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Abstract

After a brief review of Goldbach’s conjecture and certain mathe-

matical highlights, we prove Goldbach’s conjecture is true.

Introduction

Certainly Goldbach’s conjecture is the ultimate in easily expressed and un-
derstood difficult number theory problems. What could be simpler than
every even number is the sum of two primes?

Apostol spends some time in the beginning and end of his Introduction to

Analytic Number Theory to give contemporary research results [1]. Chen’s
result is mentioned: allow the second number to have just two (not one)
prime factor and the result is proven. It’s a two page proof, not easy. The
last chapter of Apostol is on partitions which he evolves, one can sense, from
the mathematical frustration at getting no where with Goldbach’s conjecture.
I sense Waring’s problem and the like are a kind of sour grape story. If we
can’t get anything concrete with the easiest sum of two primes, Goldbach
what can be done with arbitrary sums of numbers to various powers?

Perhaps, like many open number theory problems, what drives researchers
to write programs that test results on hard numbers (into the trillions) must
be the biting, irritating sense that there is some easy explanation that we
just can’t yet see. For me the primordial example of mathematical puzzles
resolved with solutions that eventually turn out to be thought of as simple,
obvious and beyond reproach are at least two: Cantor’s work on set theory
and the positional number system.
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The former has counter-intuitive elements. Consider that the limit of
(−1/n, 1/n) as n goes to infinity is the empty set. This despite the fact that
for each n > 0 the number of points in these open intervals is uncountable [3].
So how can something that’s uncountably infinite go to something that has
no elements, zero, nada without passing through countably infinite and just
plain finite first? Yet, these symbols, our minds do understand it, believe
it, accept this counter-intuitive truth and we use it to build lots of great
mathematics. The continuum hypotheses is really not an hypotheses anymore
– there is not an in between ℵ0 and ℵ1.

The other wonder of mathematics, the other great success story is the
positional number system and the use, great of late, of various number bases.
We can add, subtract, multiply, and divide with relative alacrity. We can,
using the binary number base, get machines to do these operations for us in
blinding speed. Who invented the positional number system and the idea of
various number bases? After much research, reading Dickson and exploring
Jstor it isn’t particularly clear that one person or that some school of thought
came up with the idea. It may be that the idea is so fundamental, so basic
historians, mathematicians themselves don’t feel inclined to give credit to
anyone or anything – its just too obviously the right way to conceive of all
numbers – all natural numbers anyway. Reals, decimals are another story.

These two success stories lead to a solution to Goldbach’s conjecture: its
true.

Sets and Positions

One can express Goldbach’s conjecture in this form: let {primes} be all the
primes between 3 and 2n − 3, then

2n − {primes}

{primes}
= 1 (1)

is solvable. That is there exists p1, p2 ∈ {primes} such that p1 + p2 = 2n.
Take the even number 108. Are there primes such that (108 − p1)/p2 is

1? Yes: 103 and 5.
Using 2 · 9 = 18, consider the set of odd numbers given by

Odds(18) = {3, 5, 7, 9, 11, 13, 15}
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x 1 2 3 4 5 6 7
C P P C P P P

Num(x) 15 13 11 9 7 5 3
P P P C P P C P
Den(x) 3 5 7 9 11 13 15

Table 1: P=prime; C=Composite. Solutions are in columns with two Ps.
Positions give solutions via a dot product. If the dot product is greater than
1, solutions exist.

and define the set

{18} ≡ {18 − x|x ∈ Odds(18)},

then
{18} = Odds(18) or, in general {2n} = Odds(2n).

But as all primes are odds in Odd(2n) all primes will occur in {2n}.
We can define a function with a table. In Table 1, let Num(x) and

Den(x) be functions defined for the numerator and the denominator of (1).
For every prime in row 3 there is that same prime in row 5. So, for example,
Num(3) = 13 and Den(7) = 13, so (1) is solvable, if primes exist between n
and 2n. But using Bertrand’s postulate [2], at least one prime exists between
n and 2n.

A binary string giving 1 for odd primes and 0 for odd composite numbers
combined with its reverse string using a dot product will always evaluate
to more than 1 yielding the existence of the requisite two primes. So for
the example 2n = 18: [0, 1, 1, 0, 1, 1, 1] · [1, 1, 1, 0, 1, 1, 0] > 0 indicates the
existence of at least two of the requisite primes. As such sequences are
independent of 2n, the general case holds.

Diagonal Matrices

In this section we will explore (attempt) an induction proof that for every
n > 3 there exists two prime numbers p1 and p2 (not necessarily distinct)
such that p1+p2 = 2n. Diagonal matrices are such that sums of two are sums
of their respective diagonals. We can evolve a systematic way to enumerate
cases that remain invariant relative to solving a given 2n for these primes.
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In Table 2, we execute a sieve action. Write primes down diagonals and
composite next to primes along rows. We will call these tables rectangular

composite tables. As one moves from outer to inner, composites eliminate
solutions. This table is for 2 ∗ 9 = 18. The outer most two, 3 and 15 are
eliminated as 15 is next to the prime 13 and so is a composite. The next
most outer pair, 5 and 13 are both primes, so that is a solution; continuing
7 and 11 are another solution. The center number is 9 and 9 +9 = 18, but 9
is a composite so it is eliminated. It is automatically eliminated as it is next
to the prime 7, the position for composites.

3
5

7 9
11

13 15

Table 2: A rectangular composite table for 2n = 18.

The next even is 20 and we will add 17 a prime to this table. As 17 is a
prime, it will go on a separate row and immediately be paired with the prime
3: 3+ (2n− 3) = 2n. In general, if the next 2n− 3 is a prime, we will always
have this solution: Table 3.

31

52

73 94

114

133 152

171

Table 3: A rectangular composite table for 2n = 20. Note when a prime row
is added, one solution is immediate.

Another interesting idea for using diagonal matrices as solution sieves
for Goldbach solutions is to make new columns for each number and place
it on the row of the primes appropriate for its prime factorization, if it is
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composite. This establishes a predictive pattern and yields square matrices:
Table 4. We will call these prime square tables.

3 9 15
5 15

7
0

11
13

0

Table 4: Prime square matrix for 18.

When a square prime diagonal is reversed and summed with this, call it,
complement matrix we have solutions: Table 5. One has to ignore rows in
either matrix with a 0 in them.

0 9 15
13 15

11
0

7
5

3

Table 5: Prime square complement matrix for 18.

Let’s try the next 2 ∗ 11 = 22. Its rectangular composite table is given in
Table 6. We immediately have two solutions: one per 19 being a prime and
one per 11, the center being a prime. We have left the previous indices in to
show how they will not change for the top left half diagonal and will adjust
for the lower right. These composite rectangular matrices are the easiest to
construct, but they don’t yield as much information as prime square matrices.

We will add 17 and 19 to a prime square matrix: Tables 7, 8. The next
iteration, using the periodicity suggested by the top rows, gives a 0 row as
21 is a composite: Table 9.
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31

52

73 94

114

133 152

171

191

Table 6: Composite rectangular matrix for 22.

3 9 15
5 15

7
0

11
13

0
17

Table 7: Prime square matrix for 20.

3 9 15
5 15

7
0

11
13

0
17

19

Table 8: Prime square matrix for 22.

These prime square matrices seem to be invariant. When we add a com-
posite or prime row the first half of the diagonal will not be adjusted. The
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3 9 15 21
5 15

7 21
0

11
13

0
17

19
0

Table 9: Prime square matrix for 24.

second half, per Bertrand’s postulate will always have a prime in it; per the
asymmetry of prime distributions given by the composite indicators we know
that not all zero columns for the prime square and its complement can be the
same. These features show Goldbach’s conjecture is true. In Tables 10 and
11 we add the next two odd numbers, 23, a prime and 25, a composite. We
can predict both types based on the periodicity given in top rows: if the mod
values are non-zero for all primes, the number is a new prime, if a zero mod
value is to occur in a row, then the number is composite. If a prime, we have
at least two solutions; if the number is composite, the induction proceeds as
the zero rows are asymmetric.
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3 9 15 21
5 15

7 21
0

11
13

0
17

19
0

23

Table 10: Prime square matrix for 26.

3 9 15 21
5 15 25

7 21
0

11
13

0
17

19
0

23
0

Table 11: Prime square matrix for 28.

Conclusion

A pigeon hole argument also applies.
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