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Abstract: The prime number theorem; PNT shows the nth prime is asymp-
totically nlogn where log is the natural logarithm. By using PNT, This paper
proves that

Vk>0, IMEN st. n>M = go=ppi1—pn <p"

where g, is the prime gap, p, is the nth prime, and introduces a corollary about
the Andrica conjecture, the Cramer conjecture, and the Oppermann conjecture.

1. Introduction

n
By the prime number theorem, primes less than n are asymptotically ;i ,
nlogn
so the average gap between primes less than n is logn. Hence, nth prime is
asymptotically nlogn.
. . Pn
i.e. lim =1
n—o0 nlogn

This is equivalent to
Pn ~ nlogn

This means that nlogn approximates p,, in the sense that the relative error of
this approximation approaches 0 as n increases without bound. So,

DPn+1 + 0n ~ (n+ D)log(n + 1) 4+ nlogn

because
lim Pnt1 + Pn
n—oo (n + 1)log(n + 1) + nlogn
. 1 1
= lim ( + )
n—oo”(n + 1)log(n + 1) /pui1 + nlogn/pui1  (n+ 1)log(n + 1)/py + nlogn/py,
1 1
= lim(—+-—)=1

n—oo 1 41 1+1

This result shows it is possible to add p,, ~ nlogn and p,41 ~ (n+1)log(n+1).
But
Dn — Pnt+1 # (n+ D)log(n + 1) — nlogn (1)



Rather,

Pn+1 — Pn

. pn+1 — DPn
|
17131_>S;ip (n+ D)log(n + 1) — nlogn n—oo (n+ 1)log(n + 1) — nlogn

proof. Note that

lim sup Pt ZPn oo and liminf 2L —Pn — (2)
n—oo  10gpn n—oo  logpy
E. Westzynthius proved the former in 19312, Daniel Goldston, Janos Pintz

and Cem Yildirim proved the latter in 20053. And note that the formula

l l
i og(nlogn) _ (3)
n-oe logp,

holds. Because, for every 3 <n € N,

l l
Ogl(;;;gn) = logp,, (nlogn) = k(n) € R
Then,
= (nlogn)*™ = —_Pn____
Since p,, ~ nlogn,
lim 09Ny, P mlogn

n— 00 (nlogn)k(") n—00 (nlogn)k(”) Pn

nl;rr;o k(n) =1
And note that the formula
l l
lim o9(nlogn) —1 (4)

n—oo (n + 1)log(n + 1) — nlogn
holds. Because, by L’ospital’s rule,

lim log(nlogn) ~ lim logn + log(logn)

n—oo (n + 1)log(n + 1) —nlogn  n—oo (n+ 1)log(n 4+ 1) — nlogn

LH .. 1/n+ 1/nlogn ) logn + 1
= lim =
n—oo log(n + 1) —logn  n—o0 nlogn(log(n 4+ 1) — logn)
S TP LU
n—oo lognlog(1 + 1/n)"
logpn, log(nlogn)
N let F = then, due to (3),(4
ow, let F'(n) log(nlogn) (n+ 1)log(n + 1) — nlogn’ en, due to (3),(4),
nlbn;o Fn)=1

= o0 and liminf =0



1
ie.IMeN st n>M = §<F(n)<§

2
lpn+1 — Pn < Pn+1 — Pn F(n) < §pn+l — Pn
2 logpn logpn 2 logpn
.. limsup MF(TL) = 00 and liminf MF(TL) =0
n—00 0gPn n—oo 0gpn
. Pn+1 — Pn Pn+1 — Pn
S ————F(n) = )
e logpn ") (n+ D)log(n + 1) — nlogn
. Pn+1 — Pn . Prn+1 — Pn
1 = d 1 f =
lfln_folip (n+ D)log(n + 1) — nlogn 0GRt % (n+ 1)log(n+ 1) — nlogn

Therefore we need another method to find the approximate expression of
Dn+1 — Pn- (n+ 1)log(n 4+ 1) — nlogn is not appropriate though p,, ~ nlogn.

2. Prime gap

Remark 1. For every k > 0,

k
. Pn . Pn g
nes00 (nlogn)k 300 nlogn) (5)

Remark 2.

logpn,
im —————— =
n—oo log(nlogn)
See (3).
Remark 3.
1i Pnt+1 = Pn _
imsup ———— = o0
n—oo  logpn
See (2).
Lemma 2. Vn, a,,b, >0,
lim a,b, =0, limsupb, =cc = lim a, =0 (6)
n—oo n—o0o n—oo
proof. Let
A, ={bilk <n}, s,=supA,
Then s as
limsup — =1 = limsup —= =1
n— oo n n— o0 anbb
nSn
< Ve >0, AN N st. n> Ny = <l+e

anby
= ansn < (14 €1)anby,

Meanwhile,

Veg > 0, ANy €N s.t. n> Ny = |anbn| < €9



So, let € = (1 + €1)e2, N = max(Ny, Na). Then,
Ve>0, ANeN st. n>N = a,5, <¢€

s limsupags, <0
n— oo

Since a,, s, > 0,

lim a,s, =0
n—oo

And since lim s, = oo,

n—oo
lim a, =01
n—oo
Lemma 3.
. Pn+1 — Pn
lim —————— =0 7
3% (log(niogn))? ™
proof. Note that
. logpn . 1 logpn
]. —_— = = 1 — 0 .. 3
Therefore,
lim Potl—Po_ l09pn oy logpa
n—oo (log(nlogn))? pn+1 —pn  n—oc (log(nlogn))?
n — FPn l n
Letan:M by = — I (n > 2), then

(log(nlogn))®” ™ = pnt1 — pn

Ay by, > 0, li)m anby, =0, limsupb, = oo ( (2))
n—00 n— 00

= nh_)rrgo an =0 (" (6))

Hence,
. pn+1 — DPn
lim ——————— =001
w2 (log(nlogn))?
Lemma 4. For every k£ > 0,
(log(nlogn))? —0 (8)
n—oo  (nlogn)k
proof. Let x = nlogn, By L’ospital’s rule,
. (log(z))? LH . 2logx u'n B
AT T BT — A g =0
Due to (5),(7), for every k > 0,
mn — Pn l k mn — Pn l k
lim ot —P (nlogn) — lim 2t ”P (nlogn) =0x1=0 (9)

oo ph (log(nlogn))? — nvse (log(nlogn))®  pk
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Hence,
lim 2rt =P gy« (9) = 0

n—o00 pﬁ
k
& lim — o
n=0 Pn+1 — Pn

By epsilon-delta argument,

Vk>0, INEN st. n>N = gn = pps1 —pn < p* 10)
= Pn < Pn+i <Pn+PfL

corollary 1.
gn ‘= Pn+1 — Pn = O(pﬁ) Vk € RY
Where O is big O notation.

3. About Andrica conjeutre

Andrica conjecture is a conjecture regarding the gaps between prime num-
bers. The conjecture states that the inequality

VPnt1 — /Pn <1

holds for all n€ N. And a strong version of Andrica conjecture is as follows:
Excert for p, € {3,7,13,23,31,113}, that is n € {2,4,6,9,11, 30}, one has

1 ) 1
VPt = Ve < 55 equivalently — gn = pny1 — pn < P/ + 3

And This paper proves that
Jim (\/Poit — vpn) =0
1 1
proof. Let € € (0, 5), ke (0, 5), Then

k
Py i Pn _
-_ = Jim —F =
n—00 ( /Dn + e>2 — Pn n—00 2€,/Pn + €2

Thus,
IN, €N st n>Ny = pk < (Vpn+€)%—pn
= po+ph < (Vb +6)?
Meanwhile,

dNs €N st. n> Ny = ppi1 <Dn +pi€z ( (10))

Let N=max(N7, N3), Then
n>N = poy1 < (VPn+€)? = Pni1 — /Pn <€



By epsilon-delta argument,
nILHgo(Vanrl - \/pn) =0M (11)

Furthermore, let y > 1, = < %1 Then, since Ve > 0, M € N st.n> M

= |p}/ Y| > |e|, by generalized binomial theorem,

xr
lim Up—n
oo (pn Y+ 5)y — Pn

. Pn
= lim
NS (p, 4 (g{)pglyfl)/ye + (g)pgly%)/yeQ + ) —pn
. 2 y—1
= lim =0(rz<*¥——0
n— o0 ((Zf)pgiy_l)/ye + (32/>pgly—2)/y€2 +--0) ( Y )

In the same method as the proof of (11),

lim (p}l/fl —p}/y) =0 fory>1

n—oo

3-1. The arithmetic mean, the geometric mean
and harmonic mean of primes

The relation between the arithmetic mean and the geometric mean of nth
prime and (n + 1)th prime is as follows:

anrl + DPn

~ /Pn+1Pn
2
proof.
7}1_>H;o(vpn+1 - \/pn) =0
= nlgl;o(\/ Pn41 — v/ pn)2 =0
= nli_{go(anrl +Dn — 2\/pn+1pn) =0 (12)
Thus,

+ P — 2y/DniiPn
lim Pn+1 + Pn — lim (pn+1 Pn Pn+1DPn +1)=1m (13)
n—00 2, /Dpi1Pp oo 2./Pn+1Pn

Furthermore,

el

- \/Pn+1pn) =0

trivially holds by (12). And similarly, the relation between the arithmetic mean
and the harmonic mean of nth prime and (n + 1)th prime is as follows:

pn+1 + Pn
2

Pnt1+Pn  2Pnt1Pn
2 Pn+1 + Pn



proof. By (13)

2pn+1Dn, 2 . 2\/Pn+1Pn
lim Pi1P hmu2zll

n—=00 Ppy1 + Pn Pnt+1 + Pn n—=00" Ppy1 + Pn

Furthermore,
2
lim (pn+1 TP 2PntiPny
n—00 2 Prn+1 + Pn
proof. Note that
4
lim (log(nlogn)) _0 (14)

n—oo  4dnlogn
And

4nl nt1 — Pn)>
lim (270097 ( (Prt1 — Pn) ) = (15)
n—oo" 4p,  (log(nlogn))*
The former is trivial because of (8), and The latter is trivial because of the
prime number theorem and (7). Thus,

1. Pn+1 + Pn 2pn+1pn
im ( -
n—00 2 DPn+1 + Pn
v (PagrHp0)? —Apaiapn . (Pag1 —pa)?
= lim = lim ————
n—oo 2(pn+1 +pn) n—00 2(Ppt1 + Pn)

< fim Prrr=Pn)® (14) x (15) =0

~ n—oo 4pn,

By the relation between the geometric mean and the harmonic mean,

2
lim (pn—i-l + Pn . pn—i—lpn) —0m
n—o00 2 DPn+1Dn

Hence,
Pyl +Pn ——  2pny1Pn
2 Pnt1pn Pn+1Pn
Furthermore, the arithmetic mean, the geometric mean, and the harmonic mean
of nth prime and (n+ 1)th prime become asymptotically the same as n increases
without bound.

4. About Cramer conjecture

Cramer conjecture is a conjecture regarding the gaps between prime num-
bers. The conjecture states that

Pn+1 —Pn = O((l09pn)2)

where O is big O notation. And sometimes the following formulation is called
Cramer’s conjecture:
lim sup Pn+1 — Pn _
n—oo  (logpn)?



which is stronger than the former. And this paper proves that

. Pn+1 — Pn
1 — =0
nooo (logpn)?

i.e. Cremer conjecture is true, while the strong version is false.
proof. Note that Lemma 3;(7)

Pn+1 — Pn

lim —————= =0

w50 (log(nlogn))?
And Remark 2;(3)

iy 109Pn

n—oo log(nlogn)

Then,
l l 2

L (Jog(nlogn))® (16)

n—oo (logps)?
Hence,

. Pn+1 Pn
lim ———— = 16) =
Jim (logpn)? (7) x (16) =0
corollary 2.
9n ‘= Pn+1 Pn = C((lngn)z) |

5. About Oppermann conjecture

Oppermann conjecture is a conjecture regarding the distribution of prime
numbers. It is closely related to but stronger than Legendre conjecture, Andrica
conjecture, and Brocard conjecture. The conjecture states that for every integer
n>1,

7(n? —n) < 7(n?) < 7(n?® +n)

Definition 1. Let p(x) is the nearest prime less than 2, P(z) is the nearest
prime more than z.

e.g. p(10) =7, P(10) =11

Lemma 5. Let f: R — R is an increasing function and m is constant, then
Dn <Pyl < flpn) = TpeP with z<p< f(x)

proof (by contradiction). Let 3z € R such that #p € P in (z, f(x)), then P(z) >
f(x). And By definition, p(x) < z and P(x) is the next prime of p(z). thus,

pz) < Pz) < f(p(x))

But, because f is an increasing function, p(x) < = f(p(z)) < f(z) < P(x).
It’s contradiction. B



Lemma 6. By Lemma 5, (10) is equivalent to

Vk >0, 3M; €R, st IpelP with e <p<z+zF forz>M (17)
Lemma 7.

Vk >0, IMy, €R, st IpeP with v —zF <p<ax forz>M, (18)

proof. In Lemma 6, let 2 = m + mF, then there is a prime in the open interval

(m,x). Since z >m = 2% >m* (m,z) C (r — ¥, x). Hence, there is a prime

in the open interval (x — 2%, ). (c.f. My < M) B

This psaper proves that for every k > 0, there exists M € R such that
>M = n(z* —2) <7m(x) <7w(2" +2) (19)
proof. By (17),(18),
Vk >0, dMs € R, s.t. dp,q € P with z—aF <p<zxr<qg< 4k forx > M,

1
Let z = t™ where m = T then

Ym >0, IM' €R, st Ip,gcP with t"—t<p<t™<q<t™+t fort>M'
(c.f- x =t™ = M’ = M¥) This fomula implies that

Vm >0, IM' eR st. t>M = 7" —t)<a(t™) <7w{t™+t) N
Furthermore, how many primes exist in (xk, xk + x)? In other word, what is the
result of xli_}n;o(ﬁ(xk +2) — w(z*))?

Remark 4.

Ji~rg AN farvge = fi—farr g — 92

doesn’t always hold. (1) is a counterexample. Due to this,

lim m(@™ + x) — m(a™) _
z—oo (x™ + x)/log(x™ + x) — 2™ [log(x™)

may not hold. We need other method.

Lemma 8. for function f and g such that Vz € R, g(z) > f(z) > 0, if
lim (g(z)— f(x)) = oo and there exists k € (0,1) such that g(z)* < g(z) — f(x)
Tr—r00

for sufficiently large z, then

lim (m(g(z)) — 7(f(z))) = oo

T—r00

proof. Because of (18),

Vje(0,k), INER st. o> N = IpecP with gx)—g(z) <p < g(x)
= dpeP with f(z)<p<g(x)



Let a1 = g(x), any1 = an — a{w then there exists a prime in the open interval
(an —al,a,) = (ans1,a,) and for every n € N, a1 > a,.

Let f(z) < am, f(x) > ame1, then w(g(x)) — 7(f(x)) > m — 1. Therefore, for
sufficiently large =z,

m m m

g(x) — f(z) < Z(an — Gpt1) = Zaf, < Za{ = ma’
n=1 n=1 n

=1

al g(x)! g(x)!
Note that ()"
.og(x)t
Jim gy~ (. €(0,k)
Hence,

lim (7(g(x)) —7(f(z))) =occ M

T—00

Since Vz € R, (x 4+ 2™) > 2™ > 0 and for sufficiently large z, every m > 0,
there exists k € (0,1) such that (2™ + 2)F < (2™ 4+ ) — 2™ = z,

VYm >0 lim (7(z™ +2) —w(2™)) = 00

T—r00
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