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Abstract

In this paper we derive the possibly simplest integral representations for the Riemann
zeta function and its generalizations (the Lerch function, ® (e, —k,b), the Hurwitz zeta,
((—k,b), and the polylogarithm, Li_(e™)), valid in the whole complex plane relative to
all parameters, except for singularities. We also present the relations between each of
these functions and their partial sums. It allows one to figure, for example, the Taylor
series expansion of H_j(n) about n = 0 (when —k is a positive integer, we obtain a finite
Taylor series, which is nothing but the Faulhaber formula). With these relations, one
can also obtain the simplest integral representation of the derivatives of the zeta function
at zero. The method used requires evaluating the limit of ® (62””, —2k+1,n+ 1) +
i x P (62””, —2k,n+ 1) /k when x goes to 0, which in itself already constitutes an
interesting problem.
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1 Introduction

The formula derivations that follow next are based on two main ideas that were introduced
in two previous papers, [2] and [3], respectively. In this new paper, we explore these ideas
further, to see what new results they can give.

The Faulhaber formula is a closed expression for the harmonic numbers, H_j(n), when —k
is a positive integer. It’s the sum of positive integer powers of consecutive integers starting at
one, and makes use of the Bernoulli numbers, the numbers that appear in the Taylor series
expansion of z/(e* — 1). For positive odd powers, this expression is:
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As everybody may know, the limit of Hy(n) as n approaches infinite is the Riemann zeta
function (when $(k) > 1), so these two functions are closely connected.

The first aforementioned idea is to use the analytic continuation of the Bernoulli numbers,
achievable through the zeta function, to extend the Faulhaber formula. Since,
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we obtain the below modified form:
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The whole focus is then on how one can find ways to obtain a closed-form for the key sum
below:
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The second idea, already explained in [3], is the following straightforward identity, which
only works for the analytic continuation of the Lerch ® function at the negative integers:
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Since e’ = 1 leads to singularities, the analogous expression for the Hurwitz zeta function
at the negative integers was made possible through some relations available in the literature,
as explained in [3], and is slightly different:
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2 Riemann zeta function

Leveraging the two ideas discussed, we create new expressions for harmonic numbers,
Hy(n), the Hurwitz zeta, ((k,b), and the polylogarithm functions, Liz(e™), and finally the
for the Lerch ®, ®(e™ k,n + 1), valid in the whole complex plane relative to k

2.1 Integral from the literature

First, let’s see how we can derive a different expression for H_j(n) than the one we created
previously in [2], using a different integral for the zeta function.

We need to obtain a closed-form for (1). If ®(k) > 1, the zeta function integral represen-
tation from the literature is:
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Therefore, using equation (4), we have:
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Replacing the sum inside the integral with a closed-form, we obtain its analytic continua-
tion, which this time is slightly simpler than before:
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Now, repeating the same process outlined in [2], and making a change of variables, we
obtain:
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which is a bit simpler than the former formula:
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As we can see, these formulae are by no means unique. None of these two forms allows one
to calculate the Taylor series expansion of H_j(n) about n = 0, if R(k) < 0. They don’t get
the analytic continuation of H_g(n) over n right either, if R(n) < 0 (but over k they always
do).

2.2 A simpler expression for (k)

The integral representations we used for the zeta function in (2.1) tend to make the final
formulae a bit complicated, so our goal is to try and see if we can find a simpler expression
for (1). But in order to do that, first we need to find a simpler expression for (k).

From the literature, we know a Taylor series expansion for x cot x, whose k-th derivatives
give the Bernoulli numbers, and hence also the zeta function at the even integers:
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But we don’t need to use this function, a better option is the generating function of the
zeta function at the even integers:
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2.3 Derivatives of trigonometric functions

In [3], we created an expression for the k-th derivatives of the cotangent, so it comes in
handy now. Below dpp = 1 iff £ = 0:

d*(cot ax)
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For the record, the expressions for the derivatives of the other trigonometric functions are
(the translated arc formulae allow one type to converted into another):
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The problem with equation (8) is the fact it’s improper at x = 0, but from (7) we know
the limits exist, so we need to differentiate x cot mx, using the Leibniz rule, and take the limit
as x goes to 0.

=400k +24(24a)f Li_y (—e?* = t?)

The Leibniz rule tells that the k-th derivative of xf(z) is kf*~Y(x) + f®(z), therefore,
for k a non-negative integer, one can write the zeta function at the even integers as:
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We therefore have (note 1,; = 1 if j is even, 0 otherwise):
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Simplifying the calculation (keeping just the right-hand side of the equation, the limit):
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2.4 A limit involving the Lerch ¢
Now, applying the identity (2) to (9), one deduces the following:
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This means that to figure out the sum, we need to figure out the limit:
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At this point, we might think it’d help to use the closed-form of the Lerch & at the negative
integers from reference [3],
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but it’s actually very cumbersome in this case. It’s not hard to approximate 1/(e?™* — 1) or
1/(e~2™® — 1) when z is small, but their powers have patterns that are hard to figure (though
not impossible).

The right way to go is to use an integral for the Lerch ® that holds at the negative integers,
which is explained in section (6.3). This integral is this simple formula here (which should
hold for every integer k):
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It turns out that the limit in (10) comes down to the incomplete gamma function in this
formula. That is, for the other parts, we can simply evaluate the expression at x = 0 (it’s not
improper anymore).

Evaluated at x = 0, the integral that doesn’t vanish becomes:
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As for the limit of the difference between the gamma functions, we have:
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Therefore, the limit we’re looking for is:
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To summarize the results, we now have a closed formula:
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2.5 Zeta relation to partial sums

Going back to the Faulhaber formula:
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Replacing (13) into the above and simplifying, we have:
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As mentioned in [2], for this formula to hold for every k, i=2* needs to be replaced with
cos km (note it’s the real part of (—1)7%). By doing that and also making 2k — 1 into k, we
obtain:
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is the Riemann functional equation, the final formula is:
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+ 5/000(1 —cothmz) (n+1+i2)" — (n+1—i2)") do (14)

One of the advantages of this formula, over (5) and (6), is that it allows one to obtain the
partial Taylor series expansion of H_j(n) about n = 0, even when R(k) < 0. When —k is
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positive, the series expansion about n = 0 gives the Faulhaber formula, like (5) and (6).

Relation (14) provides the analytic continuation of H_g(n) to the whole complex plane on
both parameters, k£ and n:

> ¢ =C(=k) = ¢(=k,n+1) (15)

One exception is n = —1 if £(k) < 0, but there may be other possible singularities.

2.6 Simplest ((k) formula

Using equation (14) with n = 0 we obtain what is arguably the simplest integral represen-
tation for the Riemann zeta function valid in the whole complex plane, except its pole:

1 1 2
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2.7 Derivatives of the zeta function at 0

And what’s best, formula (16) can be used to figure out the derivatives of the zeta function
at 0, with possibly the simplest integral representation as well. If ¢ is a positive integer:
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3 Hurwitz zeta function
Formula (14) is arguably the simplest relation between the zeta function and the general-

ized harmonic numbers, so let’s use it to demonstrate how to obtain the same relation for the
Hurwitz zeta and the generalized harmonic progressions.

When v = 1, we have a special case of the identity (3), which gives:

((—) b
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3.1 Hurwitz relation to partial sums
First, if we recall the expression in (14), we can change k for j:
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We sum the above over j per identity (17):
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Now, simplifying with the Newton’s binomial,
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and finally find that for all complex k # —1:
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Aside from any singularities, relation (19) provides the analytic continuation of the sum
on the left-hand side to the whole complex plane on all parameters, k, b and n:
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3.2 Simplest ((—k,b) formula

The easiest way to derive a formula for {(—k,b) is simply to set n = —1 in relation (19):
A
C(_k’b):_k+1+5_§/0 (1 —cothrz) ((b+iz)" — (b—ix)") do (21)

This formula is valid in the whole complex plane (except k = —1, or b = 0 if (k) < 0). It
could also be derived using equations (14) and (15).

4 The polylogarithm

The insight on how to go about deriving this next formula comes from noticing the patterns
in these formulas so far. When a transformation was applied to the partial sums of the zeta

function, like,
k | He—j n n
k b (Zq ) , we obtained Z(q + b)k
Jj= 0
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which are the partial sums of the Hurwitz zeta.

So, the next transformation we need in order to obtain the partial sums of the polylogarithm
function is:

n

I N I N e = O

We need to apply this transformation to each piece of (18). Let’s do it by parts, but first
let’s get acquainted with the function and its integral. If £ is a non-negative integer:

Z =m0 , and Z j+1 i /0 vFedv = (=1)" (T(k+1,—z) — k!)

J=k

Therefore, the first part is:

And the second part is:

m(n+1)

1§:m7’“n+1 (n—l—l)ke
2

The next part deserves an entire section.

4.1 Zeta at the negative integers
For k a non-negative integer, we want a closed-form for the following expression:
j—k

> (;n_k 16(=J

J=k

One can, therefore, start from the generating function of zeta function at the negative
integers, whose k-th derivative gives the above:
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The derivatives of the hyperbolic cotangent can be calculated with the formulae seen in
section (2.3):

d? 1 n 1 1 thx
d x4 2 x 2 2

The Kronecker delta is a problem, but fortunately we have the following equivalence:

_5019 - (—1)k Ll_k (e_m) = Ll_k (em)
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4.2 Polylogarithm relation to partial sums

The last part is simple:

;o < ik | |
+3/ (l—cothm:)zm—((n+1+ix)]—(n+1—i:v)j) dx
2 Jo =k (J = k)!
iem(nJrl)
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0

When everything is put together:

n 1)k m(n+1)
S grert = P ) 1 (1) 4 Li ()
q=1

iem(nJrl)

+ T/ (1 —cothmz) (e™** (n+1+i2)" —e ™ (n+1—1iz)") dz (22)
0

This relation provides the analytic continuation of the sum on the left-hand side to the
whole complex plane, on all parameters k, m and n:

Z *emt =MD (em —k,n + 1) 4+ Li_y, (e™) (23)

g=1

4.3 Simplest Li_; (") formula
The simplest formula for Li_ (™) is obtained by setting n = 0 in relation (22):
Li (") = S+ (=m) Tk + 1,—m)
tem [

- (1 —cothmz) (e™**(1+iz)" —e ™" (1 —ix)") dx, (24)
0

which should be valid in the whole complex plane, except when ™ = 1.

5 Lerch & function

For the Lerch ® function the process is the very same, but this time we use a variation of
identity (2):
k
e O(em, —k,b+ 1) =kl Y

J=0

Li_j (em) bk_j

jHk — ) (25)

11



5.1 Lerch @ relation to partial sums

Summing both sides of equation (22) (with k replaced by j), over j per the above trans-
formation:

n k ; k
Kl q? bk em(nt) Ik ( n+ ka j
mq
DI i
q:]_ _0 .7

k

AL kI Li; (em) bE
(41, —m(n+1)) + I
3 TG i)+ 3
t 6m(n+l) . k! bk / mz;t —mix . j
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Jj=

one concludes that:

n 1 k_m(n+1)
S (gb)Eems = - (n+ +;’> —(=m) e T (1, —m(n+14b))+B(e™, —k, b)
q=0

iem(n—H)

+ T/ (1 —cothrz) (™" (n+1+b+ix)" —e ™ (n+1+b—ix)¥) dv (26)
0

Aside from singularities, relation (26) provides the analytic continuation of the sum on the
left-hand side to the whole complex plane on all parameters, k, m, b and n:

n

> (g0 et =d(em, —k,b) — "D (™, —k,n + 1+ ) (27)

q=0

5.2 Simplest ®(e", —k,b) formula

Making n = —1 in relation (26) is the easiest way to derive a Lerch ® formula valid in the
whole complex plane (except occasional singularities):

k

— 4+ (—m) e T(k 4+ 1, —mb)

O(e™, —k,b) = i

B %/000(1 — cothmz) (""" (b+ i) — e ™ (b—ix)") do (28)

6 Less optimal formulae
These formulae are just for the record, as the Lerch ® formula used in section (2.4) comes

from this method. They precede the simplest relations that were found later, and they may
not hold everywhere (except for the parameter k).
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6.1 Hurwitz zeta function

If we recall the expression in (5), we can use it and repeat the steps outlined previously.
After all is put together, we find that for all complex k # —1:

n

> (g+b)f= m;Jf)lkH Lo J; 2 + C(—Fk,b)

q=0

in [™?1— coth(mntanv)

5 (cos v)2 ((n+0b+intanv)® — (n+b—intanov)*) dv,
0

It’s not possible to turn this integral into the one from equation (19), and the reason is
cause two of the terms outside of the integral differ between the two formulas.

6.2 The Polylogarithm

Using equation (5), this is the polylogarithm formula we end up with:

mn

& k_mq nke —k—1 : m
Zq enl=— —(=m) " T(k+1,—mn) + Li_g (e™)
g=1

sin (mntanv + ko)
(cos v)k+2

w/2
- nk+1emn/ (1 — coth (mntanwv)) dv
0

6.3 Lerch ¢ function
Using the polylogarithm relation from the previous section we obtain:

n

Z(q +b)kemt = (n4bfemt (—m) " e ™ T(k 4+ 1, —m(n + b)) + ® (™, —k, b)

q=0 2
. [™*1 = coth (7 ntanv) 9 NTE ntanv
—ne ((n+b)*+ (n tanv)*)™ " sin | karctan +mmntanv | dv
0 (cosv)? n+0b
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