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Abstract: The prime number theorem; PNT shows the nth prime is asymp-
totically nlogn where log is the natural logarithm. By using PNT, This paper
proves that

∀k > 0, ∃M ∈ N s.t. n ≥ M ⇒ gn = pn+1 − pn < pkn

where gn is the prime gap, pn is the nth prime, and introduces a corollary about
the Andrica conjecture, the Cramer conjecture, and the Oppermann conjecture.

1. Introduction

By the prime number theorem, primes less than n are asymptotically
n

nlogn
,

so the average gap between primes less than n is logn. Hence, nth prime is
asymptotically nlogn.

i.e. lim
n→∞

pn
nlogn

= 1

This is equivalent to
pn ∼ nlogn

This means that nlogn approximates pn in the sense that the relative error of
this approximation approaches 0 as n increases without bound. So,

pn+1 + pn ∼ (n+ 1)log(n+ 1) + nlogn

because

lim
n→∞

pn+1 + pn
(n+ 1)log(n+ 1) + nlogn

= lim
n→∞

(
1

(n+ 1)log(n+ 1)/pn+1 + nlogn/pn+1
+

1

(n+ 1)log(n+ 1)/pn + nlogn/pn
)

= lim
n→∞

(
1

1 + 1
+

1

1 + 1
) = 1

This result shows it is possible to add pn ∼ nlogn and pn+1 ∼ (n+1)log(n+1).
But

pn − pn+1 ≁ (n+ 1)log(n+ 1)− nlogn (1)
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Rather,

lim sup
n→∞

pn+1 − pn
(n+ 1)log(n+ 1)− nlogn

= ∞ and lim inf
n→∞

pn+1 − pn
(n+ 1)log(n+ 1)− nlogn

= 0

proof. Note that

lim sup
n→∞

pn+1 − pn
logpn

= ∞ and lim inf
n→∞

pn+1 − pn
logpn

= 0 (2)

E. Westzynthius proved the former in 19311,2, Daniel Goldston, János Pintz
and Cem Yıldırım proved the latter in 20053. And note that the formula

lim
n→∞

log(nlogn)

logpn
= 1 (3)

holds. Because, for every 3 ≤ n ∈ N,

log(nlogn)

logpn
= logpn

(nlogn) = k(n) ∈ R

Then,

pn = (nlogn)k(n) ⇒ pn
(nlogn)k(n)

= 1

Since pn ∼ nlogn,

lim
n→∞

nlogn

(nlogn)k(n)
= lim

n→∞

pn
(nlogn)k(n)

nlogn

pn
= 1× 1 = 1

∴ lim
n→∞

k(n) = 1

And note that the formula

lim
n→∞

log(nlogn)

(n+ 1)log(n+ 1)− nlogn
= 1 (4)

holds. Because, by L’ospital’s rule,

lim
n→∞

log(nlogn)

(n+ 1)log(n+ 1)− nlogn
= lim

n→∞

logn+ log(logn)

(n+ 1)log(n+ 1)− nlogn

L′H
= lim

n→∞

1/n+ 1/nlogn

log(n+ 1)− logn
= lim

n→∞

logn+ 1

nlogn(log(n+ 1)− logn)

= lim
n→∞

logn+ 1

lognlog(1 + 1/n)n
= 1 ■

Now, let F (n) =
logpn

log(nlogn)

log(nlogn)

(n+ 1)log(n+ 1)− nlogn
, then, due to (3),(4),

lim
n→∞

F (n) = 1
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i.e. ∃M ∈ N s.t n ≥ M ⇒ 1

2
< F (n) <

3

2

⇒ 1

2

pn+1 − pn
logpn

<
pn+1 − pn
logpn

F (n) <
3

2

pn+1 − pn
logpn

∴ lim sup
n→∞

pn+1 − pn
logpn

F (n) = ∞ and lim inf
n→∞

pn+1 − pn
logpn

F (n) = 0

Since
pn+1 − pn
logpn

F (n) =
pn+1 − pn

(n+ 1)log(n+ 1)− nlogn
,

lim sup
n→∞

pn+1 − pn
(n+ 1)log(n+ 1)− nlogn

= ∞ and lim inf
n→∞

pn+1 − pn
(n+ 1)log(n+ 1)− nlogn

= 0

Therefore we need another method to find the approximate expression of
pn+1 − pn. (n+ 1)log(n+ 1)− nlogn is not appropriate though pn ∼ nlogn.

2. Prime gap

Remark 1. For every k > 0,

lim
n→∞

pkn
(nlogn)k

= lim
n→∞

(
pn

nlogn
)k = 1 (5)

Remark 2.

lim
n→∞

logpn
log(nlogn)

= 1

See (3).
Remark 3.

lim sup
n→∞

pn+1 − pn
logpn

= ∞

See (2).
Lemma 2. ∀n, an, bn > 0,

lim
n→∞

anbn = 0, lim sup
n→∞

bn = ∞ ⇒ lim
n→∞

an = 0 (6)

proof. Let
An = {bk|k ≤ n}, sn = supAn

Then
lim sup
n→∞

sn
bn

= 1 ⇒ lim sup
n→∞

ansn
anbb

= 1

⇔ ∀ϵ1 > 0, ∃N1 ∈ N s.t. n ≥ N1 ⇒ ansn
anbn

< 1 + ϵ1

⇒ ansn < (1 + ϵ1)anbn

Meanwhile,

∀ϵ2 > 0, ∃N2 ∈ N s.t. n ≥ N2 ⇒ |anbn| < ϵ2
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So, let ϵ = (1 + ϵ1)ϵ2, N = max(N1, N2). Then,

∀ϵ > 0, ∃N ∈ N s.t. n ≥ N ⇒ ansn < ϵ

∴ lim sup
n→∞

ansn ≤ 0

Since an, sn > 0,
lim

n→∞
ansn = 0

And since lim
n→∞

sn = ∞,

lim
n→∞

an = 0 ■

Lemma 3.

lim
n→∞

pn+1 − pn
(log(nlogn))2

= 0 (7)

proof. Note that

lim
n→∞

logpn
(log(nlogn))2

= lim
n→∞

1

log(nlogn)

logpn
log(nlogn)

= 0 (∵ (3))

Therefore,

lim
n→∞

pn+1 − pn
(log(nlogn))2

logpn
pn+1 − pn

= lim
n→∞

logpn
(log(nlogn))2

= 0

Let an =
pn+1 − pn

(log(nlogn))2
, bn =

logpn
pn+1 − pn

(n ≥ 2), then

an, bn > 0, lim
n→∞

anbn = 0, lim sup
n→∞

bn = ∞ (∵ (2))

⇒ lim
n→∞

an = 0 (∵ (6))

Hence,

lim
n→∞

pn+1 − pn
(log(nlogn))2

= 0 ■

Lemma 4. For every k > 0,

lim
n→∞

(log(nlogn))2

(nlogn)k
= 0 (8)

proof. Let x = nlogn, By L’ospital’s rule,

lim
x→∞

(log(x))2

xk

L′H
= lim

x→∞

2logx

kxk

L′H
= lim

x→∞

2

k2xk+1
= 0 ■

Due to (5),(7), for every k > 0,

lim
n→∞

pn+1 − pn
pkn

(nlogn)k

(log(nlogn))2
= lim

n→∞

pn+1 − pn
(log(nlogn))2

(nlogn)k

pkn
= 0× 1 = 0 (9)
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Hence,

lim
n→∞

pn+1 − pn
pkn

= (8)× (9) = 0

⇔ lim
n→∞

pkn
pn+1 − pn

= ∞

By epsilon-delta argument,

∀k > 0, ∃N ∈ N s.t. n ≥ N ⇒ gn := pn+1 − pn < pkn

⇒ pn < pn+1 < pn + pkn
(10)

corollary 1.
gn := pn+1 − pn = O(pkn) ∀k ∈ R+

Where O is big O notation.

3. About Andrica conjeutre

Andrica conjecture is a conjecture regarding the gaps between prime num-
bers. The conjecture states that the inequality

√
pn+1 −

√
pn < 1

holds for all n∈ N. And a strong version of Andrica conjecture is as follows:
Excert for pn ∈ {3, 7, 13, 23, 31, 113}, that is n ∈ {2, 4, 6, 9, 11, 30}, one has

√
pn+1 −

√
pn <

1

2
; equivalently gn := pn+1 − pn < p1/2n +

1

4

And This paper proves that

lim
n→∞

(
√
pn+1 −

√
pn) = 0

proof. Let ϵ ∈ (0,
1

2
), k ∈ (0,

1

2
), Then

lim
n→∞

pkn
(
√
pn + ϵ)2 − pn

= lim
n→∞

pkn
2ϵ
√
pn + ϵ2

= 0

Thus,

∃N1 ∈ N s.t. n > N1 ⇒ pkn < (
√
pn + ϵ)2 − pn

⇒ pn + pkn < (
√
pn + ϵ)2

Meanwhile,

∃N2 ∈ N s.t. n > N2 ⇒ pn+1 < pn + pkn (∵ (10))

Let N=max(N1, N2), Then

n > N ⇒ pn+1 < (
√
pn + ϵ)2 ⇒ √

pn+1 −
√
pn < ϵ
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By epsilon-delta argument,

lim
n→∞

(
√
pn+1 −

√
pn) = 0 ■ (11)

Furthermore, let y > 1, x < y−1
y . Then, since ∀ϵ > 0, ∃M ∈ N s.t. n > M

⇒ |p1/yn | > |ϵ|, by generalized binomial theorem,

lim
n→∞

pxn

(p
1/y
n + ϵ)y − pn

= lim
n→∞

pxn

(pn +
(
y
1

)
p
(y−1)/y
n ϵ+

(
y
2

)
p
(y−2)/y
n ϵ2 + · · · )− pn

= lim
n→∞

pxn

(
(
y
1

)
p
(y−1)/y
n ϵ+

(
y
2

)
p
(y−2)/y
n ϵ2 + · · · )

= 0 (∵ x <
y − 1

y
)

In the same method as the proof of (11),

lim
n→∞

(p
1/y
n+1 − p1/yn ) = 0 for y > 1

3-1. The arithmetic mean, the geometric mean
and harmonic mean of primes

The relation between the arithmetic mean and the geometric mean of nth
prime and (n+ 1)th prime is as follows:

pn+1 + pn
2

∼ √
pn+1pn

proof.

lim
n→∞

(
√
pn+1 −

√
pn) = 0

⇒ lim
n→∞

(
√
pn+1 −

√
pn)

2 = 0

⇒ lim
n→∞

(pn+1 + pn − 2
√
pn+1pn) = 0 (12)

Thus,

lim
n→∞

pn+1 + pn
2
√
pn+1pn

= lim
n→∞

(
pn+1 + pn − 2

√
pn+1pn

2
√
pn+1pn

+ 1) = 1 ■ (13)

Furthermore,

lim
n→∞

(
pn+1 + pn

2
−√

pn+1pn) = 0

trivially holds by (12). And similarly, the relation between the arithmetic mean
and the harmonic mean of nth prime and (n+ 1)th prime is as follows:

pn+1 + pn
2

∼ 2pn+1pn
pn+1 + pn
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proof. By (13)

lim
n→∞

2pn+1pn
pn+1 + pn

2

pn+1 + pn
= lim

n→∞
(
2
√
pn+1pn

pn+1 + pn
)2 = 1 ■

Furthermore,

lim
n→∞

(
pn+1 + pn

2
− 2pn+1pn

pn+1 + pn
) = 0

proof. Note that

lim
n→∞

(log(nlogn))4

4nlogn
= 0 (14)

And

lim
n→∞

(
4nlogn

4pn
)(

(pn+1 − pn)
2

(log(nlogn))4
) = 0 (15)

The former is trivial because of (8), and The latter is trivial because of the
prime number theorem and (7). Thus,

lim
n→∞

(
pn+1 + pn

2
− 2pn+1pn

pn+1 + pn
)

= lim
n→∞

(pn+1 + pn)
2 − 4pn+1pn

2(pn+1 + pn)
= lim

n→∞

(pn+1 − pn)
2

2(pn+1 + pn)

≤ lim
n→∞

(pn+1 − pn)
2

4pn
= (14)× (15) = 0

By the relation between the geometric mean and the harmonic mean,

lim
n→∞

(
pn+1 + pn

2
− 2pn+1pn

pn+1pn
) = 0 ■

Hence,
pn+1 + pn

2
∼ √

pn+1pn ∼ 2pn+1pn
pn+1pn

Furthermore, the arithmetic mean, the geometric mean, and the harmonic mean
of nth prime and (n+1)th prime become asymptotically the same as n increases
without bound.

4. About Cramer conjecture

Cramer conjecture is a conjecture regarding the gaps between prime num-
bers. The conjecture states that

pn+1 − pn = O((logpn)
2)

where O is big O notation. And sometimes the following formulation is called
Cramer’s conjecture:

lim sup
n→∞

pn+1 − pn
(logpn)2

= 1
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which is stronger than the former. And this paper proves that

lim
n→∞

pn+1 − pn
(logpn)2

= 0

i.e. Cremer conjecture is true, while the strong version is false.
proof. Note that Lemma 3;(7)

lim
n→∞

pn+1 − pn
(log(nlogn))2

= 0

And Remark 2;(3)

lim
n→∞

logpn
log(nlogn)

= 1

Then,

lim
n→∞

(log(nlogn))2

(logpn)2
= 1 (16)

Hence,

lim
n→∞

pn+1 − pn
(logpn)2

= (7)× (16) = 0

corollary 2.
gn := pn+1 − pn = O((logpn)

2) ■

5. About Oppermann conjecture

Oppermann conjecture is a conjecture regarding the distribution of prime
numbers. It is closely related to but stronger than Legendre conjecture, Andrica
conjecture, and Brocard conjecture. The conjecture states that for every integer
n ≥ 1,

π(n2 − n) < π(n2) < π(n2 + n)

Definition 1. Let p̂(x) is the nearest prime less than x, P̂ (x) is the nearest
prime more than x.

e.g. p̂(10) = 7, P̂ (10) = 11

Lemma 5. Let f : R → R is an increasing function and m is constant, then

pn < pn+1 < f(pn) ⇒ ∃p ∈ P with x < p < f(x)

proof (by contradiction). Let ∃x ∈ R such that ∄p ∈ P in (x, f(x)), then P̂ (x) >
f(x). And By definition, p̂(x) ≤ x and P̂ (x) is the next prime of p̂(x). thus,

p̂(x) < P̂ (x) < f(p̂(x))

But, because f is an increasing function, p̂(x) ≤ x ⇒ f(p̂(x)) ≤ f(x) < P̂ (x).
It’s contradiction. ■
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Lemma 6. By Lemma 5, (10) is equivalent to

∀k > 0, ∃M1 ∈ R, s.t. ∃p ∈ P with x < p < x+ xk for x ≥ M1 (17)

Lemma 7.

∀k > 0, ∃M2 ∈ R, s.t. ∃p ∈ P with x− xk < p < x for x ≥ M2 (18)

proof. In Lemma 6, let x = m+mk, then there is a prime in the open interval
(m,x). Since x > m ⇒ xk > mk, (m,x) ⊂ (x− xk, x). Hence, there is a prime
in the open interval (x− xk, x). (c.f. M1 < M2) ■

This psaper proves that for every k > 0, there exists M ∈ R such that

x ≥ M ⇒ π(xk − x) < π(x) < π(xk + x) (19)

proof. By (17),(18),

∀k > 0, ∃M2 ∈ R, s.t. ∃p, q ∈ P with x−xk < p < x < q < x+xk for x ≥ M2

Let x = tm where m =
1

k
, then

∀m > 0, ∃M ′ ∈ R, s.t. ∃p, q ∈ P with tm−t < p < tm < q < tm+t for t ≥ M ′

(c.f. x = tm ⇒ M ′ = Mk
2 ) This fomula implies that

∀m > 0, ∃M ′ ∈ R s.t. t ≥ M ′ ⇒ π(tm − t) < π(tm) < π(tm + t) ■

Furthermore, how many primes exist in (xk, xk +x)? In other word, what is the
result of lim

x→∞
(π(xk + x)− π(xk))?

Remark 4.

f1 ∼ g1 ∧ f2 ∼ g2 → f1 − f2 ∼ g1 − g2

doesn’t always hold. (1) is a counterexample. Due to this,

lim
x→∞

π(xm + x)− π(xm)

(xm + x)/log(xm + x)− xm/log(xm)
= 1

may not hold. We need other method.
Lemma 8. for function f and g such that ∀x ∈ R, g(x) > f(x) > 0, if

lim
x→∞

(g(x)−f(x)) = ∞ and there exists k ∈ (0, 1) such that g(x)k < g(x)−f(x)

for sufficiently large x, then

lim
x→∞

(π(g(x))− π(f(x))) = ∞

proof. Because of (18),

∀j ∈ (0, k), ∃N ∈ R s.t. x ≥ N ⇒ ∃p ∈ P with g(x)− g(x)j < p < g(x)

⇒ ∃p ∈ P with f(x) < p < g(x)
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Let a1 = g(x), an+1 = an − ajn, then there exists a prime in the open interval
(an − ajn, an) = (an+1, an) and for every n ∈ N, a1 ≥ an.
Let f(x) < am, f(x) > am+1, then π(g(x)) − π(f(x)) ≥ m − 1. Therefore, for
sufficiently large x,

g(x)− f(x) <

m∑
n=1

(an − an+1) =

m∑
n=1

ajn <

m∑
n=1

aj1 = maj1

⇒ m >
g(x)− f(x)

aj1
=

g(x)− f(x)

g(x)j
>

g(x)k

g(x)j

Note that

lim
x→∞

g(x)k

g(x)j
= ∞ (∵ j ∈ (0, k))

Hence,
lim
x→∞

(π(g(x))− π(f(x))) = ∞ ■

Since ∀x ∈ R, (x+ xm) > xm > 0 and for sufficiently large x, every m > 0,
there exists k ∈ (0, 1) such that (xm + x)k < (xm + x)− xm = x,

∀m > 0 lim
x→∞

(π(xm + x)− π(xm)) = ∞
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