Model P(@), Quantum Field Theory.
A Nonstandard Approach Based on Nonstandard
Pointwise-Defined Quantum Fields

J. Foukzon

jaykovfada@list.ru

Center for Mathematical Sciences, Technion Israel Institute of Technology City, Haifa 3200003 Israel
¥ jaykovfoukzon@list.ru

Abstract. A new non-Archimedean approach to interacted qumtitelds is presentedin proposed approach, a field operator
¢ (x,t) no longer a standard tempered operator-valuedhiibn, but a non-classical operator-valued fiorctWe prove using
this novel approach that the quantum field theaith WamiltonianP (¢), exists and that the correspondiffg algebra of
bounded observables satisfies all the Haag-Kastiems. In particular we prove that thép*), quantum field theory model is
Lorentz covariant.

INTRODUCTION

Extending the real numbeRsto include infinite and infinitesimal quantitiesginally enabled D. Laugwitz [1] to
view the delta distributiofi(x) as a nonstandard point function. IndependentliRdébinson [2] demonstrated that
distributions could be viewed as generalized pafyiads. Luxemburg [3] and Sloan [4] presented aeratite re-
presentative of distributions as internal functiarithin the context of canonical Robinson's themfirponstandard
analysisFor further information on nonstandard real analysie refer to [5]-[6].

Abbreviation 1.In this paper we adopt the followimgtations. For a standard getve often writeE,. For a seE,
let °E; be a sétE,, = {*x|x € E}. We identifyz with ?z i.e.,z = ?z for all z € C. HencelE, = E, If E € C,
e.g..°C=C,°R=R,°P =P, 9L, =L, etc. Let'R. "Rey "Rpn, “Ro,, and*N,, denote the sets of infinitesimal
hyper-real numbers, positive infinitesimal hypestnreumbers, finite hyper-real numbers, infinite arpeal
numbers and infinite hyper natural numbers, re$pegt Note thatRg, = "R\*'R,, "*C = "R+ i'R, "Cq, =

"Rfin + 1"Reip -

Definition 1.[5]. Let{X, 0} be a standard topological space andXebe the nonstandard extensiorXof_et 0, de-
note the set of open neighbourhoods of peiatX. The monadnon, (x) of x is the subset of X defined by
mony(x) =N {*0|0 c 0,}.The set of near standard points'¥fis the subset ofX defined bynst (*X) =U

{mon, (x)|x € X}. Itis shown thafX, 0} is Hausdorff space if and onlyxf# y impliesmon,(x) N mon,(y) =
@. Thus for any Hausdorff spdcg 0}, we can define the equivalence relatignonnst (*X) so thatx =, y if and
only if x € mon,(z) andy € mon,(z) for somez € X.

Definition 2.The standard Schwagpace of rapidly decreasing test function®Rdnn € N is the standard function
space is defined byS(R™, ) = {f € C*(R™, O)|Va, B € N"[||flop < |}, where

1l = supcern |x* (DF£ ()|

Remark 1.Iff is a rapidly decreasing function, then foral N™ the integral oﬂx“Dﬁf(x)| exists



Jen|X*DEf(2)]d"x < oo

Definition 3.The internal Schwargpace of rapidly decreasing test functionsRR, n € *N is the function space
defined by *SC'R™, *C) = {*f € *C*°('R™,*C)|Va, B € *N*[*||'fllap < *|}, where

Wfllag = sup {x° (DPF)) Ix € R™).

Remark 2.Iff is a rapidly decreasing functiofi€ S(R", C), then for alle, 8 € *N™ the internal integral of
*x*DP*f (x)| exists

Jogn

*x*DP*f(x)| d™x < *oo.

HereD#f(x) = (D’ f(x)).

Definition 4.The Schwartzpace of essentially rapidly decreasing test fonston"R™, n € *N is the function space
defined by

“SinCR™,"C) = {*f € 'C=(R™, "OV (@, f)(@, f € "N™)Acap(cap € Rein )¥x(x € RY |2 ("D £ ()| <
cag]}

Remark 3.If'f € *Sg, (“R™, *C), then for alle € *N™ the internal integral df*x“DB*f(x)| exists and finitely
bounded above

*f*]Rn

*x“D'B*f(x)| d™x < daﬁ'daﬁ (S *Rfin .

Abbreviation 2.The standard Schwasfrace of rapidly decreasing test function®Rdnwe will be denote bg(R™).
Let'S(*R™), n € "N denote the space &t-valued rapidly decreasing internal test functionsR™, n € *N and

let *Sgn ("R™), n € *N denote the set dfCy), -valued essentially rapidly decreasing test funstioniR™, n € *N. If
h(w,x):R x R* andf: R" - C are Lebesgue measurable BA" we shall write{*h, *f) for internal Lebesgue

integral*f*w *h*f d™x with *f € *Sg, ("R™). Certain internal function&(w, x): "R x *R™ — *C define classical

distributionz(f) by the rule [3],[4]:

() = st(("h, *f)). )

Herest(a) is the standard part afandst((*h, *f)) exists.

Definition 5.We shall say thah(w, x) with w = @w € "R,, is an internal representative to distributiqif) and we
will write symbolically t(x, ..., x,) = "h(w, x4, ..., x,,) if the equation (1) holds.

Definition6.[6].We shall say that certain internal functidgh$w, x): "R X *R"™ - *C is a finite tempered
distribution if *f € *Sg, ("R™) implies|*h, *f| € °R = R. A functions*h(w, x): "R X *R™ - *C is called
infinitesimal tempered distribution iff € *Sg, ("R™) implies|*h, *f| € "R, .The space of infinitesimal tempered
distribution is denotedyb™S. ("R™).

Definition 7.We shall say that certain internal étions*h(w, x): *R X *R** — *C is a Lorentzs -invariant
tempered distribution if f € *Sg;,, "R™) andA € °L%,implies(*h, *f (Axy, ..., Ax,)) = (*h, *f (xq, .., X))

Example 1. Let us consider Lorentz invariant disttion

S
(2m)?

D(x) = o e”‘r%wtd% =%5(r2 — t?)sign(t). )



Here w = |k| = ki + k3 + k% and r = (x, x5, x3), ¥ = y/x{ + x2 + x5. It easily verify that distributio® (x)
has the following internal representative

D(x,®) = ikr%d% A3)

1 *
(2m)3 flklsw €

Herew € *R.. By integrating in (3) over angle variables we get

1
8m2r

D(x,®) =

*fom{eiw(r—t) 4 e l0r=t) _ pio(r+t) _ e—iw(r+t)} dow. (4)

From (4) by canonical calculation finally we get

o1 sinw(r—t)_ sinw(r+t)] _ S(r-)-6(r+t) _ 1 2 _ $2Ves
D(x,w) ~ 4n2r[ r—t T+t ] - an2r - ZnS(T t9)sign(). (3)
Example2. We consider now the following Lorentzariant distribution:
_ 1 ikr COSwt ;3 =Li
D;(x) = G Jrae ——d’k =5 (6)

It easily verify that distributio® (x) has the following internal representative

ikr €OS wt d3k (7)

1 *
Dl(x' m) = (271_)3 flklswe ®

Herew € "R... By integrating in (7) over angle variables we get

Dy(x, @) & = — [{el00D — @00 4 pla(rtD) _ om0} gy, ®)
From (8) finally we get
L _2 -2 2cosw(r—t) | 2cosw(r+t)] 1 1

D,(x,w) ~ -5 [i(r—t) t oo itr=t) ir+t) ] T anta ©

Example 3.We consider now the following Lorentzariant distribution

@)(_; 2
_ 1 ier—eGiolely 4%k _ _ m B2 (-im1x?1)

A (x) 2G2m)? f]R3 e (k) 8t my|x?| (10

Here—x2 < 0, e(k) = /| k2| + m? andHfZ) is a Hankel function of the second kind. It easérify that
distributionA.(x) has the following internal representative

pillr—e()lt)) Lk (11)

1 *
Ac(x, @) = 2(2m)3 flklsw e(k)

From (10)-(11) it follows*A,(x) = A, (x, @) + A.(x) where

1 pilkr—c(i)tl) Lk (12)

A () = 2(2m)3 flk|>w e(k)

Note that for alA € °L',, A.(Ax) € *S.(*R™) and therefore for al\ € °L', A, (Ax, @) =~ A.(x, @), i.e.,A.(x, @)
is a Lorentzx~ -invariant tempered distribution, see definitiormus we can set= 0 in (11).By integrating in
(11) over angle variables and using substitutionasfables k| = m sinh(u) we get



A (x, @) ~ —— *f_lr;sﬂ exp(imrsinh(u))du. (13)

8n2ir
Note that
*HP (x) = ?f_moo exp(imrsinh(w) )du=A.(x, @) + E(x, @), (14)
E(x,w) = ?f__lgw exp(imrsinh(w))du + flnI; exp(imrsinh(w))du. (15)

From (13)-(15) finally we obtaim, (x, @) ~ H{? (x) , sinceE(x, ) € *S.(‘R™).
Example 4. Let us consider Lorentz invariant disttion

A(x = y) = [{exp[—ip(x — y)] — exp[ip(x — Y)]} §(p* — m*)I(p®)d*p. (16)

From (16) one obtains(x — y) = Z,(x — y) — Z,(x — y), where

8 (x — ) = [{ew{lipCe - )] - w® ° -y} =, (17)
:(x =) = [{exp{[~ip(x = )] + 0@ x° ~ y)}) T, (18)

w(p) = /p? + m2. It easily verify that distribution (17) and (1183s the following internal representatives

B0 =3,0) = fpfexplliG — )] - 0@ G )} e (19)
220 = ,@) = [ pf—exp|lip(x = Y] + 0@ ° — ¥} S (20)

Note that "A(x —y) = [E;(x —y, @) + E,(x —y,@)] + [El(x -y, @) +E,(x—y, w)], where

51(x = 3,0) = fysolexplliptc = 3] - 0@~ Y} s, (21)
5= 3,0) = fyyupl-explipCe =] + 0@ ° ¥} s (22)

Note that for alA € °L%,, Z,(A(x — y), @) + &, (A(x — y), ) € *S.(*R™) and therefore for all
A€ LY A(A(x — y)) = A(A(x — ¥), @) = E,(Alx — y),®) + E,(A(x — ¥), @), i.e.,A(x — y,w) is a Lorentz
~-invariant tempered distribution, see definitiorFom Eq.(20) by replacemept— —p we obtain

816 = 3,0) = = fyylexpllip(x = )] + 0@ — Y} e (23)

From (19) and (23) we get

d3p
p2+m?

A~y @) = 5,0 ~3,0) + E& ~ y,@) = [, sinlw®) & ~ yO)lexplip(x — y)] (24)

Thus for any points andy separated by spacelike interval from (24) we obtiaat

Alx —y, @) =0, (25)



sinceA(x — y, w) is a Lorentzs-invariant tempered distribution. From (25) for gigintsx andy separated by
spacelike interval we obtain that(A(x — y,@)) = 0.

Definition 8. [8].For eachn > 0, letH,, = {p € R*|p - p = m?,m >,p, > 0}, wherep = (p°, —p*, —p?, —p?).
Here thesetsH,, which are standard mass hyperboloids, are invianiagier’L’.. Let j,, be the homeomorphism of
H,, ontoR3 given by j,,: (0o, P1, P2, P3) = (P1, P2, p3) = p. Define a measurg,, (E) onH,, by

d3
Qi (E) = fmmﬁ :
The measur@,,(E) is °L%. -invariant [8].
Theorem 1.[8].Leu be a polynomially bounde#-measure with support i, . If u is°L', = L% - invariant, there
exists a polynomially bounded measpr@n[0,0) and a constantso that for any’ € S (R*)

Jogafdp =cfO)+ [ dp (m) (f e al lplz;ﬁ?;’f,:f'ps)d3p> : (26)

Theorem 2.Lef is a polynomially bounded, - invariant measure with supportiip. Let F(f) be a linear
x-continuous functiondF: *Sg, (*R*) - *Rg, defined by*fwf d u and there exists a polynomially bounded

measurg on[0,0) such thai_;f(:oo d *p (m) € "Ry, and a constant € *Rg, so that (1) holds. Then for any
f €S . (*R*) and for anyr € *R,, the following property holds

fin

- *oo f(\/ |p|2+m2.p1.p2,p3)d#3p
F() = cfO)+ [, d"p(m) (flpls}, T ) (27)
Definition 9.Lety (3, p) be a function such thay (s, p) = 1 if |p| < %, (¢, p) = 0 if |p| > x#, x € *R,,.Define

internal measur&,,, ,, on*H,, by

" xGep)dip

Q‘m,J{(E) - f*H‘m \/W (28)
Theorem 3.[8]: Let/, (x4, x,) be the two-point function of a field theory safisfy the Wightman axioms and the
additional condition thafy,, ¢ (f)y,) = 0 for all f € S(R*). Then there exists a polynomially bounded positive
measure (m) on [0,) so that for all for alf € S(R*)

Wo(f) = (o, 0(Fe (o) = [ FG)f () Way = x)d*xdy = [ (f, fd, ) dp(m). (29)

Theorem 4: LeW, (x,, x,) be the two-point function of a field theory memigal in Theorem3. Then for glle
Sein 'R*) and for anyr € *R,, the following property holds

Wof) ~ ;7 (foy FdQn) d*p(m). (30)

Definition 10.1) LetL(H) be algebra of the all densely defined linear ojpesan standard Hilbert spadé.
Operator-valued distribution oR™, that is a mapp: S( R™) — L(H) such that there exists a dense subspace

D c H satisfying:

1. for eaclf € S(R™) the domain ofp containsD,

2. the induced mapS — End(D), f = ¢ (f), is linear,

3. for eachh, € D andh, € H the assignmenf — (h,, (f)h,) is a tempered distribution.

2) Certain operator-valued internal functior(*f, @): *S( *]R”) - *L(*H) is an internal representative for standard

operator valued distributiop (f) if for each near standard vectaks € *D and h, € *H the equality holds



(ha, @(hy) = st(*(hy, 9 (f, @)hy)), (31)
whereh, ~ h, andh, ~ h,.
Definition 11.[9]. LetH be a Hilbert space and denoteHY then-fold tensor producH™ = HQ HQ® --- ®H. Set
H® = Cand definegF(H) = H". F(H) is called the Fock space over Hilbert spHcéoticeF (H) will be
separable iff is. We set now! = L,(R?) then an elemenp € F(H) is a sequence o€ -valued functions

Y = {0, Y1(x1), Y2 (x1, %2), Yo (x1, X3, %3), oor, P (X4, ..., X))}, m € N and such
that|g|? + Zne v 1105 (X1, v, %) 12> x) < 00,

Definition 12.[8]. We define now external operaidp) onF, with domainDg by
(a@P)® = Vn+ TP (p, ky, . k). (32)

The formal adjoint of the operata(p) reads

1

(aJr(P)l,b)(n) = \/_ﬁ =1 5(3) (p - kl)l,b(n_l) (k1, ey kl—l' kl+1' ey kn) (33)

Definition 13[8]. A vector{l,l;(")}:i1 for whichyp™ = 0 for all except finitely many is called a finite particle
vector. We will denote the set of finite particlectors byF,. The vector(, = (1,0,0, ...) is called the vacuum.
Definition 14: We let nowD-g = {*1|"y € *Fy, "™ € *S ("R®™),n € "N} and for eaclp € "R*" we define an
internal operatota(p) on*F, with domain*D«s by

Ca@yP)™ = Vn+ 1P (p,ky, k). (34)
The formal« -adjoint of the operatcin reads
Cat @Y™ = =T, 8D @ — k) YD Uy o ki Ky e, k) (35)

We express the free internal scalar field andithe zero fields with hyperfinite momentum cutoffe *R,, in
terms of*a’ (p) and*a(p) as quadratic forms oD+ by

(1, 1) =

@02 [, A (@@t - ) at @) + (exp @) + i) a () 7 (36)
O, 0) = @02 {(exp(=ipx)at () + (exp(ipx)) a (0} J% , (37)
T (,8) = )2 [ {(exp(=ipx))at (p) + (exp(ipx))°a (1)) J% . (38)

Theorem 5: Le®,, (x,t) and @, (x, t), T, (x,t) be the free standard scalar field and the time fzelds
respectively. Then for any € *R, the operator valued internal functions (35)-(3i¥eg internal representatives
for standard operator valued distributio®s, (x, t) and @,,(x, t), m,,(x,t) respectively.

Definition 15: Let{X, ||-||} be a standard Banach space.x*ar*X ande > 0, e = 0 we define the opes-ball
aboutx of radiuse to be the seB.(x) = {y € "X|"||lx — y|| < &}

Definition 16.Let {X, ||-||} be a standard Banach spakes X, thus*Y c *X and letx € *X.Thenx is anx-accumu-

0 .

lotion point of*Y if for anye € *R., there is a hyper infinite sequer(o:e,l};zlln *Y such th«';\t{xn}:l‘ﬁ1 n

(B:()\{x} # 9).

Definition 17: Let {X, ||-||} be a standard Banach spaceYet *X,*Y is  -closed if any-accumulation point of



*Y is an element ofY.

Definition 18. Let {X, ||-||} be a standard Banach space. We shall say thathahteyper infinite sequenc{en};"ilin
*X is*-converges ta € *X asn — *oo if for anye € R, there isN € *N such that for any > N: *||x — y|| < .
Definition 19. Let {X, ||-llx}. {{Y, ||y} be a standard Banach spaces. A linear internaatipel: D(A) € *X - *Y
is * -closed if for every internal hyper infinite sequel{uzn};":1 in D(A) * -converging toc € *X such thatdx,, —

y € Y asn - "o one has € D(A) andAx = y. Equivalently A is x-closed if its graph is -closed in the direct
sum*X @ Y.

Definition 20. LetH be a standard Hilbert space. The graph of thernatdéinear transformatiofi: *H — *H is the
set of pair{(p, Tp)|e € D(T)}. The graph of’, denoted by'(T), is thus a subset 6ff x *H which is internal
Hilbert space with inner produbte,, Y1), (@2, ¥,)) = (@1, 92) + (Y1,¥,).The operator is called a+-closed
operator if I'(T) is ax -closed subset of Cartesian produ€tx *H.

Definition 21. LetH be a standard Hilbert space. TgtandT be internal operators on internal Hilbert spdte
Note that ifl (T1) > I['(T), thenT; is said to be an extension®fand we writdl; S T. Equivalently,T; o T if and
only if D(T;) © D(T) andT,¢ = T¢ for allp € D(T).

Definition 22. An internal operatdt on *H is = -closable if it has & -closed extension. Every-closable internal
operatorT has a smallest-closed extension, called isclosure, which we denote by-T.

Definition 23. LetH be a standard Hilbert space. [ebe ax -densely defined internal linear operator on interna
Hilbert space€H. Let D(T™*) be the set op € *H for which there is a vectdre *H with (Ty, @) = (¢, &) for all

Y € D(T), then for eaclp € D(T*), we defineT*p = £. T is called the: -adjoint ofT. Note thatS c T implies
T c S

Definition 24. LetH be a standarHilbert spaceA * -densely defined internal linear operafoon internal Hilbert
space'H is called symmetric (or Hermitian)if c T*. Equivalently, T is symmetric if and only (T, y) =

(¢, TY) for all o, € D(T).

Definition 25.Let H be a standard Hilbert spadesymmetric internal linear operat@ron internal Hilbert spacé!
is called essentially self -adjoint if its -closurex -T is self = -adjoint. If T is * -closed, a subsé& c D(T) is
called a« -core forT if =- (T I D) =T.If T is essentially sel-adjoint, then it has one and only one

self « -adjoint extension.

Theorem 6Letny,n, € N and suppose tha (ky, ... kn,, D1, ., Pn,) € Lo ("R3M1#72)) where

W (ky, ... kn,, D1, e, Py, ) is @*C -valued internal function ofR*™172). Then there is a unique operafyy on
*F(*L,(*R?)) so that'D-; < D(Ty,) is a* - core forT,, and

1) as*C-valued quadratic forms gD« X *D+g

Ty = *I*R3(n1+n2) W(kp wkn D1y Pnz) (H?:ll *a*(ki))(H?ﬁl *a(pi))dnlkdnzp
2) As*C-valued quadratic forms db:g X D¢

Ty = *f*IR3(n1+nz) W(kp vk 015 e 'Pnz) (H?:H “at (kl))(l'IfZl *a(pi))dnlkdnzp
3) On vectors iffF, the operatordy, and Ty, are given by the explicit formulas

(I-nz+nq) _

(Tw ()
KU na,m2)'S | [ e Sipn s WK oKy, Py e,y ) 8O (P e, Py K, e, )d2 ), (39)

(T ()" = 0ifn < ny —ny,



(I-ni+nz) _

(T C¥))

K(l,nyn)'S| [ *flpn2|smW(k1,...knl,pl,...,pnz)*t,b(l)(pl, oo Dy Kay o ke, )d3™ k] (40)

Ipyl<w "

(Tiy C)" =0, ifn < ny —ny.

l!(l+n1—n2)!]1/2

HereS is the symmetrization operator defined in [9] &{d n,, n,) = [ onyy?
—n2

,ny,n, € NI € "N,
Proof: For vector$y € D« we defineTy, (*y) by the formula (39). By the Schwarz inequality &hel fact thats is
a projection we get

(I-ny+nq)

2 * 2
) <KGm,m) Iwie. (41)

(4)

("Nrwcw)

Let us now define the operatf}, (1)) onD-¢ by the formula (39), then for &lp, *y € D+, then one obtains
directly (o, Ty, ) = *(Ty, *@, *¥). Thus,Ty, is = -closable andy, is the restriction of the -adjoint of T, on
D-¢. We will useTy, to denotex -T, andT;; to denote the -adjoint ofT},. By the definition ofT;;,, D-¢is ax -core
and further, sincd, is bounded on theparticle vectors iD-gwe get'F, ¢ D(Ty,). Since the right-hand side of
(39) is also bounded on tlparticle vectors, equation (38) represdhison alll-particle vectorsThe proof of the
statement (2) abodt;, is the same.

Definition 26.[8]. Define standar@ -space by) =x;_; R. Leto be thes-algebra generated by infinite products of
measurable sets IR and seu = ®5_, u; With du,, = m~*/2exp(—x2/2). Denote the points @f by g =

(91,92, .- )- Then(Q, u) is a measure space and the set of the all fursctibthe formP,(q) = P(q4, G2, ---> qn),
whereP, (q) is a polynomial and € N is arbitrary, is dense ik, (Q, du). Remind that there exists a unitary map
S:F,(H) — L,(Q,du) of Fock spac&;(H) ontoL,(Q, du) so thaSe(f;,)S™* = q, andSQ, = 1. Here{f, }5, is
an orthonormal basis féf. Then by transfer one obtains internal measuressg@ecu) = (*Q, *u) and internal
unitary map'S: F,(H) - *L,(*Q,d*u) so that'Se(f,)*S™! = q,, r € *N and*SQ, = 1. Here{fr};‘f1 is an
orthonormal basis foiH.

Theorem 7. Leto, (x,t) be internal free scalar boson field of masat timet = 0 with hyperfinite momentum
cutoff x in four-dimensional space-time. Lgtx) be a real-valued internal functiortIn (*R®) n *L; (*R3). Then
the operator

“Hipe(9) = A00) "[.e 9(0) "0 (x): d*x (42)

is a well-defined internal symmetric operator'dng, . Here: g (x) = "¢} (x) + d, (%) (*(pf{(x)) +d, ().
where the coefficients, () andd, (x) are independent of LetS denote the unitary map &f(H) ontoL,(Q, dw)
considered in [8]. TheW = *S*H,,,(9)*S™" is multiplication by internal functioH; ,,(q) which satisfies:

(@) Vi (@) € "L, ("Q. ") for allp € 'N, (b)exp (—tV;,.(q)) € "Ly ("Q,d"p) for all t € [0,"00).

Proof: Note that for each € *R3, the operatotS(*¢,,(x))*S™! is just the operator on internal measurable space
*L,(*Q, d*w) on which this operator acts by multiplying by faection Z;‘ji ¢ (x, ) qy, Wherec, (x, %) =

(2m)3/? (fk, (u@))" Zexp(ipx)). FurthermoreX, 2, |¢, (x, )2 = (2m)%/2" H(p)1/2||z s0's ("¢ 4 (x)) 's"and

*S (*¢i(x)) *S~1 are in*L,(*Q, d*u) and the correspondirig, (*Q, d*u)-norms are uniformly bounded in

Therefore, sincg € *L, (*R?) the operatofsS (*H,_,{(g)) *S~1 is just the operator on internal measurable space



*L,(*Q, d*u) on which this operator acts by multiplying by ttig(*Q, d *u)-function which we denote B, ;(q).
Let us consider now the expression fHy, (g)*Q, obviously this is a vectdi0,0,0,0,3*,0, ...) with

T A60gG) T x(epp)] exp(~ix TiZtpy )aix
4 _ L L
1!1 (pl! D2, P3, p4) - f*]RS (271')3/2 n‘ilzl[zﬂ(pi)]l/z ) (43)

Herex(x,p) = 1if |p| < x, x(¢,p) = 0 if |p| > #, x € *R,,. We choose now the paramefier 1(x) ~ 0 such
2 * 2
that*[|lip*||2 € R and therefore we obtaif *H,,;,,/l(,l)(g)ﬂo||2 € R, since || *H,,K,A(H)(g)ﬂonz = *||y*||3. But,

since*S*Q, = 1, we get the equalities

*” *HI,}{,)L(J{)(g)‘QOHZ = |I"SHp 0200 (@) S 7| *”Vl,x,/l(x)(q) (44)

|0 cod
n € *Nin the domain of the operatdf, ,, 1., (q) and*S *H; ,, 160 (9)*S™" = V1,100 (q) on that domain. Since,
is in the domain ofH?’,’K'A(H)(g),p € "N, 1 is in the domain of the operati?, ,, 5, (q) for allp € *N. Thus, for

L(Qd* ) L(*Q.d* )

From (43) we get tha*t“V,_,f_,l(,{)(q)

) € R and it is easily verify, that each polynomPdlq,, q,, ..., ¢,), is

allp € "N Vp,260(q) € "Ly, (CQ,d™w), since™u (*Q ) is finite, we conclude tha ,, 5, (q) € "L, ("Q, d"w) for all
p € "N.

(b) Remind Wick's theorem asserts thap;, , (x) = ¥/2(—1)! mc‘i*(pﬁ,{f{) (x) with

Cy = *||*<pm_H(x)*Qo||z. Forj = 4 we get—0(c2) <: “pm ,.(x): and therefore — (*fwg(x) d3x) 0(c?) <

*Hi 100 (g). Finally we obtain*f*Q exp (—t(: O 5 () )) d *u < exp(0(c2)) and this inequality finalized the
proof.

Theorem 8.[8]. LetM, u) be ac-measure standard space wiftM) = 1and letH, be the generator of a
hypercontractive semigroup @a(M, du). LetV be aR-valued measurable function ¢M, u) such thav’ €
L,(M,dy) for allp € [1,0) andexp(—tV) € L;(M,dy) for allt > 0. ThenH, + V is essentially self-adjoint on
C*(Hy) N D(V) and is bounded below. Hel@” (H, ) = N,y D (HY).

Theorem 9. Le{M, u) be asc-measure space with(M) = 1and letH, be the generator of a hypercontractive semi-
group onL,(M, du). LetV be a’R-valued internal measurable function©M, “u) such thaV’ € "L, ("M, d"u) for

all p € [1, *0) and*exp(—tV) € *L,(*M,d*y) for allt > 0. Assume that a s€t*(*H, ) n D(V) is internal. Then
operatorH, + V is essentially self--adjoint internal operator o6 *(*H, ) n D(V) and it is hyper finitely
bounded below. Her€ °(*Hy ) = Ny D(*HY).

Proof. It follows immediately by transfer from threm 8.

Remark 4: LeV},, , be operator on internal measurable sgagé€’(), d*u) on which this operator acts by
multiplying by the*L, (*Q, d*u)-functiorV; ,, ; , see proof to Theorem 7. Note that for this oeratset

C°(*Hy) N D(V,M) is not internal and therefore Theorem9 no longédd But without this theorem we cannot
conclude that operatdH, + V; ,,; is essentially sel¥--adjoint internal operator 08 *(*Hy ) N D(V,,m). Thus
Robinson’s transfer is of no help in the case apoading to operatdf;,,, considered above. In order to resolve
this issue, we will use non conservative extensiothe model theoretical nonstandard analysis[E&je[14].

NON CONSERVATIVE EXTENSION OF THE MODEL THEORETICAL

NONSTANDARD ANALYSIS



Remind that Robinson nonstandard analysis (RNA)ynd@veloped using set theoretical objects callgeisu
structures [2]-[7]. A superstructuv&S) over a sef is defined in the following way,(S) = S, V41 (S) = V,,(S) U
P(Vn(S)), V(S) = Unen Vnt1(S). Making S = R will suffice for virtually any construction necesy in analysis.
Bounded formulas are formulas where all quantifarsur in the formvx (x €y » - ),3ax(x €y -» -+ ). A
nonstandard embedding is a mappind/(X) — V(Y) from a superstructur&(X) called the standard universe,
into another superstructuv€Y) called nonstandard universe, satisfying the folfmapostulates:

1LY="X

2. Transfer Principle. For every bounded formuta(x,, ..., x,) and elementa,, ..., a, € V(X) the property

®(ay, ...,a,) istrue foray, ..., a, inthe standard universe if and only if it isarfor *a, , ..., *a,, in the
nonstandard universé (X) f ®(xy, ..., x,) © V() o Cay, .., *ay).

3. Non-triviality. For every infinite setd in the standard universe, the §ét|a € A} is a proper subset tA.
Definition 27. A set x is internal if and only if is an element of A for somed € V(R). Let X be a set and

A = {A,;};c; a family of subsets ok .Then the collectiord has the infinite intersection property, if anyimite sub
collection] c I has non-empty intersection. Nonstandard universe-saturated if whenevéd, },c, is a
collection of internal sets with the infinite inseiction property and the cardinality bis less than or equal to
Remark 5. For each standard univetse= VV(X) there exists canonical languaggand for each nonstandard
universeW =V (Y) there exists corresponding canonical nonstandagliage*L = L, [5],[7]

4 Therestricted rules of conclusion. If Let A andB well formed, closed formulas so thgtB € *L. If W E A, then
=4 Wryp B. Thus, if a statement holds in nonstandard universee cannot obtain from formula:A any formula
B whatsoever.

Definition 28.[10]-[14]. A sefS c *N is a hyper inductive if the following statementd®inV (Y):

NAgern(@ €S > a® €5).
Hereat = a + 1.0bviously a setN is a hyper inductive.
5. Axiom of hyper infinite induction
vS(S € "N){VB(B € "N)[A1ce<p(a €S > a* € 5)] » S = *N}.

Example 5: Remind the proof of the following stagen structur€N, <, =) is a well-ordered set.

Proof: LetX be a nonempty subset &f. Suppose X does not have deast element. Then consider the gk .
CaselN\X = @. ThenX = N and sd is a< -least element but this is a contradiction.

Case2N\X # @. Thenl € N\X otherwisel is a< -least element but this is a contradiction. Assuow that
there exists some € N\ X such that # 1, but since we have supposed tkiatoes not have & -least element,
thusn + 1 ¢ X. Thus we see that for allthe statement € N\X implies thath + 1 € N\ X. We can conclude by
axiom of induction that € N\ X for alln € N. ThusN\X = N impliesX = @. This is a contradiction t§ being a
non-empty subset &f. Remind that structur€N, <, =) is not a well-ordered set [5]-[7]. We set n&w= *N\N
and thusN\X; = N. In contrast with a séf mentioned above the assumptiog *N\X, implies tham + 1 €
*N\X; if and only ifn is finite, since for any infinite € *N\N the assumption € *N\X; contradicts with a true
statemen? (Y) £ n ¢ "N\X;=N and therefore in accordance with postulate 4 weagobtain frorm € "N\ X, any
closed formula whatsoever.

Theorem 10.[14]. (Generalized Recursion Theorket)S be a sety € S andg: S X *N — S is any function with
dom(g) = S x *N andrange(g) < S, then there exists a functidft *N — S such that: 1lom(F) = *N and
range(F) € S; 2)F(1) =c; 3) forallx € 'N,F(n + 1) = g(F(n), n).

Definition 29.[12]-[14]. (1) Suppose thétis a standard set on which a binary operat{eras-) and(-x-) is defined
and under whicl§ is closed. Lefx, },c+y be any hyper infinite sequence of termsSfFor every hyper natural
n € *N we denote b¥xt- Y7 -, x; the element ofS uniquely determined by the following canonical ditions:



(Q)Ext-Yi_ix; = x1; (0)Ext-YH1x, = Ext-Y}_; x + x4 foralln € *N.

(2) For every hyper natural € *N,, we denote b¥xt-[]i-, xx the element ofS uniquely determined by the
following canonical conditions: (&xt- [1h_, xx = xq; (b) Ext- [[F11 %, = (Ext- 18, %) X x4, for alln € *N.
Theorem11. [14]. (1) suppose tisais a standard set on which a binary operafich-) is defined and under which
S is closed and thdt + -) is associative on S. L&t }xe+y be any hyper infinite sequence of term$$fThen for
anyn,m € *N we haveExt- Lpi x, = Ext- Y} x + Ext-2pe; X ;

(2) suppose that is a standard set on which a binary operatien) is defined and under whichis closed and that
(-x-) is associative on S. L&t },.c+y be any hyper infinite sequence of terms$fThen for anyr, m € *N we
have:Ext- [T} x, = (Ext- [1}=1 %) X (Ext-[Tie, x); (3) for anyz € *S and for anyr € *N,, we have:

z X (Ext-YR-1 %) = Ext-Y}-1 2 X xp.

External non-Archimedean Field *R# by Cauchy Completion of the Internal

Non -Archimedean Fidd *R.

Definition 30. A hyper infinite sequence of hypedraumbers fromR is a functiona: *N — *R

from the hyper natural numbe into the hyperreal numbetR.We usually denote such a function by- a,, , so
the terms in the sequence are writier{a,, a,, ..., a,, ... }.To refer to the whole hyper infinite sequence, vile w
write {an};ozl or {an}ne*N-

Abbreviation 3. For a standard $&tve often writeE,, let °E, = {*x|x € E,.}.We identifyz with ?z i.e.,z = °z
for allz € C. HenceEy = Ey if E € C, e.9.,°C = C, °R = R, etc.Let'R¥,

RELRE L, RE gL, "RE ., , "N, denote the sets of Cauchy hyper-real numbers, Ganfihitesimal hyper-real
numbers, Cauchy positive infinitesimal hyper-reamters, Cauchy finite hyper-real numbers, Caucfigiia
hyper-real numbers and infinite hyper natural nurspeespectively. Note théRﬁ_ﬁn = "RI\"RE .

Definition 31.Let {an};":l be a hyper infinitéR- valued sequence mentioned abd¥e shall say tha(an};":1
#-tends td if, given anye € 'R, , there is a hyper natural numbére *N such that for alln > N, |a,| < €. We
denote this symbolically by, —4 0.

Definition 32. Let{an}:fi1 be a hyper infinitéR-valued sequence mentioned above. We shall m){m}:ﬁl
#-tends tag € "R if, given anys € "R, , there is a hyper natural numlkére *N such that for ath > N,

la, — q| < € and we denote this symbolically by -, g or by #-lim,,_+, a, = q.

Definition 33. Let{an}:fi1 be a hyper infinitéR-valued sequence mentioned above. We shall sage¢latence
{an};":1 is bounded if there is a hyperrddle *R suchthat for anyn € *N, |a,| < M.

Definition 34. Let{an};";’1 be a hyper infinitéR- valued sequence mentioned above. We shall sa){mai‘ﬁl is
a Cauchy hyper infinitéR- valued sequence if , given ang¥ "R, , there is a hyper natural numbége) € *N
such that for anyn,n > N, |a, — a,,| < &.

Theorem 12. I{an};(’i1 is a#-convergent hyper infinit&R-valued sequence, i.e., thatag, —4 g for some
hyperreal numbeg, g € *R then {an};‘:l is a Cauchy hyper infinitéR-valued sequence.

Theorem 13. I{an};"i1 is a Cauchy hyper infinitéR-valued sequence, then it is finitely bounded gremfinitely
bounded; that is, there is some finite or hypetditd € “R, such thaia,| < M for alln € *N.

Definition 35. LetS be a set, with an equivalence relation~ -) on pairs of elements. Fore S, denote byl[s]
the set of all elements kthat are related to Then for any, t € S, eithercl[s] = cl[t] orcl[s] andcl[t] are
disjoint.

Remark 6.The hyperreal numbéR{ will be constructed as equivalence classes of Bahgper infinite*R-valued



sequences. L&E{*R} denote the set of all Cauchy hyper infiriiRevalued sequences of hyperreal numbers. We
define the equivalence relation on aEgtR}.

Definition 36. Let{an};";’1 and{bn};‘ﬁ1 be inF{*R}. Say they arét-equivalent if a,, — b,, —4 0 i.e., if and only if
the hyper infinite'R-valued sequendgz,, — bn};‘:l #-tends taD.

Theorem 14Definition above yields an equivalence relationeosetF{*R}.

Definition 37. The external hyperreal numb&R are the equivalence class#la, }] of Cauchy hyper infinite
“R-valued sequences of hyperreal numbers, as panitilefiabove. That is, each such equivalence ¢tass
external hyperreal number.

Definition 38.Given any hyperreal numbere *R, define a hyperreal numbefto be the equivalence class of the
hyper infinite*R-valued sequende,, = q};‘:lconsisting entirely of € *R. So we view'R as being insidéR¥ by
thinking of each hyperreal numbgrE *R as its associated equivalence clgtdlt is standard to abuse this notation,
and simply refer to the equivalence class as gedls w

Definition 39.Lets, t € "R¥, so there are Cauchy hyper infiniiR-valued sequence{an};‘:l, {bn}:ﬁl of hyperreal
numbers withs = cl[{a,}] andt = cl[{b,}].

(a) Defines + t to be the equivalence class of the hyper infisgguencéa,, + bn};‘ﬁl.

(b) Defines x t to be the equivalence class of the hyper infistguencéa,, + bn};":l.
Theorem 15. The operationsx in definition above by the requirements (a) andafie well-defined.
Theorem 16. Given any hyperreal number *R¥, s # 0 there is a hyperreal numbee *R¥ such that x ¢t = 1.

Theorem 17. If{an};";’1 is a Cauchy hyper infinite sequence which does#rtend td), then there is someé € *N
such that, for ath > N,a,, # 0.

Definition 40. Lets € *R¥. Say thak is positive ifs # 0, and ifs = cI[{a,}] for some Cauchy hyper infinite
sequence of hyperreal numbers such that for 6m€eN, a,, > 0 for all n > N. Thenfor a given two hyperreal
numberss, t, say that > t if s —t is positive.

Theorem 18Lets, t € *R¥ be hyperreal numbers such that s > t, and let r € *R¥, thens +r >t + 7.
Theorem 19. Let, t € *R¥ be hyperreal numbers such that > 0. Then there isn € *N such thain x s > t.
Theorem 20. Given any hyperreal number *R¥, and any hyperreal numbet> 0, ¢ =~ 0, there is a hyperreal
numberg € *R¥ such thatr — q| < e.

Definition 40. LetS € *R# be a non-empty set of hyperreal numbers. A hypermemberc € *R¥ is called an
upper bound fof if x > s for all s € S. A hyperreal number is the least upper bound (or supremunpS) for S if
x is an upper bound fa&r andx < y for every upper bound of S.

Remark 7The order< given by Definition above obviously is-incomplete.

Definition 41. LetS € *R# be a non-empty set of hyperreal numbers. We wailltaat:

(1) S is < -admissible above if the following conditions arésfeed:

(a) S is finitely bounded or hyper finitely bounded abov

(b) letA(S) be a set such thaitx[x € A(S) © x = S] then for any > 0,¢ = 0 there arex € S andf € A(S) such
thatp — a < e = 0.(2) S is < -admissible belov if the following conditions argisted:

(a) S is finitely bounded or hyper finitely bounded bslo

(b) letL(S) be a set such thtc[x € L(S) & x < S] then for any > 0,¢ = 0 there arex € S andf € L(S) such
thata — B < e = 0.

Theorem 21.[14].(a) Ang-admissible above subsgt= *R¥ has the least upper bound property. (b) Any
<-admissible above subsgt= *R? has the greatest lower bound property.

Theorem 22.[14]. (Generalized Nested Intervals Tém@dLet {In}:fi1 = {[an,bn]};"il, [an, byl *]R{f be a hyper
infinite sequence o#-closed intervals satisfying each of the followganditions: (a); 2L, 2,221, 2 -
(b) b, — a, =4 0 asn - *oo, Then ﬂ:fil I,consists of exactly one hyperreal numipez *R¥.

Theorem 23.[14]. (Generalized Squeeze Theolearn){an};fl, {cn};(ﬁl be two hyper infinite sequences



#-converging td., and {bn};fl a hyper infinite sequence.¥h > K, K € *N we havea,, < b,, < ¢, thenb,, also
#-converges td..

Theorem 24.[14]If #-lim,,_,+s, | a,| = 0, then#-lim,,_,+;, , a,, = 0.

Theorem 25.[14](Generalized BolzanéNeierstrass Theoremny finitely or hyper finitely bounded hyper infiiei
*R¥ -valued sequence h&sconvergent hyper infinite subsequence.

Definition 42. Let{an};‘i1 be*R¥-valued sequenc&ay that a sequenc{eln};‘ﬁ1 #-tends ta0 if, given any

£ > 0,& = 0, there is a hyper natural numbére *N, N = N (&) such that, for ath > N, |a,| < e.

Definition43. Let {an};":1 be*R#-valued hyper infinite sequendéle call {an};":1 a Cauchy hyper infinite
sequence if given any hyperreal number *Rf _, , there is a hypernatural numbér= N(¢) such that for any
m,n >N, |a, —ay,| <&.

Theorem 26. I{an};":lis a#-convergent hyper infinite sequence ieg,,~« b for some hyperreal numbkre *R¥,
then{an};‘ﬁ1 is a Cauchy hyper infinite sequence.

Theorem 27.h‘{an};°i1 is a Cauchy hyper infinite sequence, then it isrtaled;that is, there is somé € *R# such
that|a,| < M for alln € "N.

Theorem 28.[14]. Any Cauchy hyper infinite sequefu:,g‘;‘ﬁ1 has a#-limit in *R¥; that is,there exist$ € "R¥
such that, -4 b.

Remark 8. Note, that there exists canonical nagmdledding*R © *R¥.

Remark 9.A nonempty set S of Cauchy hyperreal nusiii is unbounded above if it has no hyperfinite upper
bound, or unbounded below if it has no hyperfitgiger bound. It is convenient to adjoin to Cauclpérreal
number systemiR? two points +o0o# = (*+0)#  (which we also write more simply ag' ) and—*, and to
define the order relationships between them andCauchy hyperreal numbere *R¥ by —oo# < x < o,
Definition 44. We will call-oo® andoo® are points at hyper infinity. § ¢ *R# is a nonempty set of Cauchy hyper-
reals, we writsup(S) = oo to indicate thas is unbounded above, antf(S) = —* to indicate thatS is un-
bounded below.

Definition 45.The(e, §) definition of the#-limit of a functionf: D — *R¥ is as follows: leff (x) is a*R#- valued
function defined on a subsktc *R? of the Cauchy hyperreal numbers. kede a#-limit point of D and let

L € "R¥ be Cauchy hyperreal number. We say thalim, .. f(x) = L iffor every e ~ 0,& > 0 there exists a

6 ~ 0,8 > 0suchthat, forallx € D,if0 < |x —c| < §,then |f(x) — L| < e.

Definition 46.[13].The functiorf: *R¥ — *R¥ is a#-continuous (or micro continuous) at some poiof its domain
if the #-limit of f(x), asx #-approaches through the domain df, exists and is equal t6(c): #-lim,._, .. f (x) =

f (o).

Theorem 29. [14]. Leﬁan};":l and {bn};fl be*R#- valued hyper infinite sequences. Then the follownéngalities
hold for anyn, k,l,j,m € *N:

b x (Ext-Y1-;a;) = Ext-Y7, b X q; (45)
Ext-Y",a; + Ext- Y-, b; =Ext-Y1-,(a; £ b;) (46)
Ext-3i3, (Ext-$iL, @) = Ext-XL, (Ext-2f2, a;) 47)
(Ext-Y7,a;) X (Ext- 27:119') = Ext- Z?zl(Ext- Yi=1a; X bj) (48)
(Ext-TTi2q @) X (Ext-[Ti-, by) = Ext-IiZ; a; X by (49)

(Ext-T[izy a)™ = Ext-I[iL, ai. (50)



Theorem 30. [14]. Lefa, }-, and {b,}", be*R¥- valued hyperfinite sequences. Supposedhat b;, 1 < i < n.
Then the following equalities hold for anye "N :

Ext-TTL, a; < Ext-T1-, b;. 51
i=1 i=1

Theorem 31. [14]. Lefa, }-, and {b,}*, be*R¥- valued hyperfinite sequences. Then the followirepjinalities
hold for anyn € *N :

(Ext-Tlizy @i x b)? < (Ext-T1i-; af) X (Ext-[TiL, bY). (52)

Definition 47.[13].If {an};‘ﬁl is a"R¥- valued hyper infinite sequence, the symbeot- Z;‘il a, is a hyper infinite
series, and,, is the n-th term of the hyper infinite series.

Definition 48.[13]. We shall say thmxt-z‘,;‘:l a,, #-converges to the sume *R¥, and writeExt- Z;‘:l a, =Aff
the hyper infinite sequencbéln};(’z1 defined by4,, = Ext- Y-, a, #-converges to the surh The hyperfinite sum
A,, is then-th partial sum oExt-Z;‘Zl a,. If #-limA,, = co® or—oo*, we say thakxt- Z;‘:l a,, #-diverges too®

*
m-—"oo,

or to—oo¥,

Theorem 32.[13]The sumExt- Z;‘:l a, of a#-convergent hyper infinite series is unique.

Hyper infinite sequences and series of *R#- valued functions

Definition 49.[13]. Iff1, f5, ) fir fusis s fr -1 € *N are*R¥- valued functions on a subdetc *R¥ we say that
{fn};‘il is a hyper infinite sequence 6R¥- valued functions od.

Definition 50.[13].Suppose tha{tfn};"z1 is a hyper infinite sequence @#- valued functions o® c *R¥ and the
hyper infinite sequence of valugﬁ(x)};‘i1 #-converges for eachin some subset of D. Then we say that
{fn(x)};":1 #-converges pointwise anto the#-limit function f, defined byf (x) = lim,,_ =, f, (x).

Definition 51.[13]. If{fn(x)};":1 is a hyper infinite sequence @#- valued functions ob c *R#, then

Ext- 2;0;)1 fn(x) (53)

is a hyper infinite series of functions fn The partial sums of (1), are definedByx) = Ext- Y5, fn(x). If hyper
infinite sequencéFn(x)};fl#-converges pointwise to thelimit function F (x) on a subsef c D, we say that

{F, (x)};":l#-converges pointwise to the suiix) onsS, and writeF (x) = Ext- Z;ﬁlfn(x).

Definition 52.[13].A hyper infinite series of the forixt- Z;‘:l(x —x,)", n € N is called a hyper infinite power
series i — x,.

The #-Derivatives and Riemann #-Integral of *“R#-Valued Functions f: D — *R#"

Definition 53.[13] A functionf: D — *R¥ #-differentiableat an#-interior pointx € D of its domainD c *R¥ if the
difference quotienf (x) — f(xo)/x — xo has a#-limit: #-lim,_, . (f (x) — f(xo)/x — x0). In this case th&-limit
is called the#-derivative off at interior pointc,, and is denoted b§*' (x,) or byd*f (x,)/d*x.

Definition 54. If f is defined on a#-open sef c *R¥, we say that f igt-differentiable ors if f is #-differentiable
at every point of. If f is #-differentiable ors, thenf* (x) is a function orf.We say thaf is #-continuously
#-differentiable ors if £#'(x) is #-continuous ors.



Definition 55.If f is #-differentiable on a-neighbourhood ofx,, it is reasonable to askfif’'(x) is #-differentiable
atx,. If so, we denote th#-derivative off*'(x) atx, by f*"'(x,) or by f#*®(x,) and this is the second
#-derivative off atx,. Continuing inductively by hyper infinite inductipii £#*~ (x) is defined on a
#-neighbourhood ofx,, then then-th #-derivative off atx, denoted by *™ (x,) or byd*™f (x,)/d*x", where
n € *N.

Theorem 33.[13]If f is #-differentiable atx, thenf is #-continuous ak.

Theorem 34.[13]If f andg are#-differentiable atr,, then so ar¢ + g andf x g with:

@ £9)%(x0) = f*(x0) £ g% (x0), (b) (f X g)* (x0) = f*(x)g(x0) + g* (x0) f (xo).

#1 I
(c) The quotienf /g is #-differentiable at, if g(x,) # 0 with (f/g)*" =~ ("°)~"(";()x~‘;2 (x0)fCxo)
0

(d) If n € "N andf;, 1 < i < n are#-differentiable afx,, then so ar&xt- Y., f; with:

(Ext-3; fO% (xo) = Ext- 3% £ (x).

(e) Ifn € *N and f*™(x,), g*™ (x,) exist, then so do&§ x g )*™ (x,) and

(f X )" (xg) = Ext- X o ()" ()9 "D (xo)

Theorem 35.[13]. (The Chain Rule). Suppose ghet#-differentiable at, andf is #-differentiable ayy(x,). Then
the composite functioh = f o g defined byh(x) = f(g(x)) is #-differentiable atx, with h*'(x,) =

f#’(g (xo))g#'(xo)-

Theorem 36.[13](Generalized Taylor's Theorem) Suppose &t (x ), n € *N exists on ar#-open interval

I aboutx,, and letx € I. Let B, (x, x,) be then-th Taylor hyper polynomial of aboutx,, B, (x, x,) =

£ () (=)™
r!

Ext-Y7_, Then the remainddt(x, x,) = f(x) — B,(x, x,) can be written as

A a-x)"

R(x,x0) = (n+1)!

(54)
Herec depends upom and is between andx,.

Definition 56.[13] Let[a, b] c "R¥. A hyperfinite partition of[a, b] is a hyperfinite set of subintervals

[x0, %11, [%n—1, x5, ], Withn € "N, wherea = x; < x; ... < x, = b. A set of these pointg,), x;, ..., x,, defines a
hyperfinite partitionP of [a, b], which we denote b® = {x;}I-,. The pointsx, x4, ..., x, are the partition points of
P.The largest of the lengths of the subinteryals,, x;], 0 < i < n is the norm oP = {x;}-, denoted by|P||;
thus,||P|| = max;<;<n (3 — X;-1)-

Definition 57. LetP andP’ are hyperfinite partitions dfi, b], thenP’ is a refinement oP if every partition point of
P is also a partition point @f'; that is, ifP’ is obtained by inserting additional points betwtese ofP.

Definition 58. Letf be*R¥- valued functiory: [a, b] — *R¥, then we say thaixternal hyperfinite sum®*t defined

by
o™t = Ext- Y f(e) (o —xi-9), X210 < ¢ S %, (55)

is a Riemann external hyperfinite sumfabver the hyperfinite partitio = {x;}7,.

Definition 59.[13]. Letf be*R¥- valued functiorf: [a, b] — *R¥, thenwe say thaf is Riemann#-integrable on
[a, b] if there is a numbel € *R¥ with the following property: for every =~ 0, > 0, thereis & ~ 0,8 > 0 such
that|L — oF*t| < § if o*t is any Riemann external hyperfinite sunyfadver a partitiorP of [a, b] such that

[IP]| < 6. In this case, we say thaiis the Rieman#-integral off over[a, b], and we shall write

L= Ext- [, f(x)d*x. (56)



Thus the Rieman#-integral of*R#- valued functionf: [a, b] —» *R¥ over[a, b] is defined ag-limit of the
external hyperfinite sums (55) with respect toifiarts of the intervala, b]:

Ext- f; f(x)d¥x = #-limnﬁ*w(Ext- > f(e) (x — xi_l)). (57)

Definition 60.A coordinate rectangl® in *R#", n € *N is the external finite or hyperfinite Cartesianguot ofn
#-closed intervals; that i® = Ext- XI-, [a;, b;]. The content oR isV(R) = Ext-[],(b; — a;). The hyperreal
numbers; — a;, 1 < i < n are the edge lengths Bf If they are equal, theR is finite or hyperfinite coordinate
cube.lf a; = b, for somer, thenV(R) = 0 and we say tha is degenerate; otherwis®,is nondegenerate.
Definition54. IfR = Ext-Xi_; [a;, b;] andP,. = a,¢ < @y << a,,, iS an external hyperfinite partition of
[a,,by],1 <7 <n,then the set of all rectanglesRf™ that can be written avt- X[, [a;;,_,a;;,], 1 < j, <m,,
1 <r < nis a partition oR. We denote this partition By = Ext- X}, B. and define its norm to be the maximum
of the norms oP;, 1 < i < n; thus,||P|| = max;{P;|1 < i <n}.

Definition 61. If P = Ext- x}-; P, andP’' = Ext- X}, P/ are partitions of the same rectangle, tRéis a
refinement o if P/ is a refinement oP;, 1 < i < n as defined above.

Definition 62.Suppose thitis a*R#- valued function defined on a rectanglén *R#™, n € *N, P = {P,}¥ jis a
partition ofR, andx; is an arbitrary point iR;, 1 < j < k. Then a Riemann external hyperfinite saft® of f over
the partition P is defined by

oEXt = Ext- Z?:lf(xl') V(R;) %)

Definition 63. Letf be a*R¥- valued function defined on a rectanglén *R#® n € *N. We say thaf is Riemann
#-integrable orR if there is a number L with the following properfgr everye = 0,& > 0, thereis & = 0,5 > 0
such thalL — of*f| < § if aE** is any Riemann external hyperfinite sunyajver a partitiorP of R such that
[|P|| < 6. In this case, we say thatis the Rieman##-integral off overR, and write

L = Ext- [, f(x)d*"x. (59)

Thus the Rieman#-integral of*R#- valued functionf defined on a rectangl in *R#" is defined ag-limit of the
external hyperfinite sums (58) with respect toifiarts of the rectang|&:

Ext- [, f()d*"x = #-lim (Ext- 2, f () V(R)), (60)

The *R¥-Valued #-Exponential Function Ext-exp(x) and

*R#-Valued Trigonometric Functions Ext-sin(x), Ext-cos(x)
We define thet-exponential functiotxt-exp(x) as the solution of th#-differential equation
fH ) =fC0,f(0) =1. (61)
We solve it by settingf (x) = Ext- Z;‘ZO x™, f#(x) = Ext- Z;‘ﬁo nx™. Therefore
Ext-exp(x) = Ext- Z;(ZO J;—T (62)

From (1) we gefExt-exp(x))(Ext-exp(y)) = Ext-exp(x + y) for anyx,y € *R¥.



We define thet- trigonometric functiongxt- sin x andExt- cos x by

x?
(2n+1)!"

Ext-cosx = Ext- Zn o(— 1)”x—. (63)

- gj = - fo0 n
Ext-sinx = Ext-Y,,-,(—1) 2n)!

It can be shown that the series #1yonverges for alt € *R# #-differentiating yields

(Ext-sinx )* = Ext-cosx, (Ext-cosx )* = —(Ext-sinx ). (64)

*R¥ -Valued Schwartz Distributions

Definition 64.[13]. LetU be ar#- open subset 6R*™ andf: U — *R¥. The partial derivative of at the point
x = (xq, %3, .., X;, .-, X, ) With respect to théth variablex; is defined as

ot X1,X2, X iR X XX X,
#f #_ lim f(x1x2, n)—f (x1.%2,. n)'
a h—-40 h

Definition 65.A multi-index of size € "N is an element ifN", the length of a multi-index = (a4, ...,@,,) € 'N*
is defined ag&xt-).7; a; and denoted bj|. We introduce the foIIowing notations for a giveulti-index

gta

. #
a=(ay,..,a,) € °N" x®=Ext-[[L x;*; 8% = Ext-[[l-, i ul or symbolicallyd*® = Ext-m--
PxC

Definition 66.The Schwartgpace of rapidly decreasiing?- valued test functions oiR** ,n € *N is the function
space defined by

SYCREY, *CH) = {f € C(REY, *CH|V(a, B)(a, B € *N™)Vx(x € "REM)[|x* D*F f(x)| < oo¥]}.
Remark 10.Note that jf € S*("R¥", *C#) the integral ofc®| D*# f(x)| exists
Ext- [, pun| x*D*F f(x)|d*" < oo®,

Definition 67.The Schwartgpace of essentially rapidly decreasiiff- valued test functions oiR?*" ,n € *N is the
function space defined by

S*CREY, *CH) = {f € C°CRIY, *CH|Va(a € NY)VE(B € *NM)Vx(x € *REM[|x D*F f(x)| < 0 |}.
Remark 11.Note that jf € S*("R¥", *C#) the integral ok®| D*# f(x)|,a € N™, € "N™ exists and
Ext- f*]R#"| x*D*B f(x)|d#" < o0,

Definition 67.The Schwartgpace of rapidly decreasiingf- valued test functions o"rRC fin » 1 € "N is the function
space defined by

S#( Rc fin’ *(C#) {f eC oo( IRcﬁn' *(C#)|V(0( .8)(0‘ B € *N”)Vx(x € *Rcﬁn)[lxa D#ﬁf(x)l < oo#]},

Remark 12.Note that jff € S*(*R¥7%,, “C#) the integral ofkc®| D* f(x)|,« € *N™, € *"N™ exists and

¢ fin’



Ext- f*ﬂk#rf‘- |an#B f(x)|d#n < oot |
¢ In

Definition 68.The Schwartgpace of essentially rapidly decreasi@f- valued test functions oiR*™. ,n € *N is

the function space defined by

¢ fin ’

§I’fin ( ]Rc fin’ *C#) =
{f € C ("R, "CHV(a, B) (@ € N™, B € NM3cyp(cap € "REg)Vr(x € "RITL) “x“ (D#B f(x))| < caﬁ]}.

Remark 13.Note that f € S&, ("RE™, *C!) the integral of *“D*# f(x)| exists and finitely bounded above
Ext- f*ﬂ%ﬁ?ﬂ XD £(x)|d* < dyp, deg € "R .

Abbreviation 4. 1) The Schwartpace of rapidly decreasing test functionsRf* we will be denoting by
S*(*R#™) and letSE, ("R¥#™) denote the set ofC#-valued essentially rapidly decreasing test funstion R/ .
2) The Schwartgpace of rapidly decreasingf- valued test functions dﬂRc tin We will be denoting by
S*(*RET, ) and letSE, ("RET, ) denote the set Oft#-valued essentially rapidly decreasing test function
*Rc fin -

Definition 69. A linear functionak: S*(*R#™) — *C# is a#-continuous if there exisl, k € *N and constants,s

such thatu(e)| < C(Ext-Y4<r, IBl<k Cap)- Here Vx(x € "RE™) [|x“(D#5 <p(x))| < ca,;].

Definition 70. A linear functionak: S*(*R¥%,,) — *C# is a strongly#-continuous if there exidt, k € *N and
constants,s such thatu(p)| < C(Ext- ¥\ q<k 1<k Cap) € “Riin-

Definition 71. A generalized functiom € S# (*R¥™) is defined as #-continuous linear functional on vector space
S*(*R#M), symbolically it written asi: ¢ — (u, ¢). Thus spacs® (*R#™) of generalized functions is the space dual
to S#(*R#n)

Definition 72. A generalized functiame S* (*R%%. ) is defined as a stronghcontinuous linear functional on
vector spacé*(*R¥% ), symbolically it written as:: ¢ — (u, ). Thus spacs® (*R¥% ) of generalized functions
is the space dual ®"(*R¥%,).

Definition 73.Convergence of a hyper infinite sequem@};‘ﬁl of generalized functions i$*' (*R#") is defined as
weak#-convergence of functionals K’ (*R#") that is u,, —»4 0, asn - *oo, in $¥ (*R#") means that

(U, @) =4 0, asn - *oo, for all € S*(*R#™).

¢ fin

Definition 74. Convergence of a hyper infinite seque{un} , of generalized functions m#’( R*1 ) is defined
as weak#-convergence of functionals 5’ (*R¥%,, ) that isu, —4 0, asn - *oo, in S¥(*R¥7,.) means that
(Un, @) >4 0, @asn > oo, for all g € S*(*R¥7,).

Definition 75.1) Letu € S* (*R¥") and letx = Ay + b be a linear transformation 6R*" onto*R#". The

generalized function(Ay + b) € S¥ (“R#") is defined by

¢ fin

(w(Ay +b),p) = (u, W). (65)

Formula (1) enables one to define generalized fonstthat are translation invariant, sphericallsngyetric,
centrally symmetric, homogeneous, periodic, Loréméariant, etc.

2) Let the functionz(x) € C*1(*R¥) have only simple zeros, € *R¥,k € *N, the functions(a(x)) is defined by

8(a(x)) = Ext-y,70, 20 (66)

k=1 |0(# (xk)|




3) Letu € S* (*R#™), the generalized (weak)-derivatived**u of u of ordera is defined as
(0% u, @) = (=D (u,0%*¢). (67)
4) Letu € S* ("R¥™) andg (x) € C*"*(*R#™), The producgu = ug is defined by
(gu, ) = (w, gp). (68)
5) Lety, € S¥ ("R¥™) andu, € S* (*R¥™) then their direct product is defined by the foranul
(U1 X Uz, @) = (W ()W (¥), @), 9(x,y) € S* (RE x "RE™). (69)
6) The Fourier transforf[u] of a generalized functiom € S#'(*IR{*C*”) is defined by the formula
(Flul, ) = (W, FloD, (70)

Flp] = Ext- [ yn (0 (Ext-expli(§, D", (72)

Since the operatiop(x) — F[@](§) is an isomorphism & (*R#™) ontoS* (*R#™), the operatiom — F[u] is an
isomorphism ofS* (*R#") ontoS* (*R¥") and the inverse of [u] is given by:F ~1[u] = (2r) "F[u(-&)]. The
following formulas hold fou € S* (*R#™): (a)8#* F[u] = F[(ix)%u], (b) F[ 8#*u] = (i&)*F[ul,(c) if the
generalized function, € S#'(*IR{’C*”) has#-com-pact support, thefi[u, * u,] = Flu, |F[u,].

7) If the generalized functiom is periodic withn-periodT = (T, ..., T,), thenu € S#'(*IR{’C*”), and it can be
expanded in a hyper infinite trigonometric series

u(x) = Ext-Z;,:T:O ¢ (W) (Ext-expli(kw, x)]), [c, (W) < AL+ |[k)™ . (72)

The series (1}-converges tau(x) in S* ("R¥™), herew = (2—", j—") andkw = (

2mkq 27rkn)
Ty !
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A NON-ARCHIMEDEAN METRIC SPACESENDOWED WITH

*R¥ -VALUED METRIC

Definition 76. A non-Archimedean metric space isoattered pai(M, d#) whereM is a set, and* is a#-metric on
M i.e.,"R¥, - valued functioni”: M x M — *R¥ such that for any triplet, y, z € M, the following holds:
1.d*(x,y) = 0= x =y.2.d%(x,y) = d*(y,x). 3.d%(x,z) < d*(x,y) + d*(y,2).

Definition 77. A hyper infinite sequem{en};‘ﬁ1 of points inM is called#-Cauchy in(M, d*) if for every hyperreal
£ € "R¥, there exists som& € *N such thati*(x,, x,,) < ¢ if n,m > N.

Definition 78. A pointx of the non-Archimedean metric spd@é, d*) is the#-limit of the hyper infinite
sequenc"@cn};"i1 if for all £ € *R¥,, there exists som& € *N such thati(x,,,x) < eif n > N.

Definition 79. A non-Archimedean metric spacéisomplete if any of the following equivalent condits are
satisfied: 1.Every hyper infinité-Cauchy sequenc{excn};"i1 of points inM has a#-limit that is also in.

2.Every hyper infinitgt-Cauchy sequence M, #-converges irM that is, to some point 1.



For any non-Archimedean metric sp&é& d*) one can construct#complete norArchimedean metric space
(M', d*) which is also denoted &#-M, d") and which containdf a#-dense subspace.

It has the following universal property:Af is any#-complete non-Archimedean metric space And — K is any
uniformly #-continuous function fronM to K, then there exists a unique uniforniycontinuous functiorf’: M’ —
K that extendg.The space-M is determined up té-isometry by this property (among #icomplete metric
spacest- isometrically containing non-Archimedean metricap@#-M,d"), and is called thé-completion

of (M,d").

The#-completion ofM can be constructed as a set of equivalence cla§s€zsuchy hyper infinite sequendesV.
For any two hyper infinite Cauchy sequen{:e,g};fl and{yn};f1 in M, we may define their distance &% = #-
lim,,_, ,.# d* (x,, y,). This #-limit exists because the hyperreal numib@&$ are#-complete. This is only a pseudo
metric, not yet a metric, since two different hypdmite Cauchy sequences may have the distanBait having
distance 0 is an equivalence relation on the sall tifyper infinite Cauchy sequences, and the setjoivalence
classes is a metric space, theompletion of M. The original space is embeddethia space via the identification
of an element of M’ with the equivalence class of hyper infinite seqpes il #-converging tox i.e., the
equivalence class containing a hyper infinite saqaeavith constant value This defines #-isometry onto a
#-dense subspace, as required.

Example 6. BotHR and*C are internal metric spaces when endowed with itartte functioni(x, y) = |x — y|.
Definition1. About any point € M we define thet-open ball of radius € *R¥, aboutx as the seB, (x) =

{y € M|d*(x,y) < r}. These#-open balls form the base for a topologyidn

Definition 80. A non-Archimedean metric spa@é, d*) is called hyper finitely bounded if there existere

7 € "R fins SUch thatt® (x,y) < r for allx,y € M.

Definition 81. A non-Archimedean metric spa@é, d*) is called finitely bounded if there exists some *R,
such thati* (x,y) < r for allx,y € M.

Definition 82. A non-Archimedean metric spa@é, d*) is called hyper finitely bounded if there existere

7 € "R,ws SUCh that®(x,y) < r for allx,y € M.

Definition 83. Let (M, d*) be a non-Archimedean metric space. Adset X is called finitely bounded if there
exists some € "R, g, such thad c B.(a), a€ X.

Definition 84. A non-Archimedean metric spa@é, d*) is called#-compact if every hyper infinite

sequenc@xn};"=°1 in M has a hyper infinite subsequence thatonverges to a point id. This sort of
compactness is known as hyper sequential compacames in a non-Archimedean metric spaces is elguit/to
the topological notions of hyper countalile&eompactness.

Definition 85. A topological spack is called hyper countabl-compact if it satisfies any of the following
equivalent conditions: (a) every hyper countableropoverU of X (i.e.,card(U) = card(*N)) has a finite or
hyperfinite sub-cover.

For a functionf: M; — M, with a non-Archimedean metric spa€es,, d¥) and(M,, d¥) the following definitions
of uniform #-continuity and (ordinaryj-continuity hold.

Definition 86. A functionf is called uniformly#-continuous if for every € *R¥_, there exist$ € *R.., such that
for everyx,y € My with d¥ (x,y) < 6 we getd}(f(x), f(y)) < .

Definition 87. A functionf is called#-continuous atx € M, if for everye € *R¥_, there exist$ € *R?_. such that
for everyy € M; with df (x,y) < § we getdf (f(x), f()) < .

LEBESGUE #-INTEGRATION OF *R¥ -VALUED FUNCTIONS

Let C¥(*R#™) be the space of alR?-valued#-compactly supporte#i-continuous functions ofR#". Define a
#-norm onC# by the Riemans-integral [13]:



Iflls = Ext- [1f ()ld*"x, (73)

Note that the Riemant-integral exists for ang-continuous functiotf: *R#* — *R# | see [13]. Thedf ("R¥™) is a
#-normed vector space and thus in particular, itns@-Archimedean metric space. All non-Archimedswetric
space, have a non-Archimedecompletion(#-M, d*). Let L# be this#-completion. This spack is isomorphic

to the space of Lebesgéeintegrable functions modulo the subspace of funstiwith#-integral zero. Furthermore,
the Riemann integral (1) is a uniform#ycontinuous linear functional with respect to thaorm onC# (*R#")

which is#-dense inL%. Hence the Rieman# integralExt- [ f(x)d*"x has a unique extension to alll§f This
integral is precisely the Lebesgtiéntegral.

Definition 88. Suppose that < p < *oo, and[a, b] is an interval ifR#. We denote bny,([a, b]) the set of the all

functions f:[a, b] = *R¥ such thaExt- f:lf(x)lpd#x < *oo. We define theL’ -#-norm off by

Iflay = (Exe- [P GOParx) ™. (74)

More generally, iff is a subset dfR¥", which could be equal tiR}" itself, thenL’ (E) is the set of Lebesgue
#-measurable functions: E - *R¥ whosep-th power is Lebesgu-integrable, with thét-norm

If Ny = (Ext- [,If ) Pd*mx) """ (75)

Definition 89. A setX ¢ *R#" is #-measurable if there existxt- [ 1, d*"x, wherely is the indicator function.
Definition 90.A *R¥ -valued functiorf on*R#" is a#-measurable if a s¢k|f(x) > t} is a#-measurable set for
all t € *R#",

Remark 14.To assign a value to the Lebesugegral of the indicator functiohy of a#-measurable sét
consistent with the give#--measure:”, the only reasonable choice is to it [ 1,d u* = p*(X).

Definition 91.A hyperfinite linear combination of indicator furmts f = Ext- Y-, ; 1y, Where the coefficients
a, € *R¥ andX, are disjoint#-measurable sets, is called-aneasurable simple function.

Definition 92. When the coefficients, are positive, we sdtxt- [ fd u* = Ext- Y, a; u* (X, ). For a non-

negativet#t-measurable functiofi, let {fn(x)};flbe a hyper infinite sequence of the simple fundifyix) whose
values is;—n Wheneverzin <fx)< % for k a non-negative hyperinteger less td&nThen we set

Ext- [ fd u®* = #-1im,_,« (Ext- [ f,d u*).

Definition 93.1f f is a#-measurable function of the $&to the reals including-o*, then we can writ§ = f+ —
f~,where: 1)f*(x) = f(x) if f(x) >0andf*(x) =01if f(x) <0;2)f~(x) = f(x) if f(x) <0andf (x) =0

if £(x) = 0. Note that bottf * andf ~ are non-negativé-measurable functions aff| = f* + f~.

Definition 94.We say that the Lebesgéntegral of the#-measurable functiofi exists, or is defined if at least one
of Ext- [ f*d u* andExt- [ f~d u* is finite or hyperfinite. In this case we define

Ext- [ fdu* = (Ext- [ f*du*) + (Ext- [ f~d u*).

Theorem 37. Assuming thftis #-measurable and non-negative, the funcfion) = {x € E|f(x) > t} is
monotonically non-increasing. The Lebesgumtegral may then be defined as the improper Rien#aimtegral of

f(x): Ext- Jofdu* = Ext- foxwf(x)d#x.
Definition 95. LetX be any set. We denote BY the set of all subsets &fA family F c 2% is called a#-o-algebra

onX (oro*-algebra orX) if: 1) @ € F. 2) A family F is closed under complements, idec F impliesX\A € F.
3) A family F is closed under hyper infinite unions, i.e{4f, },,c+y is a hyper infinite sequence fhthen



Upen An € F.

Theorem 38. IfF is a#-c-algebra orX then: 1)F is closed under hyper infinite intersections, ife{4, },cy is a
hyper infinite sequence iA thenN,,c«y 4, € F. 2) X € F.3) F is closed under hyperfinite unions and hyperfinite
intersections.4F is closed under set differencesfis closed under symmetric differences.

Theorem 39. I{4,},; is a collection ob#-algebras on a s&t, then N,¢; 4, , is also ano*-algebras on a s#t
Theorem 40. 1K c L theno*(K) < o*(L).

Definition 96. (Borelo*-algebra) Given a topological spatgthe Borelo#-algebra is the*-algebra generated by
the #-open sets. It is denoted By (X). We call sets irB# (X) a Borel set. Specifically in the cake= *R*" we
have thaB*(*R#") = {U|U is #-open set}. Note that the Boret”-algebra also contains aftclosed sets and is the
smallesio#-algebra with this property.

Definition 97. @#- Measures) A paifX, F) whereF is anc*-algebra orX is call a#- measurable space. Elements
of F are called &-measurable sets. Givertameasurable spad&, F), a functioru®: F — [0, *oo] is called a
#-mea-sure oiX, F) if: 1) u*(®) = 0.2) For all hyper infinite sequencés, },-y Of pairwise disjoint sets ifi

w (UnZy Ag) = Ext- 3,7, 1 (4y). (76)

A NON-ARCHIMEDEAN BANACH SPACESENDOWED WITH

‘R# -VALUED NORM

A non-Archimedean normed space Wilk{’ -valued norm#-norm) is a paicX, ||-||+) consisting of a vector space

X over a non-Archimedean scalar fiel®k# or complexfield *C* = *R¥ + i*R¥ together with a norm|:||,: X -
‘R¥. Like any norms, this norm induces a translativariant distance function, called the norm indiioen-
ArchimedeariR? -valued metriai®(x, y) for all vectorsy,y € X, defined byd”(x,y) = |lx — ylls = ||y — x|l
Thusd*(x, y) makesX into a non-Archimedean metric spa@g d*).

Definition 98. A hyper infinite sequencbcn};"i1 in X is calledd” - Cauchy or Cauchy X, d*) or |||+ -Cauchy

if for every hyperreale € *R¥, there exists som@& € *N such thati”(x,,, y,,) = ||x, — Yulls < €if n,m > N.
Definition 99.The metriel? is called a#-complete metric if the paifX, d*) is a#-complete metric space, which by
definition means for every*- Cauchy sequen({acn};":1 in (X,d"), there exists some€ X such that

#-lim,, || x, — x|l = 0.

Semigroups on non-Ar chimedean Banach spaces and their generators

Definition 100. A family of bounded operatdiB(t)|0 < t < *oo} on external hyper infinite dimensional non-
Archimedean Banach spakeendowed witiR¥ -valued#-norm||-|| is called a strongls-continuous semigroup
if: @) T(0) =1, (b)T(s)T(t) = T(s + t) for alls, ¢t € *RE ,, (c) For eachp € X,t — T(t) is #-continuous
mapping.

Definition101. A family{T (t)|0 < t < *oo} of bounded or hyper bounded operators on extéyr infinite
dimensional Banach spa&eis called a contraction semigroup if it is a sgiyn#-continuous semigroup and
moreovel|T(t)||l4 < 1 for allt € [0, *o0).

Theorem 41. LeT (t) is a strongly#-continuous semigroup on a non-Archimedean Banaabesf) letAp =
#-1im, o A,¢ whered, = r~*(I — T(r)) and letD (4) = {p|3(#-lim,_,, A, ¢)}, then the operatot is #-closed
and#-densely defined. Operatdris called the infinitesimal generator of the semigpT (¢).

Definition 102.We will also say tha#l generates the semigro@ift) and writeT (t) = Ext-exp(—tA).

Theorem 42. (Generalized Hille-Yosida theorem) Aessary and sufficient condition thatlosed linear operator



A on a non-Archimedean Banach sp&ogenerate a contraction semigroup is that({&)o, 0) c p(4),

d) A +A)7 1y <atforald>0.

Definition 103. LetX be a non-Archimedean Banach space€ X.An element € X* that satisfied!||l4 = llollx ,
andl(@) = ||¢ll% is called a normalized tangent functionaptdBy the generalized Hahn-Banach theorem, each
@ € X has at least one normalized tangent functional.

Definition 104. A#-densely defined operatdron a non-Archimedean Banach sp&ads called accretive if for
eachp € D(A), Re(l(Ap)) = 0 for some normalized tangent functionaltoOperatot is called maximal
accretive ifA is accretive and has no proper accretive extension.

Remark 15. We remark that any accretive operatird®sable. Thet-closure of an accretive operator is again
accretive, so every accretive operator has a sshéHelosed accretive extension.

Theorem 43. At-closed operatad on a non-Archimedean Banach sp&ds the generator of a contraction
semigroup if and only ifl is accretive an®an(4, + A) = X for somei, > 0.

Theorem 44. Le#l be a#-closed operator on a non-Archimedean Banach spatken, if bothd and it adjoint4*
are accretived generates a contraction semigroup.

Theorem 45. Let A be the generator of a contrac@migroup on a non-Archimedean Banach spatet D be a
#-dense set) c D(A), so thatExt-exp(—tA): D — D. ThenD is a#-core for4, i.e.#-A T D = A.

Hyper contractive semigroups

In the previous section we discus:{édcontractive semigroups. In this section we givel&adjointness theorem
for operators of the form + V whereV is a multiplication operator antigenerates ali; -contractive semigroup
that satisfies a strong additional property.

Definition 105.Let (M. u*) be a#-measure space wiptf (M) = 1 and suppose thdis a positive self-adjoint
operator o2 (M, d*u*). We say thaExt-exp(—tA) is a hyper contractive semigroup if: @t-exp(—tA) is
L%-contractive; (b) for somk > 2 and some constad}, there is & > 0 so thatl|[Ext-exp(—tA)]@llsp < ll@ll42
forallp € LA(M,d*u®)

Note that the condition (a) implies thatt-exp(—tA) is a strongly#-continuous contraction semigroup for

all p < *oo. Holder's inequality shows thil| s, < ||*|l4, if p = q. Thus the%-spaces are a nested family of spaces
which get smaller ag gets larger; this suggests that (b) is a veryngtimmndition. The following proposition shows
that constanb plays no special role.

Theorem 46. LeExt-exp(—tA) be a hypercontractive semigroupigi{M, d*u*). Then for allp, q € (1, o) there

is a constant, , and at,, ; > 0 so that if> t,, , , then||Ext-exp(—tA)@|l4p < Cpq4ll@ll4q, forallp € Lf;.

Theorem 47. LetM, u*) be ac®-measure space wilf (M) = 1and letd, be the generator of a hypercontractive
semi-group orl, (M, d*u*). LetV be a'R} -valued measurable function M, u*) such thav’ € L% (M, d*u*) for

all p € [1,*) andExt-exp(—tV) € L¥(M, d*u*) for allt > 0. ThenH, + V is essentially se#f-adjoint on
C'*(Hy) N D(V) and is bounded below. Hel®@® (Hy ) = Nye-n D(HE).

A NON-ARCHIMEDEAN HILBERT SPACESENDOWED WITH
*C¥ -VALUED INNER PRODUCT

Definition 106.Let H be external hyper infinite dimensional vector spager complex fieldC# = *]R’; + i*]R’;. An
inner product orH is a&C#-valued function{-,"}: H x H - *C¥, such that: (1jax + by, z) = {ax, z) + {(by, z),

(2) (x,y) = (v, x). (3) llx[|> = (x, x) = 0 with equality(x, x) = 0 if and only ifx = 0.

Theorem 48(Generalized Schwarz Inequality) g1, (-,-)}be an inner product space, then for@ll € H:



[{x, v} < |lx|llly]| and equality holds if and onlyif andy are linearly dependent.

Theorem 49. LefH, (-,)}be an inner product space, afd||ls = v/(x,x) . Then||:||» is a*R¥ -valued#-norm on a
spaceH. Moreover(x, x) is #-continuous on Cartesian prodétix H, whereH is viewed as thé-normed space

{H, 11113

Definition 107. A non-Archimedean Hilbert spacai$-complete inner product space.
Example 7. The standard inner product'6ff*,n € *N, is given by external hyperfinite sum

(x,y) =BEXt-XiL, % v (77)

Here x = {x;}",, vy = {y;}, , withx;,y; € *C#,1 <i <n, see [14].
Example 8The sequence spatiEconsists of all hyper infinite sequences {zi}:f1 of complex numbers itC#
such that the hyper infinite series BX¥-, |z;|? #-converges. The inner product Bhis defined by

(z, w) =EXt-3,7, Z w. (78)

Herez = {zi}Zfl, w= {wi}::’l and the latter hyper infinite seri#sconverging as a consequence of the generalized
Schwarz inequality and theconvergence of the previous hyper infinite series.

Example 9. LeC#[a, b] be the space of th&€#- valued#-continuous functions defined on the interiglb] c *R¥,
see [14]. We define an inner product on the sggd¢e, b] by the formula

(f.g) = Ext- [ f()g(x) d"*x. (79)

This space is nat-complete, so it is not a non-Archimedean Hilbegep Thet-complettion ofC#[a, b] with
respect to thét-norm

Il = (Ext-[1FGola*x) (80)

is denoted by.%[a, b].
Example 10. Lec*®|[q, b]be the space of tH€!- valued functions wittk € *N #-continuous#-derivatives on
[a, b] c *R¥, see [14].We define an inner product on the sd€e [a, b] by the formula

(f9) = Ext-Tk, (Ext- [ fFOG04" O (x) d”x). (81)

Heref*® and g*® denotes théth #-derivatives off andg respectively. The corresponditignorm is

Iflly = (Ext-3i, (Ext- [7|f#O@)| d#x))l/z. -

This space is nat-complete, so it is not a non-Archimedean Hilbeecgp The non-Archimedean Hilbert space
obtained by#-complettion ofc#®)[a, b] with respect to thé&-norm (1) is non-Archimedean Sobolev space, denoted
by H**[a, b].

Definition 108. The graph of the linear transforioatl: H — H is the set of pair§¢, T¢)|(¢ € D(T))}. The graph

of the operatof, denoted by (T), is thus a subset &f x H which is a non-Archimedean Hilbert space with the
following inner product(¢,, ), (¢,,P,)). OperatorT is called a #-closed operatof'fT) is a #-closed subset of

H X H.

Definition 109. LetT; andT be operators on H. If(T;) o I'(T), thenT; is said to be an extension &fand we

write T, © T. Equivalently,T; o T if and only ifD(T,) > D(T) andT,¢ = T¢ for all¢ € D(T).

Definition 110. An operatdr is #-closable if it has #-closed extension. Eve#+closable operator has a smallest



#-closed extension, called itisclosure, which we denote By T.

Theorem 50. Iff is #-closable, the (#-T) = #-T(T).

Definition 111. LetD(T*) be the set op € H for which there is aé € H with (Ty, ¢) = (¥, ¢) for ally €
D(T).For eachp € D(T*), we defineT "¢ = £.The operatol* is called the adjoint of". Note thatp € D(T") if
and only if|(Ty, @)| < C||Y||4 for allp € D(T). Note thatS c T impliesT* c S.

Remark 16. Note that fdrto be uniquely determined by the conditi@y, ¢) = (i, ¢) one needs the fact that
D(T) is #-dense irH. If the domainD (T*) is #-dense irH, then we can defingd** = (T*)".

Theorem 51. LeT be a#-densely defined operator on a non-Archimedean HikggaceH. Then: (a)T'* is
#-closed. (b) The operat@ris #-closabie if and only iD(T*) is -dense in which cage=T". (c) If T is
#-closabie, theif#-T)* = T*.

Definition 112. LetT be a#-closed operator on a non-Archimedean Hilbert spad® complex numbet € *C is
in the resolvent set(T), if AI — T is a bijection of D(T) ontoH with a finitely or hyper finitely bounded inverse.
If complex numbed € p(T), R, = (Al — T)!is called the resolvent @f at 1.

Definition 113. A#-densely defined operat@ron a non-Archimedean Hilbert space is called sytrimer
Hermitian ifT < T*, thatis,D(T) c D(T*) andT¢ = T*¢ for all ¢ € D(T) andequivalently,T is symmetric if and
only if (Te,y) = (¢, TY) for allp,p € D(T).

Definition 114. A#-densely defined operatdt is called self¢-adjoint if T = T, that is, if and only if" is
symmetric and (T) = D(T").

Remark 17. A symmetric operatBiis always#-closable, sinc®(T) #-dense irf. If T is symmetricT* is a
#-closed extension of’ so the smallest-closed extensiofi** of T must be contained IR*. Thus for symmetric
operators, we have c T* c T, for #-closed symmetric operators we hdve- T** c T* and, for self¢-adjoint
operators we have = T** = T*. Thus a#-closed symmetric operat®ris self#-adjoint if and only ifT* is
symmetric. Definitionl. A symmetric operatBiis called essentially self-adjoint if i#sclosure#-T is self-
#-adjoint. IfT is #-closed, a subsé c D(T) is called a core fdF if #-T D =T.

Remark 18. Il is essentially self-adjoint, then it has one and only one sklkdjoint extension.

Definition 115.Let A be an operator on a non-Archimedean Hilbert HilopaceH*. The seC *(A) =

ﬂ;‘il D(A™) is called thee “*-vectors ford. A vectorg € C'°(4) is called ar#-analytic vector fod if

GENERALIZED TROTTER PRODUCT FORMULA

Theorem 52. Lefl andB be self-adjoint operators on non-Archimedean Hilbpacei¥. Suppose that the operator
A + B is self#-adjoint onD = D(A) n D(B), then the following equality holds

s-#-1lim,,_,+0 [(Ext-exp (%)) <Ext-exp (%»]n = Ext-exp[it(A + B)]. (83)

Theorem 53. Le#t andB be self-adjoint operators on non-Archimedean Hiilbpace?*. Suppose that the operator
A + B is essentially self+~adjoint onD = D(A) n D(B), then the following equality holds

. itA itB\\1" )
s-#-1im,,_, o [(Ext-exp (%)) (Ext-exp (%))] = Ext-exp[it(A + B)]. (84)
Theorem 54. Lefl andB be the generators of contraction semigroups orArchimedean Banach

spaceB”.Suppose that th#-closure of(4 + B) I D(A) n D(B) generates a contraction semigroup®h Then the
following equality holds

s-#-1im,,_,+e, [(Ext-exp (— %)) (Ext-exp (— %))]n = Ext-exp[—t(#-A + B)]. (85)



FOCK SPACE OVER NONARCHIMEDEAN HILBERT SPACE

Definition 116.Let H* be a complex hyper infinite-dimensional non-Archikean Hilbert space over field? and
denote by*™ then-fold tensor producttf*™ = Ext-®}_,H* n € *N. SetH*(® = *C# and defineF (H*) =
Ext-@ne-y(H*™). F(H") is called the Fock space over non-Archimedean Iikqgacet*. Seth* = Li("R"?),
then an elemenp € F(H*) is a hyper infinite sequence #-valued functiong) = {1, P, (x1), ¥, (x1, x5),

Yo (x1, X2, X3), oo, Y (X1, oo, %)}, n € *N and such thatp,|? + Ext- Y pen(Ext- [, (xq, ..., %,)|2d*3"x) < *o0.
Actually, it is notF (H*) itself, but two of its subspaces which are useguiantum field theory. These two hyper
infinite-dimensional subspaces are constructedlisifs: Let P, be the permutation group ane "N elements and
let {<pk};°:1be a basis for a spa#. For eaclv € P, we define an operator (which we also denote)gn basis
elements o *™ by o(Ext-®, ¢y,) = Ext-®-, ¢y, - The operator extends by linearity to a boundegtator

(of #-norm one) orH* and we can defing! = (i) (Ext- Yoep, o). It is easily to show by definitions that

$#2 = 8% and S§#* = §# so0S/ is an orthogonal projectiofihe range o$! is called ther-fold symmetric tensor
product ofH*. We now defineF (H* ) = Ext-@®,,c-ySH*™. Non-Archimedean Hilbert spacg? (H* ) is called

the symmetric Fock spaoger non-Archimedean Hilbert spadé” or the Boson Fock space over non-Archimedean
Hilbert spaced*.

SEGAL QUANTIZATION OVER NONARCHIMEDEAN HILBERT SPACE

Let H* be a complex non-Archimedean Hilbert space owsd fic! and letF (H*) = Ext-@,c-(H*™), where
H*™ = Ext-®7_, H* be the Fock space ovBf'and letF,(H*) be the Boson subspacef®fH*). Let f € H* be
fixed. For vectors it *™ of the formm = Ext-Q™,1;,n € *N we define a map~(f): H* ™ — H#"-1 py
b=(fIn = (f, Y1) (Ext-®},y;) andb™ (f) extends by linearity to finite and hyperfinitedar combinations of such
7, the extension is well defined, afpb~()nlls < lIf |llInlls- Thusb™(f) extends to a bounded map fhorm
lfll4) of H*™ into H*®~D Since this holds for eash€ *N (except fom = 0 in which case we define

b=(f): H*© - {0}), b~ (f) is a bounded operator #fnorm||f || from F(H*) to F(H*). It is easy to check that
operatoth* () = (b~(f)) takes each subspaté™into H***Dwith the actionb* (f)n = f®Ext-®!-,1; on
product vectors. Note that the mAap> b*(f) is linear and the may — b~ (f) is antilinearLet S,, be the
symmetrization operators introduced in previousise@nd then the operatsf = Ext-@,c+S is the projection
onto the symmetric Fock spag(H") = Ext-@,e-y5"H*™, we will write §#H*™ = H*™and callH™then-
particle subspace & (H*). Note that operatdr (f) takes spacg,(H*) into itself, but the operatdr™ (f) does

not. A vectonp = {1,0(")}::1 withp™ = 0 for all except finite or hyperfinite set of nunmbeis called a finite or
hyperfinite particle vector correspondingly. Welwliénote the set of hyperfinite particle vectorspyThe vector
Qo = (1,0,0, ...} is called the vacuum vector. Létbe any self-adjoint operator & with domain of essential self-
#-adjointnesd = D(A). LetD, = {y € Fy|p™ € Ext-®!-,D,n € *N} and define operatatT*(4) onD, n HI™
bydlr*(A)=AQ1 QI+ IQARRI++QI--QI® A. Note thatdI'* (4)is essentially selft-adjoint on
D, . OperatodI'*(A) is called the second quantization of the opetatdior example, lett = I, then its second
quantizationV # = dI'*(I) is essentially self-adjoint onF, and fory € H'™, N*#y = mp. N* is called the number
operator. IfU is a unitary operator on spaké, we definedI'# (U) to be the unitary operator gh(H*) which

equalsExt-®™, U when restricted t&*™for n > 0, and which equals the identity &if”. If Ext-exp(itA) is a



#-continuous unitary group di*, thenl“#(Ext-exp(itA)) is the group generated BY#(4), i.e., that expressed by
the formulal'#(Ext-exp(itA)) = Ext-exp(itd['*(A)).
Definition 117.We define the annihilation operaiof (f) on¥,(H*) with domainF, by the formula

a (f) =+vN +1b~(f). (86)

Operatora™(f) is called an annihilation operator because itsaach(n + 1)-particle subspace into tmeparticle

subspace. For eaghandn in Fy, (VN + 1b=(f)y,n) = (¥, S*b*(F)VN + 1), then we get
(@ (f)) 1 Fo=S*p*(f)VN + 1. (87)

The operatofa~(f)) is called a creation operator. Bath(f) and(a™(f))  #-closable; we denote their
#-closures bya™(f) and(a‘(f))* also. The equation (1) implies that the Segatifgeratod¥(f) onF, defined
by ®%(f) = \/% [a=(f) + (a=(f)) ] is symmetric and essentially seka#joint. The mapping frori* to the self-
#-adjoint operators off,(H*) given byf —» ®#(f) is called the Segal quantization ov&f. Note that the Segal
quantization is a real linear map.

Theorem 55Let H* be hyper infinite dimensional Hilbert space ovemplex field*C# = *R¥ + i*R¥ and®#(f)
the corresponding Segal quantization. Then:

(a) (self#-adjointness) for each € H* the operatod(f) is essentially self+adjoint onF ,, the hyperfinite
particle vectors;

(b) (cyclicity of the vacuum) the vect@l, is in the domain of all hyperfinite produdist- [T%, ®#(f;),n € *N and
the se{Ext- [, ®%(f) |f; € H*,n € *N} is #-total inF,(H¥);

(c) (commutation relations) for eaghe F, andf, g € H*: [®#(f)DE(g) — ®Z(g)PE(H]Y = ilm(f, g) ,#¥;

(c") (generalized commutation relations) assuming @fiag) ,+ = 0 andy € F is a near standard vector we get
[@F(F)PE(g) — () PE(]Y ~ 0 and thereforet([0F(f)PE(g) — PF(g)PE () = 0;

(d) letW (f) denotes the external unitary operdimt-exp (id)ﬁ (f)) then

W(f + g) = [Ext-exp (= 51m(f, 9)+ )| W (FIW (9);

*o0

(e) @-continuity) if {f,},,-, is hyper infinite sequence such#asim,,_ -, f,, = f in H* then:

1) #-1im,_ W(f,) exists for allp € F,(H*) and#-lim,,_,+c W (£) = W ()Y

2) #-lim,_+ ®X(f) exists for alkp € Fy and#-lim,,_+, ¥ (f,)y = OL(F)y

(e) For every unitary operatoron H*, T*(U): D(#-®£(f)) — D(#-®Z(Uf)) and for ally € D(#-0F(Uf)),

T* () (#-EUN)T*F L)Y = #-DEUSf)Y for all f € HY.

Remark 18Henceforth we usab#(f) to denote the-closure #-W of dE(f).

Definition 118. For eacm > 0,m € R letH}, = {p € "R¥*|p - p = m?,p, > 0}, wherep = (p°, —p*, —p?, —p3),
the setdf},, are called mass hyperboloids, are invariant undeonical Lorentz grouis!,. Letj,, be the
#-homeomorphism ofi, onto*R#3 given byj,,,: (po, 1, P2, P3) = (P1, P2, P3) = p. Define a#-measured?, on
H} for any#-measurable sé& c Hj by

a*3p
m(E) [IplZ+m? *
Theorem 56Let u* be a polynomially boundeé-measure with support -V, If u* is°L!, = L - invariant, there
exists a polynomially boundgtimeasure® on[0,00%) and a constartso that for any € S#(*R#%)

Q7.(E) = Ext- [, (88)

f(\/Ip|2+m2.p1.pz,p3)d#3p> . (89)

Ext- f*[@“L f d*u* = cf(0) + Ext- f0°° d*p*(m) (Ext- fmﬁ T



Definition119. LetF(f) be a lineatt-continuous functionaf: S &, ("R#*) - *R¥. FunctionalF isL!,- ~ -
invariant if for anyA € L, the following property hold€ (f (Ax)) = F(f) for all f € S §,(R#*).

Theorem 57. Let* be a polynomially bounded, - invariant#-measure with support i-7,.. LetF(f) be a linear
#-continuous functionaF: S §,C"R#*) > *R¥ g, defined byExt- Jogea f d*u* and there exists a polynomially
boundedi¢-measure” on[0,0%) such tha!f(:oo d#p*(m) € "R, and a constante "R, so that (1) holds.

Then for anyf € S, ("R#*) and for any € “R¥ ., the following property holds

- Yo w4 F(VIpPP+m2,p1,p2,p3)d*3p
F(f) = cf(0) + Ext- [, d*p*(m) (Ext- flpls;: T . (90)
Definition 120. Lety (s, p) be a function such thay (s, p) = 1 if |p| < », x(3, p) = 0 if |p| > x. Define a
#-measuredf, , onH} by
# _ xCep)d®3p
Q. (E) = Ext- fjm(E) N (91)

We use the Segal quantization to define the freenitian scalar field of mass. We taketi* = Li( HE, d*Q# ).

For eachf € S*("R¥*) we defineEf € H* by Ef = 2n(Ext-f) I Hf where the Fourier transform is defined in

terms of the Lorentz invariant inner prodpet %: Ext-f = #(Ext- Joga Ext-exp [i(p - f)]d#‘*x). If ®%,()is
C

the Segal quantization ovEf( H}, d*Qf, ), we define for eachR¥- valuedf € S*("RE*): of . (f) =

@, (Ef) and for eachiC- valuedf € S*(*R%*) we defined} . (f) = @}, . (Ref) +id}, ,,(Imf).

Definition 121. The mapping - ®% ..(f) is called the free non-Archimedean Hermitian sciddd of massn.
Definition 122. OnL4( H}, d*Qf, ,,) we define the following unitary representatiortiod restricted Poincare
groupL'.: (U,,,(a, D) (p) = (Ext-exp[i(p - @]y (A~'p) where we are using to denote both an element of the
abstract restricted Lorentz group and the corredipgrelement in the standard representatiol®tn

Definition 123. The#-conjugation on a non-Archimedean Hilbert spHéds an antilinea#-isometryC* so that

the following equality hold€#2 = 1.

Definition 124. Let* be a non-Archimedean Hilbert space over fidfl, ®# () the associated Segal quantization.
Let H %4 = {f|C*f = f}. For eactf € H s we definep*(f) = ®4(f) andrr* (f) = ®#(if), the mapf - ¢*(f)

is called the canonical free field over the doukit, C*) and the may — =#(f) is called the canonical conjugate
momentum.

Theorem 58. LeH* be a non-Archimedean Hilbert space over fi@fi with #-conjugationC*. Letop*(-) andrn®(-)
be the corresponding canonical fields. Then: (a)deahf € H ﬁ#, o*(f) is essentially sel-adjoint onF,.

(b) {<p#(f)|f €EH ﬁ#} is a commuting family of self#-adjoint operators. (d), is a#-cyclic vector for the family
{o*(OIf € HE}. () If {32, is hyper infinite sequence such#asim,,_-, f, = f in H I4 then

#-1im,+ @* ()Y exists for alkp € Fy and#-1lim,_« @* ()¢ = o* (H.

(€) #-1im,,_,+o, (Ext-exp[ig® (f)]¥) = Ext-exp[ip® ()] for ally € F,(H?). (f) Properties (a)-(e) hold with
o"(f) replaced byr* (f). (9) If f,g € H [+ , then[o*(No*(9) — " (9" (NP = i(f, g) for ally € F,(H*)
and(Ext-exp[ip* (F)]) (Ext-explin*(f)]) = (Ext-exp[i(f, 9)]) (Ext-explin* (f)]) (Ext-explip* (f)]).
Definition1. We write novwf € Li( HE,d*Q# ) asf(p,, p) and define now th#-conjugationC* by

C*()(po, p) = f (o, —p) - Note thatC* is well-defined orf € LE( Hf, d*Qk ) since(py, —p) € H, if and only
if (Do, p) € H,.

Definition 125. We denote the canonical fields esponding t€* by ¢* (-) andrn* () and definep}, . (f) =

" (Ef) and il ,, (f) = n* (u(P)ES), u(p) = \/p? + m? for "R%- valuedf € LE(*R%*), extending to all of



LECR®) by linearity. We let nows = {Wly € Fo,p™ € S, ("R¥3 )} and for eachp € *R¥* we define the
operatora(p) onF, (L’;(*R§3)) with domainDgs by (@@P)® =Vn+ 19D (p, ky, ... ky,), thus the formal

#-adjoint of the operatar(p) reads(at(p)y)™ = \/%Z?zl SO — kDY V(ky, ..., k1, kyyq, -, k). Note that
the formulas

a(g) = Ext- [.pyaa(@)g(—p)d*p, (92)
a'(g) = Ext- [.gsa a* (p)g()d*™p (93)

hold for allg € S, (*R¥3) if the equalities (1)-(1) are understood in these of quadratic form$hat is, (1)
means that fo,, i, € Dgy - (1, a()P2) = Ext- [ (1, a(p)p2)g (—p)d**p and similarly (1) means that for

1,z € Dyt (1, a(g)y,) = Ext- f*m§3(¢1' at(p)y,)g(p)d*3p. The particles number operator reads
N* = Ext- [.ps a* (0)a(p) d*p. (94)
The generator of time translations in the freeadatld theory of masa is given by
Ho = Ext- [.pss p(p)a’ (p)a(p) d*p. (95)

We express the free scalar field and the time fielas in terms ot (p) anda(p) as quadratic forms dhs# .

f . (nt) = 2m) 7 2Ext- [ {(Ext-exp(u(p)t — ipx))a’ (p) + (Ext-exp(u(p)t + ipx))a (p)}% ., (96)

i () = 2m)3/2Ext- flplsJ{{(Ext-exp(—ipx))aT(p) + (Ext-exp(ipx))a (p)}j% , 97)
(%) = (2m)~3/?Ext- flplSH{(Ext-exp(—ipx))aT(p) + (Ext-exp(ipx))a (p)}\/% . (98)

Theorem 59. Leby,n, € N and suppose thalt (k;, ... kn,, Dy, .., Pn,) € LE (*R§3("1+"2)) where
W (ky, .. kn,y D1y ooes Py ) IS @°Clg, -valued function ofR*>™*"2) Then there is a unique operalyy on
F, (L*Z‘(*R?3)) o) thatDS# c D(Ty) is a#- core forTy, .

mn

1) As*C#-valued quadratic forms dhsﬁ X DS?.
mn mn

Tw = Ext- f*]R3(n1+nz) W(kl, knl, D1y s pnz) (H’::ll a'l'(kl.’ g))(l‘[:zl a(p;, 8))d#3n1kd#3n2p,

2) As *C#-valued quadratic forms dhs# X DS?_
in in

Ty = Ext- [ pamying W(Kes o Ky D1y oo Py ) (IT12, @ (ki )) (12, a(py, €) ) d*2 ™1 kd*3m2p.
3) If my andm, are nonnegative integers so thgt+ m, = n, + n,, then

(1+NH)™™M2Ty, (14 N T/2 < COmy, mp) Wl 5.



4) On vectors inF, the operatorsy, and Ty, are given by the explicit formulas

l-ny+nq

(TW( 1!’)) =

K(l,nl,n2)§[Ext-flpllsu o Ext- fpn2|S%W(k1, ke Do Py ) WO (D1 oo Py K o Ko, )dF3M2 p],

(Tw ()" = 0if n < ny —ny,

l-ni+n,

(T () =

K(l, nz,n1)§

Ext-f Ext-f W (ky, cookny D1s ooes Py ) WO (D1 oo Py K oo )dBM0 ke
Ipalss [Pyl

(Tiy ()" = 0if n < n, — n,. Here§ is the symmetrization operator.

Q"*-SPACE REPRESENTATION OF THE FOCK SPACE STRUCTURES

In this section the construction of a non-Archimem@®-space and?(Q#, d¥u®) , another representation of the
Fock space structures are presented. In analogitiétone degree of freedom case W€ R? ) is isomorphic

to L4 ("R#, d*x) in such a way thab# (1) becomesnultiplication byr, we will construct a*-measure
spacgQ#, u*), with u#(Q#) = 1, and a unitary map*: F# (H*) - LE(Q#, d*u*) so that for eacli € Hf, S*p#(f)
S#=1 acts onlk (Q#, d*u*) by multiplication by au*-measurable function. We can then show that ircéise of the
free scalar field of mass in 4-dimensional space-tindé}, V = S*H}, (¢)S*~* is just multiplication by a function
V(q) which is inL4(Q#, d*u*) for eactp € *N. Let {gn};‘ﬁl be an orthonormal basis fH* so that eacly € Hf

and let{g,,}_,, N € *N be a finite or hyperfinite subcollection of the Sﬁ};oil .Let Py be a set of the all external
finite and hyperfinite polynomialBxt-P[uy, ..., uy] andF; be the #closure of the set
{Ext-Plof(g.),...,0f(gx)]IP € Py} in F#(H?) and define a sé’ = F{ n F,. From Theorem 55 it follows that
ol (g,) andrf(g,), for all1 < k,1 < N are essentially self-&djoint onF¥ and that

(Ext-explite} (gi)]) (Ext-exp[itm};(g)]) =
(Ext-exp[—ist8y, |)(Ext-explitn}i(g)]) (Ext-explite}(gi)]) .

Therefore we have a representation of the genethlieyl relations in which the vectdl, satisfies the equality
(lef(g))? + [ (g)]? — 1)Q, = 0 and is cyclic for the operatof® (g,)}4-,. Therefore there is a unitary map

. -1 -1 1 a*
S¥M. FE > LECREV) such that: 1)S* Mo (g, ) (S¥ M)~ = x4, 2) S*Mrfi(gp) (W) ~ = ~ o and

2
3)s*q, = g~N/4 [Ext-exp (—Ext- Zﬁﬂ%)]. It is convenient to use the non-Archimedean Hitlspace
2 2
Lg (*]R?N’ 7'[_N/4 <Ext-exp (—Ext- Z¥=1 %))) d*™x instead Oﬁlg(*R?N) so we |eﬁ#uz: Ext-exp (— xz—k) d#xk

2
and define the operat6ff)(x) = =V/* <Ext-exp (Ext- Z’,;’zl’;—k)) ThenT is a unitary map off (*R#") onto

LS ("REV, Ext-TIY-, d*uf ) and if we let S} = TS*®™ we get: 157" 7 > L ("R, Ext-TIY-, d*uf),



-1 -1 #
2) ST Mt (g (sFM) T = x, 3) ST Mk (g (SFV) T = - 4 %d‘;—x}c and 4)57™q, = 1, wheret is the

L

function identically one. Note that eathmeasure:j has mass one, which implies that
(Qo, (EXt' [TR=1 Px (‘Pﬁ(gk)))ﬂo) = f*RgN(EXt' ITR=1 P (i) (EXt' | d##ﬁ,) = (99)
= Ext-[I{= gty Pre () d* i = Ext-TIi- L,Rgzv(ﬂo' P (95 (91)00)).

HereP,, ..., Py are external finite and hyperfinite polynomialsaiNwe can to construct directly to€-measure
space(Q¥, u*). We define a spadg” =x;°:1 *R#. Take thes#-algebra generated by hyper infinite products of
#-measurable sets iiR# and set* =®,i°:1 u. We denote the points @@* symbolically byg = (g, q,, ... ), then
(Q*, u*) is ac*- measure space and the set of functions of tme Fgyy;, g5, ... ), whereP is a polynomial and

n € *N is arbitrary, is¢-dense inl% (Q#, d¥u*). Let P be a polynomial inN € *N variablesP(xy, x5, ..., xy) =

Ext-Y, 1y cll_____le,lcl1 x,ljl"v and defines*: p (gofﬁ(gkl), ...,<pf§(gkN)) Qo = P(qk,, Qieypr > Gk )- Then we get

li+mq IN+tmy

(0£(9ic), -+ 24(Gty)) Q0 = Ext- By 16 (00 05(01) ™ s 0 (G1n) ™ 0 =

— 2
Ext- Zl,m C16m fof}N q}l(11+m1 X X qllVN+mN (Ext- H?:l d#.uﬁi) = Ext- fQ#lp(xk1’xk2’ ""ka)l d#ﬂ#.

By the equation (99) and the fact that each meas‘jljlhﬂas mass one. Sin€y is cyclic for polynomials in the
fields, S*extends to a unitary map 8§ (H* ) onto LE(Q*, d*u*).

Theorem 60. Lepj ,.(x), % € *R¥ ,,be the free scalar field of mass(in 4-dimensional space-time) at time zero.
Letg € L{("RE) n LE('RE®) and defined; ,, 10 (9) = A(¢) (Ext- f*]R*f g(x): it (x): d#3x), wherei(x) €
“Rf .. Let S* denote the unitary maf*: F*(H* ) —» L%(Q*, d*u*) constructed above. Théh= S*H, , ;(g)S*tis
multiplication by a functiot,, ;(¢) which satisfies: (alf, (q) € L} (Q*,a*u*) for allp € *N. (b)

Ext-exp (~tV;,4(q)) € L{(Q*, a*u*) for all t € [0, "o0).

Proof: (a) Note thatp};, . (x) is a well-defined operator-valued functiorno& *R%3. We define now @}’ (x): by
moving all thea'’s to the left in the formal expression o, (x). By Theorem 59: /%%, (x): is also a well-
defined operator for eache *R%3. Notice that for each € *R#3 operator ¢j*, (x): takesF, into itself. Thus for
eachr € *R%3 operator gt (x): reads @it (x) = @it (x) + dy () @i2,(x) + dy (3) where the coefficients
d,(x) andd, (x) are hyperfinite constant independenkofor eachx € *R%3, S*¢}, . (x)(g)S* tis the operator on
#-measurable spadd (Q*, d*u*) which acts by multiplying by the functidfwt- Z;‘:l ¢ (x, %) q, Wherecy, (x, #) =
(2m) 7372 ( gy, (Ext-exp(ipx) ) x (¢, p)u(p) /%) andy (»,p) = 1if |p| < 3, x(¢,p) = 0if |p| > ». Note that

Ext-3,2, 166, 2012 = (2m) 73/ x Ge, p)u(@) 135, (100)

so the function§* gt (x)(g)S*~* andS* 2, (x)(g)S*~* are inL{(Q*, d*u*) and thel}(Q*, d*u*) norms are
uniformly bounded inx. Therefore, sincg € L{(*R¥?), S*H, ,, 1, (9)S**operates o (Q*, d*u*) by
multiplication by some4 (Q*, d*u*)-function which we denote bi; ,, 1,1 (q). Consider now the expression
for Hy 5,106 (9) Q. This is a vecto(0,0,0,0,1%%,0, ...) with

2009 ()x Gep)(Ext-exp(~ix TZ1py))a®x _ 200 Ty xGepp)(Exe-(Si21p))
@m)3/2 I, [2u(p) /2 CORA e

V" (1 P2 P2 Pa) = Ext- [pus (101)



Here|p;| < x,1 < i < 4. We choose now the paramelex A(») ~ 0 such thaf|)**||2, € R and therefore we
obtain|| Hy 160 (9)|l;,, € R, SINCe|| Hy 1100 (9)[;,, = 112, But, sinces*, = 1, we get the equalities

” Hl,x,/l(u)(g)ﬂon#z = ”S#HI,K,A(;{)(g)s#_llng(Q#’d###) = "Vl,x,l(;f)(q)||L¢2#(Q#’d###)' (102)

From (101)-(102) we get thi¥; . 160 (@)| € R. It is easily verify that each polynomial

Lg(Q#,d#u#)
P(41,qz, -, qn),n € "N is in the domain of the operatidr,, ;) (q) andS*H; ,, 10 (9)S* ™ = Vi 200 (q) on that
domain. Sincdl, is in the domain off?,,, ;. (g),p € "N, 1 is in the domain of the operatiéf, ,, ;,,(q) for all
p € *N. Thus, for allp € *N V;,, 100 (@) € L5,(Q*, d*u*), sinceu® (Q*) is finite, we conclude thaf ,, 1, (q) €

LE(Q*,d*u*) for allp € *N. (b) RemindWick's theorem asserts that
o) 1= S D L el 0 ) with o, = [[9f (D, Forj = 4 we get-0(c3) <
: @it (x): and therefore — (Ext f]R#g g(x) d*3x ) 0(c?) < Hyy 200 (g)-Finally we obtain

Ext- [ 4 Ext-exp( t(: it (x): )) d*u* < Ext-exp(0(c2)) and this inequality finalized the proof.

GENERALIZED HAAG KASTLER AXIOMS

Definition126. A non- Archimedean Banach algelgas a complex-algebra over fieldC? (or*(CCfln = *]Rcfm
iR, ) which is a non-Archimedean Banach space undfavalued -norm which is sub multiplicative, i.e.,
lxylls < llxll4lly]l4for all x,y € A4. An involution on a non- Archimedean Banach algebyais a conjugate-
linear isometric antiautomorphism of order two deddoyx — x*, i.e.(x + y)* = x* + y*,and for allx,y € Ay:
(xy)* =y x*, (Ax)* = Ax,(x")* = x, ||x*|ls = x, A € *C*. A Banach#- algebra is a non- Archimedean Banach
algebra with an involution.

Definition 127. AnC;-algebra is a Banadh-algebrad, satisfying theC;-axiom: for allx € Ay, [[x*x|l4 = ||x||3.
Definition 128. 1) A linear operatoa: Hy — Hy on a non-Archimedean Hilbert spaég is said to be bounded if
there is a numbet € *R¥ with ||aé|ls < K||¢]|« for all ¢ € Hy. 2) A linear operatom: H, — Hx a non-
Archimedean Hilbert spadé; is said to be finitely bounded if there is a numi§ec *RC in With ||aé|lx < K|[€]]4
for all ¢ € H,. The infimum of all suclk if exists, is called th&-norm ofa, written||a|| .

Abbreviation 5The set of all bounded operatarsd, — Hx we will be denoting bB#(H.).

Abbreviation 6. The set of all finitely bounded ogtersa: Hy — Hy; we will be denoting b8y (Hy).

Remark 19. Note th&®, (Hy) is aC;-algebra over f|eld(CCfln

Definition 129.If S < B*(H,) (or B4 (H,) ) then the commutat of S isS’ = {x € B*(H,)|Va € S(xa = ax )}.
Remark 20. The algeb®f (H,) of bounded linear operators on a non-Archimede#eitispacei, is aC;-algebra
with involutionT — T*,T € B*(H,). Clearly, any#-closed#-selfadjoint subalgebra @&*(H,) is also a
Cy-algebra.

Definition 130.1) The topology orB#(H,) (or B4 (H.) of pointwise#-convergence oH, is called the strong
operator topology. A basis of neighbourhooda & B*(H,) (ora € By (Hy) is formed by the

N(a' {fi}?=1) =

2) The weak operator topology is formed by the dasighbourhoods

N(a' {61 ?=1' {771 1)



Theorem 61. M = M* is a subalgebra aB*(H,) (orB, (Hs) with1 € M, then the following statements are
equivalent: 1)

Definition 131. A subalgebra oB*(H,) (or By (H4) satisfying the conditions of Theorem 61is calleda
Neumann#-algebra.

Theorem 62. (Generalized Gelfand-Naimark theoreet ¥l be aCy-algebra with unit. Then there exist a non-
Archimedean Hilbert spadé; and an#-isometric homomorphisrid of A into B(H) such thalx* = Ux™, x€A.

Abbreviation 7. We denote by} = {*R’z", (-,-)}, the vector spac&R#* with the Minkowski product(x, y) =
XoYo — X1y, 1 = 1,2,3.
Statement of the Axioms. Let M{ be Minkowski space over fieldR? of four space-time dimensions.

1. Algebras of Local Observables. To each finitely bounded-épen se c M we assign a unitd} -algebra
0 — By(0)
2.lIsaotony. If 04 € 0, , thenB(0,) is the unitalC; -sub algebra of the unit@l;-algebraB(0,) :
By(01) © By(0,).
This axiom allow us to form the algebra of all Ibobhservables

Byloc = Uoch B4 (0).
This is a well-defined} -algebra because given afly, 0, ¢ M¥, bothB,(0,) andB,(0,) are sub algebras of the
C; -algebrd4(0; U 0,). From there one can take tharorm completion to obtain

By = #-Byioc
called the algebra of quasi-local observables. Givies aC}; -algebra in which all the local observalile-algebras

are embedded.

3. Poincare Covariance. For each Poincare transformatige °P] | there is &j- isomorphisma, : B — B such
that

a,(By(0)) = B4(g(0))
for all bounded¢-open0 c M¥. For fixedg € B , the maygy — ay(A) is required to bé-continuous.

4. ~-Causality. If 0, and0, are spacelike separated, then all elemeng;6,) ~-commute with all elements of a
C; -algebraBy(0,)

[B4(0,),B4(0,)] = 0.

4'. If 0, and0, are space-like separated, then the standard fotae all elements df} -algebraB,;(0,) commute
with the standard part of the all elementsCyf-algebraB, (0,)

st(B4(0,),B4(0,)) = 0.



Definition 132. If0 c M¥, we sayx belongs to the future causal shadov@df every past directed timelike or
light-like trajectory beginning at x intersects 2. Essentially0 separates the past light conecdfikewise, we
sayx belongs to the past causal shadow dff every future-directed timelike or lightlike jextory beginning at
inter-sects witl0. The causal completion or causal envel@pef O is the union of its future and past directed
causal shadows. This definition of the causal cetimi0 can be reformulated in terms of “causal complesi&n
which are computationally easier to deal witho Ifc M, we define the causal complemé@itof O to be the set of
all points with are spacelike to all pointsdn Then0” = 0 is the causal completion 6f One expects the
observables localized @ to be completely determined by the observablealied to0, carrying the same
information.

5. Time Evolution.
B(0) = Bx(0).

6. Vacuum state and positive spectrum. There exists a faithful irreducible representatig : B, — B(H,;) with a
unique (up to a factor) vectér € H, such thaf) is cyclic and Poincanévariant, and such that unitary
representation of translations, given by

U@)mo (A)Q = m(ax(4))9,

whered € By anda, () is theCj-isomorphism from Axiom 3 associated with translatbyx € M#, has

Hermitian generatorB*, u = 1,2,3 whose joint spectrum lies in the forward light eoifhe last phrase is the most
physically important here; it simply states thatlewe energy-momentum operators whose spectrusfissti

E? — P2 » 0,i.e, or in other words, that the enef§y 0 and nothing can move faster than the speedlf [The
vector(Q is the vacuum state This axiom does not appelae fmurely algebraic; we have had to introduce am no
Archimedean Hilbert spadé, . In fact, we can rewrite the axiom in a comphetabebraic but less transparent way
as follows. We postulate that there exists an vacsiatew, on theCj -algebra (i.e., a normalized, positive,
bounded linear functional) such that the followhads w,(Q*Q) = 0 for all Q € By of the form

Q(f,A) = Ext-[ f(x)a,(A) d**x

whered € B, andf(x) is a#-smooth function whose Fourier transform has boursdggbort disjoint from the
forward light-cone centered at the originmij.

Remind that in a quantum system with a Hamiltortiathe Heisenberg picture dynamics is given by #reoaical
formula

A(t) = {Ext-exp[itH]|}A(0){Ext-exp[—itH]}.

ThenA(t) is the observable at tintecorresponding to the time zero observaiie). In our model we have hyper
finitely locally correct Hamiltonian# (g) but no hyper infinitely global Hamiltonian, and wenstruct the
Heisenberg picture dynamics nonetheless. We ddothisstricting the observables to lie in the Icalgebras
B4(0) and by using the finite propagation speed impiiciaxiom 3.

Definition 133. LetF? be the space of symmetii§(*R#3") functions defined ofR#3", F# = *C¥ and letF* =
Ext-EB;‘ZOT,{*, Q, =1 € *C# c F*. LetS, be the projection oL% (*R#3") ontoF*and letD, be the#-dense
domain inF# spanned algebraically iy, and vectors of the fors}, (Ext- [1%-, fx (k,)) where

fi € Sty CR¥3,*R¥#3),n € "N.

Definition134. We set now

Hy = Ext-f%: (m2(x) + V¥ p2(x) + m?pZ(x)): d*x. @0



Theorem 63As the bilinear form on the domain, x D,

Hy = Ext- |,

[kl=3

u(k) at(k)a(k)d*k. (104)

Theorem 64. (1) The operatHy leaves each subdomayNE? invariant. (2) The operatdf, is essentially self-
#-adjoint as an operator on the domajn
Definition 135. We set now

@l o(x, t) = Ext-exp(itHy)@; (x) Ext-exp(—itH,) 08)
o0 (x, t) = Ext-exp(itHo)m) (x)Ext-exp(—itH,) (106)
Preo(fr 1) = Ext- [ 930 (6, 0) f(x)d™x (107)
ho(f,t) = Ext- f*]R*f il o (x, ) f(x)d*3x. (108)

Hereg# (x) andr(x) is given by formulas (97) and (98) respectively.
Remark 21. Note that} ,(x, t) andr}; ,(x, t) are bilinear forms defined dy x D.
Theorem 65As bilinear forms oy X Dy.

91000, 8) = Ext- [.ps Dy =y, O hCIA*y + Ext- [ps - 0y (e = 3, 0) @f (1) d*y (109)

o
M0 (6, 1) = Ext- [.ps = Ay (x =y, ) m (x)d*y + Ext- LR% Ay -y, O T ()dPy (110)

a2

Remark 22. Herd,(x — y, t) is the solution of the generalized Klein-Gordon aépn

A#(x t) — A#(x ) — o ZA#(x t) + m2Au(x,t) =0 (111)

%2 ’ a# 2 a# Z
with Cauchy data,(x, 0) = 0,55 A#(x 0) = §(x).

Remark 23. Note the dlstnbutltm(x t) has support in the double light-cong < |t].

Theorem 66. Let f3, f, € S*(*RE3, *RE3). The operatop ,(f, t) + ) o (f, t) is essentially self#-adjoint on the
domainDy.

Definition 136. We introduce now the clemés#(*Rﬁ:")) of bilinear forms onD, x D, expressible as a linear
combination of the forms

V=300 () Ext- fgpsn v() @t () = a' (ky)a(kysa) - allen)d* "k (112)

with symmetric kernels(k) € S*(*R#3) having real Fourier transforms.

Theorem 67. Le¥ € 3(S*("RE?)). ThenVis essentially self-adjoint onDy.

Theorem 68. Le® be a bounde#-open region of vector spa@®#3 and letM(0) be the von Neumann algebra
generated by the field operatdist-exp[ip/i(f)] with f € S*(*R#3, *R#3) andsuppf < 0. Letg(x) = 0 on

*R#3\0. ThenExt-exp[itH;(g)] € Mu(0) for all t € *R¥.

Definition 137. LetO be a bounded#-open region of space and ®f(0) be the von Neumann algebra generated by
the operatorgxt-exp|i(pf(f) + mi(fy))] with £, £, € S¥('R¥3, "R¥#3) andsuppf;, suppf, < 0. Let 0, be the set

of points with distance less thér to O for any instant of the time

Theorem 69Ext-exp(itH,)By(0)Ext-exp(—itH,) € By(0,).

Theorem 70. 1D, and 0, are disjoint bounded open regions of vector sfiifethen the standard part of the



operators iB,(0,) commute with the standard part of the operatogperators irB,(0,).

Theorem 71. Ley € L4(("R#®)), and letg = 0 on open regio, thenExt-exp[itH,;(g)] € By(0)' for allt €
*R¥,

Theorem 72. (Free field-Causality) Letf;, f, € S £, CR#4, *R#*) with suppf, c 0,, suppf, c 0,. We set now
@} o(f1) = Ext- fxmg‘t @0, t) fi (x,t)d*x andy}, o(f,) = Ext- f*RgAL 0l o(x,t) fo (x, t)d**x. If region0, and
region0, are space-like separated, thhaﬁ,O (fL), P (fz)]lp ~ 0 for all near standard vectgre H,.

Proof: The commutatdipf o (f,), ¢%,(f2)] reads

[@io(fD, @o(f2)] = Ext- f*ugg‘t d*x,d* t, Ext- f*u&’j‘* A" xyd"t A, (1 — x5ty — ) f1 ey, 1) (0, 1),
Af () — 2.t — ty) = B4 (x — Xp, 1 — ty; %) — By (g — X, 5 — ty; ), Where

G~ by~ 30 = Ext-f fexp{lipCey —xp)] ~ i)t ~ ) i

2(xy — x5, t; — tp; ) = Ext- f|k|£”{_eXp[[iP(x1 —x)] +iw(p)(t; — tz)]}\/% ,

[1]

w(p) = \/p? + m2. DefineZ, (x; — x,, t; — ty; %) andZ,(x; — x5, t; — ty; %) by

Theorem 73. (Time zero free fieltlocality) Letf;, f, € S £, ("R¥3, *R#3) with suppf,  0,, andsuppf, c O,are
disjoint bounded open regions of vector spR¢&, then[p# (f1,0), 9% o (f2, 0)] = 0.

Proof: Immediately from Theorem 72.

Theorem 74. Le® be a bounde#-open region of vector spad®#3, lett € *R¥ , letg be a nonnegative function in
LECR#3) n LE(*R#3) and letg be identically equal to one @h.ForA € B,(0), then

0¢(A) = {Ext-explitH (9)}A{Ext-exp[—itH(g)]}

is independent of ando;(A4) € B4(0,).

Proof: Let 62 (A) = {Ext-exp[itH,|}JA{Ext-exp[—itH,]} ando} (A) = {Ext-exp[itH,]}A{Ext-exp[—itH,]}. Notice
that generalized Trotter's product formula is vétidthe unitary grougxt-exp|it(H, + H,(g))]- Thus we get the
following product formula for the associated auteptdsm group:

0:(A) = #-lim,_ o[ (00n0in)" (A)]. (113)

Each automorphism/ maps eactB,(0;) into itself and is independent gfon B, (0;) for |s| « |t]. To see this, let
x(0s) be the characteristic function of a GgtWe assert that

at’/n(C) = {Ext-exp[i(t/n)H,(X(Os))]}C{Ext-exp[—i(t/n)H, ()((OS))]} (114)

for C € B4(0,) and thaws{ (C) € B4(0,). In other words the interaction automorphism hapagation speed zero
and is independent gf on B, (0;) for |s| « |t|. The theorem follows from (113), (114) and Theo®&9n To prove
(113), we rewriteH;(g) = H,(X(OS)) + H;(g[1 — x(0,)]) as a sum of commuting séifadjoint operators. By
Theorem 6Ext-exp[itH;(x(0s))] € B4(0,) and so the right side of (8.3) belongBid0;). By Theorem 70,

Ext-exp[itH;(g[1 — x(0s)])] € B;(0,)’

and (114) follows.
Definition138.Let B be a bounde#-open region of space tinM# and for any time, letB(t) = {x|x,t € B}
be the time time slice ofB. We defineB4(B) to be the von Neumann algebra generated by



Us a5 (B# (B(t))) : (115)

Theorem 75.The generalized Haag-Kastler axiomg5lLare valid for all these local algeb®@g(B).

Proof (Except Lorentz rotations). The axioms (19 &) are obvious, while (4) follows easily fronetfinite
propagation speed, Theorem 75, together with the iero=-locality, Theorem 72. Because the time zero fields
coincide with the time zero free fields, and beeatle time zero fields gener&@g by Theorem 73 and the
definition of the local algebras, the free fielduk carries over to our scalar model with intei@cH, # 0. In the
Poincaré covariance axiom (3), the time translasagiven byo,. Let B + t be the time translate of the space time
regionB c M}. Then(B + t)(s) = B(s — t) and so

0 [Us 0, (Bo(B()))] = Us 0sse (Ba(B()) = Us 0 (Ba(B(s = 1)) = Us e (Bo(Bs + ) (116)

Thusat(B#(B)) = B,4(B + t) and axiom (3) is verified for time translationén& the local algebras a#enorm
dense iB, and since automorphisms @f-algebras preserve tlienorm,s, extends to an automorphism of
algebraBy,.

Definition139. To define the space translation enggphismo,, we set now

P* = Ext- f"p"«%p“af(p)a(p) d*p,u = 1,2,3; 0,(4) = {Ext-exp[—ixP]}A{Ext-exp[ixP]}. (117)

Then we get {Ext-exp[—ixP]}@, (x){Ext-exp[ixP]} = @,,(x + y), {Ext-exp[—ixP]}m, (x){Ext-exp[ixP]} =

¢@(x + y). The following theorem completes the proof of Theorem 73 except for Lorentz rotations.

Theorem 76. o,(By(B)) = B4(B + x),st(d,) extends up to Cj-automorphism of By, and

{x,t) - st(o,)st(o,) = = st(o;)st(o,) defines a 4-parameter abelian automorphism group of By.

Theorem 77. Le® be a bounded-open region of space and B{(0) be the von Neumann algebra generated by
the operatorgxt-exp[i(p, (f1) + 7, (f,))] wheref,, f, € £, ('R¥) andsuppf, < B, suppf, < B. Then

Ext-exp(itHy)By(0)Ext-exp(—itH,) < By(0,).

Remark 24.We reformulate the theorem by sayinghpdtas propagation speed at most one.

In order to obtain automorphisms for the full Laegroup and to completie proof of Theorem 75, there are

four separate steps.

1. The first is to construct a seff-adjoint locally correct generator for Lorentz radas. This generator then defines
a locally correct unitargroup and automorphism group.

2. The second step is to prove this staterfaerihe fields, by showing that the fiejg,(x, t), considered as a non-
standard operator valued function on a suitableallonand is transformed locally correctly by ouitary group.

3. The third step is to show that the local algelBa&B) are also transformed correctly.

4. The fourth final step is to reconstruct the lodregroup automorphisms from the locally correetces given by
the first three steps. This final step is not difft as in two dimensional spacetinhe= 2, see [15],[16].

Let Hy(x) denote the integrand in (103), where
Hy = Ext-[ Hy(x)d"x = Ext-f%: (m2(x) + V¥p2(x) + m2pZ(x)): d*x . (118)
The formal generator of classical Lorentz rotatitns
MR¥ =M% + MP% = Ext- [ x¥Hy,, (x)d™3x + Ext- [ x*: P (¢,(x)):d**x, k = 1,2,3. (119)

The local Lorentzian rotations are



M (g, g8) = eHy, + Hop (92°) + Hp, (L 959), Ho (9F) = Ext- [ Hy () g (x)d"x. (120)

We require thad < & and thatg™ (x;, x,, x3), g5 (x1, x5, x3), k = 1,2,3 be nonnegative,” functions. In the
second step we require more, for exampleaha[gik) (xq, %2, %3) = x, andgék) (x1,%9,%3) = x5, k = 1,2,3in
some local spaaegion. This region is contained in the Cartesiardpct[e,*o0) X [g,"0) X [g,*c0). By using
decomposing H,,(g\¥) into a sum of a diagonal and an off-diagonal terenobtainH,,, (g*') =

Ext- [ vgf;(k, Da*(k)a()d®kd** 1+ Ext- [v® (k1) [a*(k)a*(l) + a(—k)a(=D]d"3kd"31 =

0D,x

=12, (9\) + HE(9),
where

v® (e, 1) = ¢, x (e, L0) ((Ou) + (k, 1) + m?) [u(Ou(DI ™2 g0 (=ky + L, —ky + L, —ks + 1),

v (1) = cox(k, 130 (—p(p) — ¢k, 1) + m2 [uuD] 29D (—ky = L, —ky — L, —ks — L),
and wherde = (ky, ky, k3), 1= (13,15, 13),(k, 1y = Y3 k; I;, x(k, 1) =1if |k| < » and|l| < x, otherwise
x(k, 1) =0.

Theorem 78. (ay ¥ € L*Z*(*Rf‘). (b) Functionv ) is the kernel of a nonnegative operator k) (k — I) +

ﬁvg’}{ is the kernel of a positive sef-adjoint operator, fof > 0, these operators are real in configuration space.
Proof (a) is obvious (b) is proved by using a @irdequence of Kato perturbations.dgé% =cu(k)6(k—-1) +

Bv¥) and letvy andV;, denote the operators with kerne[ﬁ) andv¥) correspondingly. The operati is a sum

of three terms of the form*M, A in configuration space, wheté, is multiplication byg, = 0. Thus0 < V},.
Moreover fory sufficiently small, but chosen independently3ofve obtairyV, < %VO < %(V0 +BVy) = %VB and
thereforeV,, =V + vV, is a Kato perturbation, in the sense of bilin@anfs. Consequently if the operatgris

self+#-adjoint, so i3, andD (Vﬁlﬁ) = D(V,"/*). Thus canonical finite induction starting frdf = Vs shows

thatVy is self-adjoint, for alf > 0.

Theorem 79. The operattif (g is nonnegative anet, + BHE (g) is selt#-adjoint,for all g > 0.

The main purpose of the third step is to give aaciawnt definition of the local algebr@s(B). Le f € £, (B) be
the *R#3-valued function with support iB. Let {a;}I-,,n € *N be finite hyperreal numbers and consider the
expressions

0i(f) = Ext-[ fi(x,t) f(x,t)d"3xd*t (121)
o (f,t) = Ext-[ @i (x,t) f(x,t)d"x (122)
R(f) = Ext-2i-, a0 (f i) (123)

i (f,t) = Ext-[ m}i(x,t) f(x, t)d"x. (124)

Forg =1 on a sufficiently large set (the domain of depara of the regioR), the time integration in (1)
#-converges strongly, and all four operators aboeesgmmetric and defined (D(H(g)).

Theorem 80.The operators (1)-(4) are essentialfyt#sadjoint on any#-core forH (g)'/2.

Theorem 81B(B) is the von Neumann algebra generated by finitelynoled functions of operators of the form
(121).



Proof: note that if a hyper infinite sequeng,} of self#-adjoins operatorg-converges strongly to a self
#-adjoint#-limit A on a core foAl then the unitary operatoExt-exp(itA,) #-converge strongly t&xt-exp(itA).
Using this fact, one can easily show that the dpesg1) and (4) generate the same von Neumanbral@®,, (B)
and thatBy, (B) D By(B). To show thaB,, (B) c B4(B), recall that a self#-adjoint operatod commutes with a
finitely bounded operataf providedCD c D(A) andCA = AC onD, for some cor® of A. Equivalently is the
condition that the operat@r commutes with all finitely bounded functionsAfAlso equivalent is the relation

CA = AC onD(A). We choosdd = D(H(g)). If the operatoC commutes with all operators of the form (122), it
also commutes oR (H(g)) with all operators of the form (123). Hence we BgfB)’' c By, (B)' and sBy,(B) =
By1(B)" © By(B)" = By(B)".

Remark 25. The Poincare gro@ip] is the semidirect product of the space-time tatimhs grougR>? with the
Lorentz group0(1,3) such thafa, + A,}a, + A} = {a;, + Aya,, A;A,}. Herea € R andA(B): (x;, t) -

(xi x cosh(B) + t x sinh(B), x; X sinh(B) + t X cosh(ﬁ)),i = 1,2,3. We prove that there exists a representation
a(a, A) of the Poincare grougP/ by = - automorphisms dBy, such that(a, A)(B#(O)) = Bs({a, 430) for all
bounded open setand all{a, A} € °P. The Lorentz group composition law give€a, A) = a(a,)a(0, A).
Obviouslythe existence of the automorphism representat{anA) follows directly from the construction of the
pure Lorentz transformatian(0, A) = o(A). One obtaing (A) by constructing locally correct infinitesimal
generators. Formally, the operators,

2
MR¥ = My% + MDY = Ext- f*]R,C,g%{:nH(x)z: +: (Vg (x)) " +m?: g, (x)*: }xkd#:‘x + H,, (x*g) (125)

k = 1,2,3 s infinitesimal generators of Lorentz transforroas in a regio® if the cutoff functiong equals one on a

sufficiently large interval. We consider now thgioms0, contained in the sefs € *R*3| x;, x,, x5 > [t| + 1}.

Thus for such region8, we may replace (1) bW = Ext- [, 4 H(x) x* g (x)d**x, with a nonnegative functions
(4

x*g(x), k = 1,2,3. HereH(x) is the formally positive energy density:
2
H() = 2 {1, (0% +: (T, (1)) +m: 0, (0% o+ Hy () = Hop () + Hy ().

ThereforeM* is formally positive. In fact it is technically ngenient to use different spatial cutoffs in thesfiand
the interaction part d#°%, k = 1,2,3. Final formulas foM2* reads

Mk = MR¥(g& . g*) = aHo, + Ho o (x*g&) + H 0 (x*g"). (126)

Here0 < a and0 < x*g,(x),0 < x*g (x) and in order that (126) be formally correct, weuass thato +
xkgk = xk = xkg* on[1, R] with R sufficiently large. For technical reasons we asstimat:a + x*gk(x) =
x¥, k = 1,2,3 onsupp(g). By above restrictions agf’ andg® we havesupp(g&),supp(g*) c {x|a < x*, k =
1,2,3 } and we show that the operafaf” is essentially sel#-adjoint and it generates Lorentz rotations in an
algebraB,(0,)

Ext-exp(if M) By (01) Ext-exp(—ifMy ) < By({a, A($)}0,) (127)
provided that0, and{a, A(8)}0, are contained in the region
{x € "R¥,t € *R¥| |t| + 1 < x, <R — |t k = 1,2,3} 128)

whereM %% is formally correct. These results permit us tbraethe Lorentz rotation automorphisnid) on an
arbitrary local algebr&,(0). Using a space time translatiota), a € *R** we can translaté into a region

0 +a=0; c{x € REte R x;,x,x; > |t| + 1} andfor R € *R¥ large enoughp, and{a, A(B)}0, are
contained in the region (1) we defin€0, 4(8)) = o(A(B)) by



a(A®) I B4(0) = o({-A(B)a, 1Da({0, ABIDo{a, I} I B4(0).

Theorem 82Let M%*(g,, 9), k = 1,2,3 be given by (126), withy, g,(x), g(x) restricted as mentioned above. Then
M (g,,9) is essentially sel#-adjoint onC " (H n H,).

Theorem 83. Le®, and{0, A(8)}0, be contained in the set (1). Then the followingnitity holds between self
#-adjoint operators:

Ext-exp(iBM° )¢} (f)Ext-exp(ifM*)=p}(f ({0, A(B)}x)) = [.gus 0 (£(0. 4B} (x 1)) dBxaft.  (129)
Here providedsupp(f) < 0;.

The proof of the Theorem 83 is reduced to the ioatifon of the following equations

o* o* # — [0k # _
{xk + ta#xk} @i(x,t) = [IM%, 2 (x, )],k = 1,2,3. 30

a*t

Here (130) that is equation for bilinear forms ore@propriate domain. Sind€®* is self#-adjoint, we can
integrate (130), thus we compute formally fbe= H, + H; ,,(9),

[iMO%, pf(x,t)] = [iM°%, Ext-exp(itH) o (x, t)Ext-exp(—itH)] =
Ext-exp(itH)[iM®* (—t), o} (x, 0)]Ext-exp(—itH). (131)
HereM% (—t) = Ext-exp(—itH)M°*Ext-exp(itH). Formally one obtains that

o ()
MOk(—t)zExt-Z (n') ad™(iH)(M°*), k = 1,2,3.

n=0

Note that ifM°* andH were the correct global Lorentzian generatorsHaahiltonian they would satisfy
[iH,M°] = ad (iH)(M°*) = PX, [iH, [iH, M°]] = 0, M®*(—t) = M — P*¢. (132)
HerePk, k = 1,2,3 are the generators of space translations. Thus (i81) we get
[iMO, @i (x,0)] = [iMg¥] = xm}i(x, 0), [iP¥, 0} (x, 0)] = =V* () (x, 0).

Formally we have (130).However the difficulty withis formal argument is th&t and M°¢ do not obey (132)
exactly, since they are correct onlydp. We have instead (132) the equations

[iH,M°] = Pk, [iH, [iH, M°*]] = Ri*“, k = 1,2,3. (133)
HereP}. acts like the momentum operators only in the negig i.e.
[Ploc 9k (x, O] = [PX, 0} (x, 0], (x,6) € 0.

Hence[iH, P,’f,c] = RI°¢, k = 1,2,3 is not identically zero, but commutes wip(0,). Formally, further
commutators oR[°, k = 1,2,3 with H are localized outside regia@n, and (130) follows formally even for our
approximate, but locally corregt andM°*. In order to convert this formal argument into arigus mathematical
result, we apply now generalized Taylor series agjwn [13] for the quantities

E (—t) = (Q, [ iM% (=t), 0} (x,0)]10),k = 1,2,3. (134)



HereQ € C *(H) and thus we obtain

a*Ex(0) | 2 aP2ER(§)
a#t 2 a#t?

E.(—t) =E,(0)—t , Where € [—t, t].

From (133) we obtain

T = (Ext-exp(EH)0, IR, o1 ) Ext-exp(iEH)).

a#e2
Note that(x, t) € 04, so that with¢ € [—t, t], (x, &) € 0, and therefore
[REC, @i (x, ©)] = 0. (135)
After integration over € *R#3 with a functionf € Sf, (*R¥?) we obtain the operator identity:

Ext-[.gus[RC, 0F (0, O]f () d*x = 0,k = 1,2,3. (136)

Therefore 2 dE"(f) =0if |€] < |t] and

#e2

E(—0) = B, (0) — t 2

= (Q, {[iM°%, 9} (x, 0] — t[Pi5., @i (x, 0)]}0) =
=(Q, {xmi(x,0) + tV* (o) (x,0)} Q).
Thus we get
[iMO%(—t), @} (x,0)] = xm (x, 0) + tV¥ @i (x, 0) (137)

Inserting the relation (137) in (131) finally wetalm (130).This completes the proof of Lorentz ciasace.

CONCLUSION

A new non-Archimedean approach to interacted qumafitelds is presented. In proposed approach, d €iperator
¢(x,t) no longer a standard tempered operator-valuedhidiibn, but a non-classical operator-valued fioctWe
prove using this novel approach that the quantetd theory with Hamiltonia® (¢), exists and that the
corresponding’*- algebra of bounded observables satisfies all dgHKastler axioms. In particular we prove that
theA(¢*), quantum field theory model is Lorentz covariardr Each Poincare transformationA and each
bounded regio® of Minkowski space we obtain a unitary operdfowhich correctly transforms the field bilinear
formsg(x, t) for (x,t) € 0. The von Neumann algebi&(0) of local observables is obtained as standardgbart
external nonstandard alget®a(0).
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