, is
multiplication byg, = 0. Thus0 < V,,. Moreover fory sufficiently small, but chosen independentiysofve
obtainyV, < %Vo < %(V0 +BVp) = %VB and therefor&,,, = V; +yVp is a Kato perturbation, in the sense of

bilinear forms. Consequently if the operakigris self#-adjoint, so i¥/,, andD (Vﬁlﬁ) = D(V,/?). Thus



canonical finite induction starting froly = V5 shows that; is self-adjoint, for alp = 0.

Theorem 11.20 The operatot? () is nonnegative aneH, + BHP (9F) is selt#-adjoint,for all 8 > 0.
The main purpose of the third step is to give aaciawnt definition of the local algebr@s(B). Le f € £, (B) be
the *R#3-valued function with support iB. Let {a;}I;,n € *N be finite hyperreal numbers and consider the
expressions

@i(f) = Ext-[ ¢fi(x,t) f (x,t)d"xd*¢ (121)
@x(f,t) = Ext-[ ¢ (x, ) f (x, )d"x (122)
R() = Ext-YiLy aipi(f, t) (123)

i (f,t) = Ext-[ m}i(x,t) f(x, t)d"x. (124)

Forg =1 on a sufficiently large set (the domain of depamag of the regioR), the time integration in (1)
#-converges strongly, and all four operators aboeesgmmetric and defined (D(H(g)).

Theorem 11.21 The operators (1)-(4) are essentially sekdjoint on any#-core forH(g)*/2.

Theorem 11.22 The algebra By (B) is the von Neumann algebra generated by finitelynded functions of
operators of the form (121).

Proof. Note that if a hyper infinite sequendd,, } of self+#-adjoins operators-converges strongly to a self
#-adjoint#-limit A on a core foAl then the unitary operatoExt-exp(itA,) #-converge strongly t&xt-exp(itA).
Using this fact, one can easily show that the dpesg1) and (4) generate the same von Neumanbral@®,, (B)
and thatBy, (B) D By(B). To show thaB,, (B) c B4(B), recall that a self#-adjoint operatod commutes with a
finitely bounded operataf providedCD c D(A) andCA = AC onD, for some cor® of A. Equivalently is the
condition that the operat@r commutes with all finitely bounded functionsAfAlso equivalent is the relation
CA = AC onD(A). We choosdd = D(H(g)). If the operatoC commutes with all operators of the form (122), it
also commutes oR (H(g)) with all operators of the form (123). Hence we BgfB)’' c By, (B)' and sBy,(B) =
By (B)" © By(B)" = By(B)".

Remark 11.8 The Poincare groufP, is the semidirect product of the space-time tiatimis grougR>? with the
Lorentz group0(1,3) such thafa, + A,}a, + Ay} = {a; + Aya,, A;A,}. Herea € R andA(B): (x;, t) -

(xi x cosh(B) + t x sinh(B), x; X sinh(B) + t X cosh(ﬁ)),i = 1,2,3. We prove that there exists a representation
a(a, A) of the Poincare groufP; by * - automorphisms a8, such that(a, 4)(B,(0)) = B4({a, A4}0) for all
bounded open setand all{a, A} € °P]. The Lorentz group composition law give€a, A) = a(a,)a(0, A).
Obviouslythe existence of the automorphism representat{enA) follows directly from the construction of the
pure Lorentz transformatian(0, A) = o(A). One obtaing (A) by constructing locally correct infinitesimal
generators. Formally, the operators,

2
MR¥ = My% + MDY = Ext- f*Rggé{:nH(x)z: +: (Vg ()" +m?: g, (x)*: }xkd#:‘x + H;, (x*g) (125)

k = 1,2,3 s infinitesimal generators of Lorentz transforroas in a regio® if the cutoff functiong equals one on a

sufficiently large interval. We consider now thgias0; contained in the sefs € *R¥3| x;, x,,x3 > |t| + 1}.

Thus for such region8, we may replace (1) by = Ext- [, 4 H(x) x* g (x)d**x, with a nonnegative functions
(4

x*g(x), k = 1,2,3. HereH(x) is the formally positive energy density:

H() = {1, (0% +: (T, (1)) +m: 0, (0% 4 Hy () = Hop () + Hy ().



ThereforeM* is formally positive. In fact it is technically ngenient to use different spatial cutoffs in thesfiand
the interaction part d#°%, k = 1,2,3. Final formulas foM2* reads

My = Mgk(g(})( ,gk) = aHo,, + Hoy (x*g5) + Hpp (x*g). (126)

Here0 < a ando0 < x*¥gk(x),0 < x¥g (x),k = 1,2,3 and in order that (126) be formally correct, weuass
that:a + x*gf = x* = x*¥g on[1,R]® = [1,R] x [1,R] x [1, R] with R sufficiently large. For technical reasons
we assume thatr + x*gk(x) = x*,k = 1,2,3 onsupp(g). By above restrictions agf¢ andg* we have that
supp(g&),supp(g) c {x|a < x*, k = 1,2,3} and we show that the operatdf* is essentially self#-adjoint and it
generates Lorentz rotations in an alge®d0,)

Ext-exp(ifM;*)B;(01) Ext-exp(—ifMy*) < By({a, A(£)}0;) (127)
provided thaD; and{a, A(8)}0, are contained in the region
{x e "R¥,t € *R¥| |t| + 1 < x, <R —|t|,k =1,2,3}, 128)

whereM %% is formally correct. These results permit us tbralethe Lorentz rotation automorphisnid) on an
arbitrary local algebr&,(0). Using a space time translatiota), a € *R** we can translaté into a region

0+ a =0, c{x € Rt e R¥ x; > |t| + 1} andfor R € "R¥ large enough), and{a, A(8)}0, are contained
in the region (1) we define(0, A(8)) = o (A(B)) by

a(AB)) T By(0) = o({=A(B)a, 1N ({0, A Do({a, 1D 1 B4(0).

Theorem 11.23 Let M°*(g,, 9), k = 1,2,3 be given by (126), withy, g, (x), g(x) restricted as mentioned above.
ThenM®*(g,, g) is essentially sel#-adjoint onC " (H n H,).

Theorem 11.24 Let 0, and{0, A(8)}0, be contained in the set (1). Then the followingnitty holds between self-
#-adjoint operators:

Ext-exp(iBM*) o} () Ext-exp(iBM*) ~ o} (f({0,A(B)}N)) = [ s 0¥ (F(0. AR} (x, 1)) ) d*3xd*t. (129)
Here providedsupp(f) < 0;.

The proof of the Theorem 11.24 is reduced to thidieation of the following equations
a* a* .
{ka+ tm} ef(x, t) = [IM, ¥ (x, )],k = 1,2,3. 30

Here (130) that is equation for bilinear forms onagpropriate domain. Sind€® is self#-adjoint, we can
integrate (130), thus we compute formally fbe= H, ,, + H; ,,(g),

[iMO%, pf(x,t)] = [iM°%, Ext-exp(itH) @ (x, t)Ext-exp(—itH)] =
Ext-exp(itH)[iM®* (—t), o (x, 0)]Ext-exp(—itH). (131)
HereM% (—t) = Ext-exp(—itH)M°*Ext-exp(itH). Formally one obtains that

*w _t n
MOk(—t) = Ext-z ( Tl') ad"(iH)(MOk),k =1,2,3.

n=0

Note that ifM°* andH were the correct global Lorentzian generatorskaahiltonian they would satisfy



[iH,M°] = ad (iH)(M°*) = Pk, [iH, [iH, M°]] = 0, M%*(—t) = M — P*t. (132)
HerePk, k = 1,2,3 are the generators of space translations. Thus (t81) we get
[iMO, ¢ (x,0)] = [iMg"¥] = xm}(x, 0), [iP¥, 0} (x, 0)] = —V* () (x, 0).

Formally we have (130).However the difficulty withis formal argument is that and M°¢ do not obey (132)
exactly, since they are correct onlydn We have instead (132) the equations

[iH,M°] = Pk, [iH, [iH, M°*]] = R}*“, k = 1,2,3. (133)
HerePk . acts like the momentum operators only in the negig i.e.
[Ploc @5 (x, )] = [P, 9} (x, )], (x,) € O;.

Hence[lH Ploc] = R,k = 1,2,3 is not identically zero, but commutes wgh(0,). Formally, further
commutators oR[°, k = 1,2,3 with H are localized outside regia@n, and (130) follows formally even for our
approximate, but locally corregt andM°%. In order to convert this formal argument into arigus mathematical
result, we apply now generalized Taylor series agjmn [13] for the quantities

E(—t) = (Q, [ iM% (=1), ¥ (x, 0)]Q), k = 1,2,3. (134)
HereQ € € *(H) and thus we obtain

a*E(0) | t? d"2Ex(§)
d*t 2 d#e?

E.(—t) =E,(0)—t , Wheref € [—t, t].

From (133) we obtain

LBCD — (Bxt-exp(i€H)0, [iRYS, 0} (v, ) Ext-expEH)O.

a#e2
Note that(x, t) € 0, so that withé € [—¢t, t], (x, &) € 0, and therefore
[RIC, 0 (x, )] = 0. (135)
After integration ovex € *R* with a functionf € S (*R¥?) we obtain the operator identity:

Ext-[.gus[REC, 0F (0, O]f () d*x = 0,k = 1,2,3. (136)

Therefore 2 dE"(f) = 0if |&| < |t] and

#e2

Ey(—0) = Eg(0) — t 29 = (, ([ iM%, o (x,0)] — ¢[PE,. o} (x, 0)]}2) =
= (Q, (xf (x, 0) + tV* () (x,0)} Q).
Thus we get
[ iM% (=t), pf(x,0)] = xnf(x,0) + tV¥ el (x, 0) (137)

Inserting the relation (137) in (131) finally wetalm (130).This completes the proof of Lorentz aiasace.



Definition 11.14 For the local free field energy we §8(g) = T3 (g) + Té(g), where

N k) p(ky)+(kq k 2
T3(9) = crBxt- ., d* kyExt- | ,{d#3k29(k%—k%,k%_kg.kf—kz3){”( Vit )4y 2>+'"}x (138)

V) pu(kz)

ky|<

a+(k1)a(k2),

~ —u(k k (kq,k3) 2
TE(9) = coBxt- [\, d* kyExt- [, d* ko (et — kb, k7 —k%ki—k%){ e )ilep) ek b }x (139)

kol<x Vulk)u(kz)

X {aT(k1)aT(_k2) + a(—ky)a(k,)}.

Here k; = (ki, ki, k?), k, = (k3, k3, k3), (ky, k) = X7, ki ki, G(p) = Ext- [ us(Ext-[i(p, x)]) g (x) d¥x.
Similarly, for the local momentum we st (g) = Pi*(g) + P(g),i = 1,2,3 where

P1(g) = ¢ Ext- |

[Feq|<3¢

d* kyExt- [ A" kog(kd — k3, K — k3,16 — k3) x (140)

("}“‘%+kf)u(kz)+(k%+k§+k;)ﬂ(k1)} :
x a'(kya(k,),
{ \/ﬂ(kl)ﬂ(kz) ( 1) ( 2)

P2(g) = cofixt- [, A" kiExt- [\ d* kyg(k — ki, I3 — k3, I3 — k) x (141)

ky|<

Tt +rZ+k3) k)~ (k3 +K2+K3) pu(k
 fskidetln) Gondeduthol gt (k,)a? (—k,) + a(~ka(k,))

Definition 11.15 Let B,(f) be the local operator, defined foie S£ (*R#3) by
B.(f) = Hoy,(f) — m? et @ (0 f () d™x (142)

Theorem 11.25 Let the operatoral®, k = 1,2,3 are given by% = aH, + T, (x,.9%°) + T; (29 ), H 2 Hy,, +
whereH, £ H,,, andT; £ H;,. Then the following statements hold.
(1) Fork = 1,2,3, D((M°*)?) < D(H ),D(H?) c D(M°%).
1 1
(2) Fork = 1,2,3, D(M®) D ((H +b)z),D(H) € D ((MO" + b)E).
Theorem 11.26 Let the operatorsf®%, k = 1,2,3 are given byM% = aH, + T,(x,9%°) + T, (. 9*), where
Hy £ Hy,, and T; £ H;,,. Then the following statements hold.
(1) Forl = 2,3,4, M:D(H"Y - D(H'™?).

(2) As operator equalities dd(H?) for k = 1,2,3,

d#(xkg(k))
. 0kl _ 0
[iH,M°*] =P <—d#xk . (143)
(3) As operator equalities dWH*), for k = 1,2,3,
. . < ., adt? xkg(k) . aatg®
[iH, [iH, M°%]] = P},< ;;3% —T,< ia ) (144)

(4) For l = 2,3,4, H:D((M®)") - D((M°%)!-2),

The equalities (143) hold on the dom&(M°%)3), and orthe domairD ((M°%)*), for k = 1,2,3,



#

d 2
a2 (xkg(()k))> (145)

2
, , at a# -
[lMOk' [imO, H]] =To ((d#xk (xkg(()k))> ) +T; <<d#xk (xkgik))> ) — B <(a + xkg((Jk))
Theorem 11.27 As bilinear forms oD (H,) x D(H,) for f, g € S, (*R¥#3)

[iTo(F), To(9)] = P (f (559 -g (zé:ij#i;)) (346

o o d¥ o dt
[iTo(f), P(g)] = P <f (z;;ij#—,i)> T, (g ( ;;ij#—;)) (147)
The equalities (146)-(147) also holdfit= 1 or g = 1. In particular from (147) we get

[iHo (), P(9)] = P (Si3 £2). (148)
Proof. The operator§,, P, P are #closable (symmetric), defined @n(H,) and bounded as operators relative to
H, + I. Therefore (146)-(147) are defined as bilinear ®oonD (H,) x D(H,) and it suffices to establish equality
on a core fotly, e.g. oD* = { € F*|Yp™ e Sf ("R¥™),™ = 0 for all sufficiently large m}. By direct
calculations oD* x D* one obtains the equalities (146)-(147). For exampl

; 1 — #3 #3 . 4 1) @) +(k,p)+m?
[iHy, T3 (g)] = c1Ext- flkllsx d*3 k Ext- f|kz|£% d®pglk, —pi, ky — 2,k3 — p3) {W} X (149)
[Ho, a’ (K)a(p)] =

, A~ (k) u(p)+{k,p)+m?
icyExt-f, ., d* kExt- [, _ d*®pglly —pi,k; = 2,ks — ps)(u(k) — u(p)) {%} at(k)a(p)

=c,Ext- [

|kqlsa

= p® <(Z§2§Z#Li)>

By a similar calculation o®# x D# one obtains

i=3 q# i=3 g#
TP, T @] + (TP (), TP (9)] = PO (f (Zﬁ) g (Z —f>>

#3 #3 . (i=3 IR PN _ _ _ (kq+ky+k3)u(p)+(py+p+p3)u(k)
d kExt'f|k2|SHd Pi(Zi5 ki = p))Gky — 1 ks — 2, k5 ps){ NG }

i=1 d¥x;

Theorem 11.28 As bilinear forms o (H,,,N,,) x D(Hq,N,)

[T, (), Ty ()] = ~4AExt- [ o () h2): 1 (o)) () P, (150)
[iT,(h), P(O] = T, (512 L), (151)

Proof. The operator§,, T;, P are#-closable, defined oD(HO,KN},), and are bounded as operators relative to
(Ho,N, + I). Note that the right hand side of (150) is a béinform onD(H,N,,) X D(H,,N,), and that

(Ho N, + I)_1 [Ext- f*]R,&¢3 £ () h(x): @B ()l (x): d#3x] (HoxN, + I)_1 is a bounded operator. Hence each term
in (150)-(151) is a bilinear form ad(H,, N, ) X D(H,,N,). It suffices to establish equality & x D*¥, as in the
proof of theTheorem 84, sinceD* is a#-core forH,,N,,. Note that on the domal* x D*, the equalities (150)-



(151) are seen to hold by direct computation in motum space similarly to proof of the Theorem 11.27
Remark 11.9 We assume now the relations:

2
0<a, xkgi(k)(xl,xz,xg,) = [hgk)(xl,xz,x3)] Jk=1,23;i= O,1;h§k) € S CR¥3). (152)
On a neighbourhood of a polyheddenb]® c *R¥, we assume fat = 1,2,3
a+ xkgék)(xl,xz,x:,;) = X = X g1 (X1, X2, X3). (153)

For allx, € "R¥3,k = 1,2,3, we assume
- (o) 154
X191 (X1, X2, X3) a+xgy (X1, %2,%3) ) g1 (X1, X2, X3). (154)

The conditions (154) are satisfiednif+ xkggk) (x4, %2, x3) = x;, is valid on the support gf, fork = 1,2,3. The
condition (154) makes the required commutators elgrdefined operators, rather than bilinear forms.
Definition 11.16 Let R}, ,; be a set

Riup) = (01, 25,3, ) € "RE*a + [t] <x < b —[t|forall k = 1,2,3}. (155)

Remark 11.10 Note that the operatotd*, k = 1,2,3 are formally a Lorentz generators for the spacetiegion
ina_b], also note that (152) implies that interyak [a, b] lies in the positive half line. Of course, we @dso

consider the operatofg® = —aH, + Ty (x5S + T; (x5 with §& (x) = g™ (=x) and therefore the
operators®*, k = 1,2,3 are locally correct generators ff, ,; = R{ o _,)-
Definition 11.17 We also writeR} insteadR{, ,; for I = [a,b] and we write/® for I* = [a —s,b + 5]*. The

conditions (152)-(1544) are satisfied since wedmosegi(k) so that for some, 0 < ¢ < a/3,

suppg; < I3 ;suppgl” <12

2¢’ 3¢’

k=123 &5

anda + x,9%° (%1, %5, %3) = xp, Xy € I3 . Hence the conditions (154) hold. We can alsg let 1, x, € I2; sothe
conditions(153) hold onli. The Hamiltonian

H = Ho, + T;(941) (157)

is correct in the regioft}. We shall work as above with this particular clecdt the Hamiltonian.

Theorem 11.29 For the operator® % in Theorem 11.25 ané in (157) the following hold:

(1) D((M°*)?) c D(H), D(H*) € D(M®), k = 1,2,3

(2) D(M®) € D ((H + b)2),D(H) < D (M +b)z) k = 1,23

whereb is an constant sufficiently large so that the apes H + b andM® + b are positive.

Theorem 11.30 Ander the conditions (152) and (154) the equalifie43)-(145) hold as bilinear forms Bi{H?) x
D(H?) and onD ((M°*)?) x D((M°%)?).

Proof. As bilinear forms oD (H?) x D(H?) or D((M®*)?) x D((M°%)?) for k = 1,2,3 the following equalities
hold [iH, M°¥] = [iHo, To(xicgs¥)] + {[iHo, T (tiegi)] + [iT; (g1, aHo] + [iT,(g1), To(x1eg¢°)]}. In order to
compute these commutators we apply Theorem ldn@7Theorem 11.28.



d#(xkggk)

[iH, M*] = P( o )) + AExt- [ {3101 () — @01 () — g1 (g ()} 9 (I (0): e =

p ()
a*xy

This equality holds by the conditions (154). Hetteeequality (143) holds ab(H?) x D(H?) and on the domain
D((M°)?) x D((M)?).

Theorem 11.31 If n>2, D(H™) is a#-core forM andD ((M°)™) is a#-core forH.

Theorem 11.32 Let f € S§, ("RE®) andsuppf c R, ;. then the operatap®(f) is defined oD ((M°¥)?),

©*(f): (M°*)2) - D(M®*),k = 1,2,3 and, as the operator equalitiesbiM %), k = 1,2,3

. a* a*
[iM%, 0} (] =~} (¢ 575 + i 550 )- (158)

Remark 11.11 Note that forf real, the operatap? (f) is essentially sel#-adjoint onD(H") for anyn > 1/2 and
1
@} (F):D((H +b)") > D ((H +b)"7). (159)
Proof The terms in (158) are operators(H?) sincep} (f)D(H?) ¢ D(H?) € D(M%),k = 1,2,3 and
M°D(H?) c D(H) < D(¢} (f)) by (157) and Theorem 11.28ote that by Theorem 11.4058) holds on the

domainD (H?). Assuming this, we now can to prove the theoreetylL,e D((M°*)?),k = 1,2,3. By Theorem
11.29, D((M°¥)?) c D(H ) and by (159) we gety € D(¢f (f)). Let us prove now that

o ()Y € D(M), k = 1,2,3. (160)

NotethatM°*y € D(M*) c D ((H + b)i) c D(of (f)) by Theorem 11.29 and (159), also ko= 1,2,3

g (12 4 2T
YeEeD ((p,{ (t P + X a*‘r))'

Therefore by the assumption mentioned above t#®) (iolds on domaif (H°), we get for allk = 1,2,3 and for
all y € D(H®) that

(M2, 0 (FIMO) = (0 (PIMOP) + i, 0l (2 + . 2L ) ). (161)

a#xk

Sopk (f)y € D((M I D(H®))") for k = 1,2,3. By Theorem 11.31D(H®) is a#-core for theM®, k = 1,2,3
and therefore we get inclusion (160). By using {88 can rewrite (161) in the following equivaldéotm

G %, 0 (D) = (i) (t2=+ 3, 5L ) (162)

# #
SinceD (H®) is #-dense, we geM %, i (A1 = ipf (t :#; + xy %) Y, proving (158) on the stated domain
k
D(M°%), k =1,2,3.
Remark 11.12 Let us consider the se#tadjoint operatord®* (t) = Ext-exp(—itH)M*Ext-exp(itH), k = 1,2,3.

Since the operatdtxt-exp(itH) leavesD (H") invariant, we have by Theorem 1128 Theorem 11.26 that
D(H?) c D(M°(t)), k = 1,2,3. And forl = 2,3,4 we have that



M (t):D(HY » D(H"?),k = 1,2,3. (163)

Let f € SE ("R¥*) with suppf < R} forI = [a, b]. By (159) and (160) we can to conclude th&{f)D(H?) c
D(H?) c D(M°k(1)),k = 1,2,3 and M°*(t)D(H?®) < D(H) < D(¢#(f)) or more generally, we can replace the
operatorp (f) by Ext-exp(itH) @ (f)Ext-exp(—itH). Thus fory € D(H?) andf € SE, (*R¥*) with suppf c

R%, we can to define the functions

Fe () = (@, [iMO (), pfi (F]) = ((¢), [iM*, Ext-exp(itH) @} (f)Ext-exp(—itH)]p(¢)), (164)
Y (t) = Ext-exp(itH). (165)

Let!/ =[a,b], Is = [a — §,b + 8] and letR,, be the causal shadowdf= I5 X I5 X Is. LetR? be a set
R =R, n{@olltl <ie} = {Goolltl <Sea+lsl+1el < b—Is| - Iel} (166)

Note that the points oft? have small times, arfd? translated by times less thpuj lies inR 4.
Theorem 11.33 Lety € D(H>), thenF,(t),k = 1,2,3 in (161) is twice#-continuously differentiable. If functiofi

d*2 R () _
d#tz T

Proof First we prove the differentiability &% (t), k = 1,2,3. LetA,, be the difference quotient for thederivative
of Ext-exp(itH) att = 0. For instance), (¢) = e~ *(Ext-exp(icH) — I ). Note that for a given vectap € D(H™),
andm +j < n, ase -4 0, we gef|H™{4;(e) — GH) ||, = [|{4;(e) — GH) JH™ ||, =4 0. Hence, forp €
D(H™), the operator valued functiond®* (Ext-exp(itH) ) isn — 2 times#-differentiable, since fof < n — 2 we
get||M* (Ext-exp(itH) ){A;(e) — GH) || . < [{a;(e) — GH) }(H + b)21p||# -4 0. All these functions?, (t)
has the following form

has#-compact support ifk,, then for|t| < |s]|,

F (t) = i{M°* (Ext-exp(itH) )y, Ext-exp(itH) @} () — i(Ext-exp(itH)@# (), MO* (Ext-exp(itH) )).

For a given vectowp € D(H5), o (f)y € D(H*) andF, (t) is three timeg-continuously#-differentiable. Note
that

LIO — (MOkHy(t), Ext-exp(itH)g} (i) — (MO (), H(Ext-exp(itH) ) — (167)

(Ext-exp(itH) @} (), HM* ¢ (0)) + (Ext-exp(itH) g} (F)h, M Hip(2)).
By rearranging the terms in (167) and using theaamelations of Theorem 11.26.1) we obtain by {it#hat

d*Fr(t) _
da*t

W, [H, M ®)]pk () — (s (Y, [H,M*(O]p) = (168)

d#(xkggk))

—i (i), (Ext-exp(—itH) )P (d#—Xk> (Ext-exp(itH) )5 (f)Y) +

d#(xkg(()k)

i{ps (), (Ext-exp(—itH) )P (Tk)> (Ext-exp(itH) )y).

# (k)
By #-differentiating (168) and writing,, for the operatoP <%> we obtain
k
d*2r(t) . .
= —(y, (Ext-exp(—itH) )[H, P, ](Ext-exp(itH) )Y) + (169)

d#t2



(@ (M, (Ext-exp(—itH) )[H, P](Ext-exp(itH) )ip) =

(o), [ﬁ (L“"”)) — T, (S92), (Ext-exp(ith) Yol () (Ext-exp(=itH) Y ).

2
d*xj, d#xy

Note that the all terms in (169) are well definEdr instancef P, (Ext-exp(itH) )@} (f)i is well defined since,
for a given vectoy € D(H5), (Ext-exp(itH) )o# (f)y € D(H*), and by Theorem 11.26 for &ll= 1,2,3 we
obtain

Py (Ext-exp(itH) Yoyt ()Y = [iH, M°*](Ext-exp(itH) )of ().

Note thatd M (D(H*)) € D(H ) andM®*H(D(H*)) € D(H ), soHP, (Ext-exp(itH) )o# (f)y is well defined.

#2
Now, assuming thatuppf c R, [t| < |s| we can to show thaﬁ#"zm = 0,k = 1,2,3, this proof is based on the

locality of the operator§,, k = 1,2,3

_ i da#2 xkg(k) i a#
NS < 5:?1(1#—%20) =T (Z%:i d#ij)' (170)
. . a*2(x;.95) dtg, .
The operators;, are symmetric o (HyN) and by (153) fok = 1,2,3 andi = 1,2,3 —iz = 0= Zi, ina

neighbourhood ofi= [a, b]3. We prove thas$,, k = 1,2,3 commutes with the von Neumann algelvd(l) =
{Ext-exp(ip} (hy) + i} (hy))|h; = h, € SE,('R#3), supph;  R,} generated by the spectral projections of the
time zero fieldsExt- f*u@*ﬁ @} (x) hy(x)d*3x andExt- f*]R*f (%) hy(x)d*3x, h; = h, € S, ("R¥3), supph; € R,.
Theorem 11.34 On the domaib (H?) for k = 1,2,3 the equalities hold

[S, W(D]D(H?) = 0. (171)
Proof Let D¥ be the domain of well-behaved vectors.
D* = {yp € FHlYy™ € Sk ("R¥™M), ™ = 0 for all sufficiently large m}. (172)
For x1, x» € D¥, direct momentum space computation gives fon al*N

(Sexs, (@ (hy) +7f (1)) x2) = (0 () + 7 (h2))" 1, Siext2) (173)

1
By easy computation we get the inequalify (h,) + 7 (h,))"x || < cic}(n!)z for constants, andc,
depending on vectoy € D*. Thereforey € D* are entire vectors for the operafgr (h,) + 7/t (h,)), and the
sum

(igh (hp)+ind ()"

n!

Uy = Ext-3,7, x = Ext-exp|i(of (h) + 1} (hy))]x (174)
#-converges strongly. Now, we multiply (173) BY(n!)~* and by summation over using the#-convergence of
the hyper infinite series (174) we get forlak= 1,2,3 that(S, x1, Ux>) = (U*x1, Skx2) = {x1, USix2) for x; € D¥,

i = 1,2. Note that this equality extends gp€ D (H,,N),i = 1,2 sinceD* is a core for operato#é,, N andsS, and
1Sexlls < ull(Hyp,N + Dylls whereu is finite constant. Therefore fqre D(H,, N), we have proved thaty €
D(Sy) andSgUy = US,x, k = 1,2,3. For the next step we now prove tlya& D(H,, N) = Uy € D(Hy,N), so that
S Ux = USkx, k = 1,2,3, since the operatofg are symmetric o® (Hy, N). We define orD (H,,,N) a#-norm by
Ilxll# = lI(Ho,eN + Dxll4; Note that the corresponding scalar product mékék, N) a non-Archimedean Hubert



space, sayi,,. For the next step we now prove that the opefter ¢} (h,) + nf (h,) generates a one parameter
group U(a) = Ext-exp(iaB) = Ext-explia(B = ¢} (hy) + n} (h,))] onHy, and therefore we need to prove that
the operator

B = (Hy,N + DB(H,, N + 1)t (175)

iS a generator to one parameter group on a comesmp Fock space. Sin@is essentially sel#-adjoint onD*,
and on this domain we have that

B = B + [Hyy,N, B)(Ho, N + 1)1 = B + [N, B]Ho,(Ho,N + 1)~ + N[Hy,,, B](Ho N + D' = B + A.

HearA is bounded operator. Note th@tI D* is a bounded perturbation of an essentially#eitljoint operator.

Hence it#- closure#- (@ r D#) generates a one parameter group on Fock sphcand operatoB ' (Hy, N +

D* has a#- closure inH,, that generates a one parameter grouf,gnSince the topology af,, is stronger than
that of F#, the#-closure ofB I' (H,,,N + I)D¥ in H,, is a restriction o#- B in F# and the one parameter group in
H,, is a restriction of the one parameter group geagray#- B in F*. This proves that

U:D(HoyN) = D (Ho,N)

Therefore we have proved th§tUy = US,x, k = 1,2,3. Now by passing to strong limits of linear combioas of
such operator we obtain (165) on restricting to the domAi({?) c D(H,, N). This makes precise the statement
that operators,, k = 1,2,3 are localized outsidé= [a, b]3.

Remark 11.13 Note that for eachy, |t;| < |s;|, the spectral projections dfxt- f,]R,g3 o () f(x, t;)d**x belong to

w (#-int(A_|s|)), where#-int(A_jy) is the#-interior of A_jg= {x|(x, t;) € RE} = {(xy, X2, x5)|a + |s| < x, <
b — |s|}. Note thauppf = R%, hence the spectral projections of

Ext-exp[iH(t + t;)] (Ext- f*ux§3 of () f (x, tl)d#3x) Ext-exp[—iH(t + t;)] (176)

belong toW (#-int(A|t|_|s|)). For|t| < |s|, #-int(Aj;-1s)) < A; so the spectral projections of (170) belong to
W (A). Now we use the locality property of the operafyusk = 1,2,3. Note that for vectoy € D(H?),y € D(H?)
we have thap € D (Ext- Jogpo 6, 0V (. t,)d*x), and forp}(f) = Ext- Joqpe @00 OF (x,£)d"x d"t, by
(159) it follows

Ext-exp[itH]@# (f)Ext-exp[itH]y) € D(H?). a77)

Therefore by (171) and the localization of (176)dt k = 1,2,3 we get
(S x, Ext-exp[iH (t + t;)] (Ext- f*nx§3 oF ) f(x, tl)d#3x) Ext-exp[—iH(t + t)]P) = (178)
(Ext-expliH (t + t,)] (Ext- Jogps #ECOf (x, t:)d"x) Ext-exp[—iH (¢t + )11, S).
Note that forit| < |s| andf € S£ (*R¥#*) with suppf < R¥ we can integrate the equality (178) ovgto obtain

(Six, Ext-exp[iH ()]s (f) Ext-exp[—iH(6)]y) = (Ext-exp[iH ()]} (f)Ext-exp[—iH()]x, Sy = (179)

(x, Sy Ext-exp[iH ()]s (f)Ext-exp[—iH (£)]).



Here the last equality in (179) follows by (177Hahe fact thas,, is a symmetric operator dn(H,,,N) > D(H?).
From (179) we obtain tha}, € D(((Ext-exp[iH (t)]¢p} (f)Ext-exp[—iH(t)]) I D(H?))") and therefore that
S, € D(Ext-expliH (t)]of (f)Ext-exp[—iH(t)]), sinceD (H?) is a#-core forp}(f). Finally from (179) we get
for |t| < |s| andf € SE ("R¥#*) with suppf c R¥ for all k = 1,2,3 that

S Ext-exp[iH (£)]oZ (f)Ext-exp[—iH (t)]yp = Ext-exp[iH ()] (f)Ext-exp[—iH (t)]S,. (180)

We apply the relation (180) to (169). In that cg€e) € D(H%) c D(H?3), so Ao 0, for [t] < |s|.

d#t?

Theorem 11.35[15] Letf € Sf ("R¥#*) andsuppf < R¥, then on domai® (H>) the operator equalities hold for
allk =1,23

d#xk

(g (()k)
[iMO%(s), pii(f) ] = [iM%, ()] - s [P (M)%’?(ﬂ]- (181)

The next step in the proof of Theorem 11.32 isasspto the sharp timelimit of Theorem 11.35, thus we need to
choose a hyper infinite sequence of functifine Sf, ("R¥#*),n € *N which pick out a time zero contribution in the
#-limit. Let us define now

A (f, 1) = Ext- [igus 05 (O f (x, )d"x, (182)
B,(f,t) = Ext- f*R§3 () f(x, t)d*3x. (183)

Whereg} (x) andr(x) the canonical time-zero fields. For r¢a& S (*R¥#*), with #-compact suppor,. (f, t)
andB, (f,t) are essentially se#-adjoint onD ((H + b)%). Letf eC :)°°( RH) and letf, (x, t) € SE CR#*),n € *N

be a hyper infinite sequence of functions of tHefaing form £, (x, t) = f,(x, s)8,(t) with support ifR# and

#-converging in the weak sensefl@x, s)é (t) asn — *oo. For the vectonpy € D(H%), the vectord ¢ (s)y, k =

d#(xkggk)

1,2,3, and the vectorsf°*y, P< e )> 1 the same as in the proof of Theorem 11.35. Natkthte bilinear form
k

o} (x,t) for (x,t) € R} determines a bounded operator

Glx,t) = (H + b)z @ (x, ) (H + b) 2. (184)

Note that the operator valued functi6fw, t) is #-continuous in variabléx, t).
Theorem 11.36 Let f € Sf, ("R#*) andsuppf c R}. Then, in the sense of bilinear forms BAH®), for all
k=123

[iM® (), A, (f, )] = [iM°%, A, (f, )] = s[iPy, A, (f, 5)] 8a)

# (k)
HerepP, = P (M)

d*xp
Theorem 11.37[15] Letf € C ;°°( R1). As an equality of bilinear forms dW(H ) x D(H )

[i Po Au(f, )] = A (5L 5). (186)

d#xk'



And where P, is defined in Theorem 11.36.
Theorem 11.38 As the equalities of bilinear forms &(H?) x D(H?) for allk = 1,2,3

[iM°%, A, (f,$)] = [iH, Ay (xf, 5)] = By (X f,5). 187)
Theorem 11.39[15] Let |fl4, be the#t-norm|fly; = c (Ext- Joggs {IFC O+ ZH1l08 1 C t)||#2}d#t).

Let |f|4, is finite. Then on the domaip ((H + b)g), ), the fieldp (f) satisfies the following equation

O o) () = =950 ) = my(f) = [iH, 5 (F)]. (188)

Proof Note that the first equality in (188) is the deffimn of a distributior#-derivative. The out the difference

quotientA, f (x, t) to #-derivative 8 f readsA, f(x,t) = w note tha#-lim,_,o A f (x,t) =

0f f(x,t). Note that for any vectap such thatp € D ((H + b)%) by canonical consideration we get
#lim|[ ok (0F v — ol (8:f . O, = 0.
3
We have forp € D ((H + b)E) that
@ (Def (x, ) = e72(I — Ext-explieH]) {Ext- fmc#g off(x,t —e)f(x, t)d#3x¢d#t}+
et {Ext- g3 Ax(f, ) (Ext-explieH] — I)l,bd#t}.

Here the last tern-converges as —, 0 and it#-limit is: i(Ext- Jogrs A (£, t)Hl,bd#t). Sinceg}(A.f (x, )¢

#-converges as —, 0, the remaining term in expression fp:ﬁ’(Asf(x, t))l[) #-converges also to#&limit y,. For
x € D(H) we obtain that

() = #elim (r, 67 (1 = Ext-explieH]) {Ext- [ 05 (x,t = ©)f (x, ) d*xpd* ) = (iHx, £ (H).

SinceH = H*, it follows thate/(f)y € D(H) andy, = iHe/(f)y and therefore= @ (8f )y = [iH, X (F) .
From the above equation we obtain

(W, 9 (O [IW) = Ext- [y CHY (), Ext- [ 03 (x, 0)f (x, ) xp(t) ) At —
Ext- [.pp (Ext- [ 03 O, 0)f O, )™ 2p (1), H(2)) d*t.

Herew(t) = Ext-exp[itH]. Note that)(t) € D(Ho,) N D(H, ), and|[Hy,. (¥ (&) = ¥())||, < al|(H +
D)W@) = ¥(s))||, —4 0, as|t — s| »4 0. Therefore we may substituts, + Hy,, for H and consider each term
separately. Note that the operatHgs, andExt- [, 43 ¢% (x, 0)f (x,t)d**x commute and therefoé, , contribute

zero to equality above. The following identity lgnonical computation holds for any € D(H,,,), in particular for
Y(t) = Ext-explitH|y € D(H,,)

(Hox Y, Ext- f*Rgs 05 (x,0)f (x, )d"xyp ) — (Ext- f*Rgs 05 (x,0)f (x, )d™xy , Hy, ) =

(lp' —iExt- f*Riﬁ T[J? (x' O)f(x' t)d#lezb )



Therefore finally we get
i, e (0f ) = Ext- f*n@ﬁ (WY(t), —iExt- f*]R#:g i (x, 0)f(x, )d*3xy ) d¥t = (W, —ini ().
This equality finalized the proof.

Theorem 11.40 As the operator equalities &(H>) for allk = 1,2,3

iM%, @} ()] = —gj (t ( a#x + Xk ag) (189

Proof We first prove (189) as equalities of bilinear feronD (H%) x D(H?). Lety is a near standard vector
andy € D(H®). By Theorems 11.37-11.39, for &l= 1,2,3 we get

(W, IMO(S), A, I) = (b, B Caef, 50,) — W A (S5, 5) ).
SubstitutingExt-exp(iHs) for i, we obtain that

(P, [iM, Ext-exp(iHs) A, (f, s)Ext-exp(—iHs)|yp) = 190)

(Y, Ext-exp(iHs) {B,f (xrf,s) — A (s e ,s)} Ext-exp(—iHs)Y).
From (188) we get
Ext- fna#‘* Ext-exp(iHt) w# (x)Ext-exp(iHt)f (x, t)d*3xd*t = — ¢ (a f) (191)

ot

Using (191) we integrate (190) over s to obtaindibk = 1,2,3 the equalities of bilinear forms
W, iM%, 08 () = =, 0} (e 52+ 0 ZE) . 29

#
SinceM @i (), o (F)MO*, ande? ( o's 9 f) are operators ol (H°®) for all k = 1,2,3, the operator

equalities (189) follows by polarization and thelensity of D(H5). This final remark completes the proof of the
theorem and hence it completes the proof of Thedrerd2.

Theorem 11.41[15] LetR c *R{%, be an bounded region iiR}%, and let, (B, x,t),k = 1,2,3 be a functions
a*Fr(Bx.t)
o*p
each poin(x, t) € *IR{C fin- ASsume that for alf (x,t) € C ;?in(ﬂ%) the following equalities hold for ad = 1,2,3,

such thatt, (8, x,t), B € *]RC fin @nd are#- continuous in(B, x, t), where the partiak-derivative exists for

#
Ext- fmﬁ%@x” f (o O)dBxd?t = —Ext- [, 4 Fe (B %, ) [ka +ts o ] d*3xd*t. (193)

Then for all(8, x, t) such that\, z(x,t) ERfor0 < y < 1,k =123
Fe(B,2,6) = Fe (0,4,5(x,0)) + 6(B,x,8) = (194)
F; (0, x; cosh B + t sinh 8, x;, sinh § + t cosh ) + 6 (B, x, t).

Hered (B, x, t) is a nonzero function such th&lg, x, t) # 0 andd (B, x, t) is #- differentiable with zero partial
#-derivativess}’ (8, x,t) = 0,8% (8,x,t) = 0,6{ (8, x,t) = 0.



Proof Obviously (194) is a solution to the equations (138us we need prove uniqueness (194) for a given
functions (B, x, t) and for allk = 1,2,3 and it is sufficient to prove uniqueness for theeaF, (0, x, t) = §(0, x, t).

# #
Let 4, be the operatat, = x, % + tai_xk' Note that by (177), providethppf (AyBr(x, t)) c R we get
a* ,
i (Ext- Lo Fe(B',2,0f (Ayﬁr(x, t)) dPxd*t) = (195)

Ext- [y {"#F;ﬁ—‘;“) £ (A5 G 0) + Fe(B' 3 DA (A (e 0))} d*xd*e = 0.

Let R = No<y<1dyp Randf(x,t) €C O‘fm( ®), then (195) holds for ap’ such thad < g’ < . Note that for all
functionsf (x,t) € C ;‘}’in( R) the following equalities (196) hold for &l= 1,2,3,

Ext- f.s Fe(B %, )f (A, (x,6)) d¥xa?t = 0. (196)
Thus, in the sense of distributions we obtain that
F.(B,x,t) = 0,(x,t) € R (197)

SinceF, (B, x, t) is #-continuous, (197) holds in usual sense everywheFe iThis establishes required uniqueness,
and completes the proof of the theorem.

Definition 11.18 (1) Let (H, |||l4) be a linear normed space over figld. An elementx € H, is called finite or
norm finite if ||x||4 € *Rﬁ'ﬁn and we leFin(Hy) denote the set of the all finite elementsigf the element € Hy is
called infinitesimal if||x||4 = 0 and we writex = y for ||[x — y||4 = 0. (2)Let(Hy, (-,')4) be a non-Archimedean
Hilbert space over fieldC? endowed with a canonica-norm||x||, = m then we apply the same definition
asin (1).

Definition 11.19 Let A be a linear operatet: H, — H, with domainD (4). Let D, (A) € D(A) be a subdomain
such that for alhp € D(A): Y € Dgu(A) < lIx|ly € "R 5, and lethf, (A) be a subdomaibf, (4) c Dy, (A4) such
that for all 1 € D, (A): € Df (A) & ||Ax|ly € "R gy

Definition 11.20 Let q(+,-) be a bilinear form with domaib(g) x D(g) onHy such thaD(q) X D(q) & Hy X Hy
andD(q) X D(q) = *C*. Let Dg,(q) X Dgn(q) © D(q) x D(q) be a subdomain such that for{af,,,} €

Diin(q) X Din(q) & [ih1, ¥2)y| € "Rigin- LetD,(q) X Df(q) < Drin(q) X Dgin(q) be a subdomain such that for
all (11,9} € Din(q) X Diin(q): (1,%} € Df,(q) X Dfiy(q) & q(1, %) € *(C?,fin'

Theorem 11.42[15] Assume that the operatas™* = M2* = MJ¥, + MPX, k = 1,2,3 satisfy conditions (152)-
(154) and where the operatdeg%, are defined by (125). We set né\{g, x, t) = 0.

(1) If f € S§,CREY), suppf c #-int(R}), A= [a, b]* andsuppfyg) S #-int( R}) = 7}, then for allk = 1,2,3 on
domainsDg, ((M%%)?)

Ext-exp(iM® B) g} () Ext-exp(—iM*B) ~ o (fucs))- (98

Here thex - equalities (198) hold as -equalites for self-adjoint operators.
(2) If (x, t) € R; andAg (x, t) € R}, then for allk = 1,2,3

Ext-exp(iM°*B) i (x, t) Ext-exp(—iM°*B) ~ @} ( Ap(x, t)) (199)

Here the~ - equalities (199) hold in the sense’Bf; ;- valued bilinear forms on domaig,, (M°%) x D, (M%)
and on domain®f (M%) x Df (M°F).



Remark 11.15 Note that (1) for real-valuefl € S{, (*R#*) is a self#-adjoint operatop} (f), essentially
self-#-adjoint operator on a variety of appropriate doralhis for this sel#-adjoint operator that (198) is valid;
(2) on the subdomairg, ((M°)?) ~ -equalites (198) entail for all = 1,2,3 the equalities

st(Ext-exp(iM% B) @} (x, ) Ext-exp(—iM°*B)) = st ((pf{‘ (Aﬁ (x, t))) ;
(3) on the subdomair, ((M°%)?) the~ -equalites (198) entail for al = 1,2,3 the equalities

st(Ext-exp(iMOk[)’)q)ﬁ(f)Ext-exp(—iMOk[)’)) =st (goff(fA(ﬁ))).
Proof Lety € D(M®%) and letF, (B, x, t) be the function is defined by
F (B, x,t) = (Ext-exp(—iM** )y, pji (x, t) (Ext-exp(—iM * B)p)). (200)

For all (B, x,t) € "R x "R*% and forf € SE ("R#*), let F,. (B, f) be the function is defined by

¢ fin ¢ fin
F(B,f) = (Ext-exp(—iM° B)Y, @i (f ) (Ext-exp(—iM°* B)y)) =
Ext- fm Fo (B, x, t)f (x,t)d*3xd*t. (201)
Note thatpf (x, t) is a bilinear form defined ab ((H + b)%) x D ((H + b)g), #-continuous ir(x, t) € *R¥%,. By
Theorem 11.2®9 (M%) c D ((H + b)%) and thereforé, (B, x, t) is well defined and-continuous inx, t). Note

that a functiorF, (B, x, t) is #-continuously#-differentiable ing € *R¥ g and for allk = 1,2,3

LEBLO - (Ext-exp(—iMOB)iMO o} () (Ext-exp(~iM™B)y)) (202)

—(Ext-exp(—iM* B, o[ (f) (Ext-exp(—iM**B)iM ).

By the canonical argument, we have forka# 1,2,3 that

PIED  (Ext-exp(~iMO B, iM%, @} (F)] (Bxt-exp(~iM**fp) = (203)

Ext- fso‘j Fe (B, x, ) f (x, )d"3xd*t.
By Theorem 11.40 under the conditisuppf c #-int( R3) we have for alk = 1,2,3 that

*FL(B.f) _ . a*r a*r . _
a’;—ﬁ = — (Ext-exp(—iM°* B, (xk T tﬁ) Ext-exp(—iM%B)y) =

_ CAVCA 43, ot
Ext- f*]Rags Fo(B,x,t) (xk Frrl a#xk) fx, t)d™xd™t. 0®
Therefore by Theorem 11.40 under the condition
Uosysl Ay,B (x’ t) € mg (205)

we have for alk = 1,2,3 that

Fe(B,%,8) = Fe (0, A,5(x,6)) + (8, x,£) (206)



That is, if (205) holds, then (206) also holdsdbrk = 1,2,3 and finally we get

Ext-exp(iM°* B) @ (x, t) Ext-exp(—iM*B) = ¢} (AB (x, t)) + 8(B, x, t). (207)

Here the equations (207) hold in the sense ofddliforms orD ((M°)?) x D((M%*)?), i.e.

(W, Ext-exp(iMOR) @} (x, ) Ext-exp(—iMOBYpo) = (W, 0 (A5(x,0)) o) + 6(B,x, 0@y, 2).  (208)

From (208) on the domaidj,, ((M°)?) x DE ((M%)?) c Dgy (M°%)?) X D, (M®%)?) € D((M®)?) x
D((M°%)?) we get thex -equality

(¥, Ext-exp(iM°*B) @ (x, ) Ext-exp(—iM*BYp;) = (Y1, ¢ ( Ag(x, t)) ¥2), (209)
since(y,,¥,) is finite and therefores (B, x, t) (Y4, ¥,) = 0.
Note that in thet-limit A —»4 0 by (125) we get
#-lim_, o M% = MK, (210)
Therefore in thet-limit A -4 0 from (208) and (210) we obtain that
limy_, o (Y5, Ext-exp(iM°*B) g} (x, ) Ext-exp(—=iM°* B)ip,) = (211)
(1, Ext-exp(iM* B)pf . (x, ) Ext-exp(—iMR*B),) =

Limayo W1, 0f (4500 0)) o) + 8(B, %, 001, 2) = (s, 0 (A5G0 1)) ) + 58,2, )by, ).

From (211) on the domai¥;, (M*)*) X D, (M)?) < Dgin (M®)?) X Dpi (M*)?) < D((M)?) X

D((M°*)?) we get thes -equality for free quantum fielgf , (x, t)

(1, Ext-exp(iM3¥ B) o, (x, ) Ext-exp(— MY BYP,) ~ (s, 0 (456 0)) o). (212)
Remark 11.16 Note that thex -equality required by (212) is necessary, see Refark
The= -equality (209) extends by-closure taDff, (M) x Df (M), sinceDf,, (M) < D, ((H + b)*/?) by Theorem
11.29, and the estimate

|, Ext-exp(iM° )} (x, £) Ext-exp(—IM®* f))] ~ @1
|0l (4:000)w)| < cllar + by 2y,

Herec is finite constant. Furthermo((M°%)?) for anyk = 1,2,3 is a#-core forH, by Theorem 11.31, and
therefore a#-core for(H + b)%. Thus (208) extends ®@((M°%)?) x D((M°*)?) and on this domain we also have
#-continuity of the form in(x, t) € *Rﬁj:in. Note that it is necessary to assume that,<; 4,5(x,t) € Ri.

However for the regior®; this statement follows from the conditién t) € R} = Ag(x,t) € R4, This final
remark completes the proof of this theorem partX@w we go to prove the operater-equality (198) for the case
f € SE (R, suppf U suppfa,. By Theorem 11.29, the operatgré(f) ande (fAB) are defined on domain
D((M°%)?). Integrating (207) againgt(x, t), we get the equalities



Ext-exp(iM° B) @} (f)Ext-exp(—iM%*B) = ¢} (fAﬁ,) + Ext- fmg6(ﬁ,x, ) f (x, t)d*3xd*t. (214)

Obviously the equalities (213) hold on the domaiGéM °)?) with k = 1,2,3 correspondingly. For any vectgr
such thatp € D((M°%)?) from (207) we obtain the equalities

Qi (F)Ext-exp(—iM**B)p = Ext-exp(~iM*B)pf (fa, ) + (Ext- Jyg 8B, OF (x, d*xd*t)y.  (215)

1
Since ”gaﬁ (fAB)l,b" <q ||(H + b)zy | andD ((M°)?) for anyk = 1,2,3 is a#-core forH, by Theorem 11.31,
the equalities (215) extends Hyclosure taD(H) and (215) holds foy € D(H). Since the domaiD (H) is a

#-core for the operatap (fAﬁ), we conclude that (214) extends#losure taD ((pfﬁ (fAB)) and therefore the

equalities (215) hold for ald = 1,2,3 and for anyp such thatyy € D (qoff (fAB)>' Thus we have proved that

Ext-exp(—iM°*B)D (<pj;* (fAB)) < D(@i(N)-

By similar consideration one obtains that

Ext-exp(~iM™*F)D (¢f (£4,)) € D(oL().
This proves (214) as an equality between selidjoint operators, completing the proof of the teen

CONCLUSION

A new non-Archimedean approach to interacted qumfiitelds is presented. In proposed approach, d &iperator
¢(x,t) no longer a standard tempered operator-valuedhlisibn, but a non-classical operator-valued fiorctWe
prove using this novel approach that the quantetd theory with Hamiltonia® (¢), exists and that the canonical
C*- algebra of bounded observables correspondinggortbdel satisfies all the Haag-Kastler axioms pkce
Lorentz covariance. We prove that th@*),, quantum field theory model is Lorentz covariarir Each Poincare
transformatiore, A and each bounded regionof Minkowski space webtain a unitary operat@F which correctly
transforms the field bilinear formg(x, t) for (x,t) € 0. The von Neumann algebi&(0) of local observables is
obtained as standard part of external nonstandgetb@B, (0).
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