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1 Abstract

This paper introduces the fast adaptive stochastic function accelerator (FASFA)
for gradient-based optimization of stochastic objective functions. It works based
on Nesterov-enhanced first and second momentum estimates. The method is
simple and effective during implementation because it has intuitive/familiar hy-
perparameterization. The training dynamics can be progressive or conservative
depending on the decay rate sum. It works well with a low learning rate and
mini batch size. Experiments and statistics showed convincing evidence that
FASFA could be an ideal candidate for optimizing stochastic objective func-
tions, particularly those generated by multilayer perceptrons with convolution
and dropout layers. In addition, the convergence properties and regret bound
provide results aligning with the online convex optimization framework. In a
first of its kind, FASFA addresses the growing need for diverse optimizers by pro-
viding next-generation training dynamics for artificial intelligence algorithms.
Future experiments could modify FASFA based on the infinity norm.

2 Introduction

We live in a society that continues use artificial intelligence in devices across the
globe. The artificial intelligence among us that drives the functionality of various
commercial, open-sourced, and private applications for computers and handheld
devices uses real-world data in order to make inferences. Examples of how such
algorithms are used today range from facial recognition software, vaccine and
drug discovery [17], cancer classification [14], and traffic management systems
[13]. The algorithms that help secure our data and create new medicines could
be improved however, and they are mostly based on online convex optimization
[7].

Suppose a given mathematical object can be mapped onto a plane using two
or more dimensions. Such an object has an existing derivative for R across at
least one of those axes, implying a minimum/maximum value of min f(θ)

θ∈R

or
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max f(θ)
θ∈R

exist in at least one of those dimensions with some kind of multidi-

mensional concavity. Locating these extreme values is one of the key drivers
for search algorithms that optimize the parameters of designs for engineering.
Problems encountered in the real world can often be interpreted as an opti-
mization of an objective function in order to estimate a minimum/maximum in
respect to its parameters [7].

Stochastic gradient descent (SGD) optimization is an useful and effective
technique finding the extreme values. Many of these objective functions com-
prise of sub-functions that exhibit different patterns depending on the particular
data sub-sampling, giving them some stochasticity [2]. However, SGD on is not
always the best method for minimization/maximization on noisy situations cre-
ated by factors such as dropout layers in a multilayer perceptron [9]. The pur-
pose of this project was to introduce a new method of stochastic optimization
for problems high in variables and parameters.

This paper introduces the fast adaptive stochastic function accelerator (FASFA)
for estimations. It requires only the first order gradients. The method uses
two exponential decay rates that adapt based on the first and second moment
estimates. The momentum-based optimizer was designed to improve the perfor-
mance of Adam 1, the most commonly used optimizer in multilayer perceptrons.

1Adam stands alone as an optimizer, but it has many subtypes including AdaMax, and
NAdam. FASFA’s performance will be compared only to the standard Adam method.
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Algorithm 1 Fast adaptive stochastic function accelerator (FASFA) for
stochastic optimization of objective functions. The g2t denotes for the element-
wise gt ⊗ gt product from squaring. For hyperparameterization, α = 0.001,
µ = 0.8, and ν = 0.999 are some good starting variables. The subscripts and
superscripts denote the iteration to convergence and power. Hats denote the
updated moment estimates. Note that ξdecay = |µ+ ν|.
Require: µ: First order momentum decay estimate
Require: ν: Second order momentum decay estimate
Require: α: Learning rate
Require: f(θ): Stochastic and objective function for loss minimization
Require: θ: Initial parameter vector
m0 ← 0 (Initialize first moment vector)
n0 ← 0 (Initialize second moment vector)
t← 0 (Initialize timestep/iteration)
while Unconverged do

t← t+ 1 (Iterates by t until convergence step T )
gt ← ∇θf(θt−1) (Getting gradients for stochastic objective at timestep t)
mt ← µmt−1 + (1− µ)gt (Update biased first moment estimation)
nt ← νnt−1 + (1− ν)g2t (Update biased second moment estimation)

m̂← µmt+gt(1−µt)
1−µt (First raw moment estimate)

n̂← νnt+g2
t (1−νt)

1−νt (Second raw moment estimate)

θt ← θt−1 − α
m̂tξdecay√

n̂t+ϵ
(Implement FASFA update rule)

end while
return θt (Resulting parameter for objective function)

This is the workflow of the iterative training dynamics until convergence.
The basic notation for the hyperparameters is shown here. So basically, the
method retains the order of updates for the first and second moment estimates
while augmenting the actual operations that occur. This means that the method
is simple and easy to use. The average programmer working with gradient
descent typically defaults to Adam, ergo retaining the structural properties
in FASFA would increase its usability in practice. The optimizer is a novel
invention, but structurally, it is almost akin to the current meta and should
work with Adam’s default parameters of α = 0.001, µ = 0.8, and ν = 0.999 [9].

Throughout the experiments surrounding the FASFA optimizer, the inde-
pendent variable is the method of stochastic optimization. It is hypothesized
that if indeed FASFA is used to optimize an algorithm to locate min f(θ)

θ∈R

on

objective function f(θ), then it would result in the greatest distance traversed
on that aforementioned three-dimensional mathematical object.

The purpose of this project was to design and test a new method of opti-
mizing stochastic objective functions. Section 3 describes the properties of the
optimizer, section 4 describes the experiments testing it out, section 5 analyzes
the data, and section 6 has some conclusions. There is also an appendix with
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some extra information.

3 FASFA

Algorithm 1 shows the steps outlining the FASFA across iterative training. The
objective function with some level of noise is denoted f(θ) differentiable with
reference to parameter θ. The expected value of the function E[f(θ)] is to be
minimized across the convex surface in the parameter space, which in the case
of deep-learning is often the relation between synaptic weight values. With
sequence of f1...fT where T is the timestep of convergence. The gradient or the
vector of partial derivatives is denoted by gt = ∇θft(θ) where t represents a
timestep between initialization and convergence/termination.

Using the two hyperparameters µ, ν ∈ [0, 1) FASFA updates the moving av-
erage of the gradient mt and squared gradient nt by controlling the decay rate
of the moving averages. Those are estimated using the first and second raw
moment estimates. Opposed to randomly initializing the vectors of moving av-
erages, they are initialized to 0s such that they begin at a similar starting point.
Like other algorithms [9,10], FASFA combats the bias towards 0 throughout the
optimizer by implementing the bias correction step for the correct estimates m̂
and n̂.

Let g1...gt be representative of the sequence of past gradients on iteration t.
The second moment estimate nt can be written as a summation of the previous
gradients

nt = (1− ν)

i=1∑
t

νt−1 · g2i

and the timestep t for the expected value there of E[vt] is known to relate to
the second true moment E[g2t ]. Through rearranging the terms and substituting
the variables, the implemented bias correction becomes

E[nt] = E

[
(1− ν)

i=1∑
t

νt−1 · g2i

]
= E[g2t ](1− ν)

i=1∑
t

νt−1 + ζ = E[g2t ](1− νt) + ζ

where γ remains close to 0 for when E[g2t ] remains stationary. This step is also
conducted with m̂, giving the following bias correction of

E[mt] = E[gt](1− µt) + ζ

with µ and a non-squared gradient for the formal update rules in Algorithm
1.This indeed replicates the effect of disassembling the bias from the vectors
of 0s. This system of bias correction is used in various other Quasi-Newton
methods, so it retains the same effect here [9, 10].

The online convex optimization framework is where an algorithm makes a
decision over some iterations. After a decision is made, a loss is given [7]. FASFA
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falls under this framework because its decisions are indeed bounded with a finite
amount of decisions [7]. What usually occurs is that after the algorithm makes
a decision, and then the convex cost function is revealed. The main metric of
this system is the regret of the player [3, 7]. Regret is defined as

R(T ) =

T∑
t=1

ft(θt)− inf
θ∗∈χ

T∑
t=1

ft(θ
∗)

and often times, it is beneficial to locate the upper bound of the function. This
is because it shows the worst possible case situation, with the maximum possible
regret. In this case, the regret bound is

R(T ) ≤ D2

2αξdecay(1− µ)

d∑
i=1

√
T v̂T,i +

(1 + µ)αG∞

(1− µ)
√
1− ν(1− γ)2

d∑
i=1

∥g1:T,i∥2

+

d∑
i=1

D2
∞G∞

√
1− ν

2αξdecayµ(1− λ)2

which is similar to the results delivered by other reliable optimization techniques
such as AdaGrad, RMSProp, and Adam [4, 8, 9]. The entire proof is in the
appendix. Observing the denominator of the regret bound shows that a low
user controlled decay sum ξdecay and learning rate α guarantee a lower regret
bound, but may result in a slower overall convergence and vice versa [7].

The algorithm is defined on both Adam and Nesterov-based momentum
optimization. It integrates Adam’s workflow, but implements the Nesterov-
enhanced momentum. However, unlike other algorithms that implement it such
as NAdam, FASFA uses it on both m̂ and n̂ [6, 12]. Furthermore, it still has
two bias correction terms like Adam [9]. So FASFA basically hybridizes ideal
properties of optimizers such as Adam that favor high mini batch size and
datapoints and optimizers such as Nesterov gradient descent that work well
with low learning rates and mini batch size in order to work well in both worlds.
In addition, it retains the same ideal low signal to noise ratio of m̂t√

m̂t
of other

methods such as Adam [9], Eve [10], and AMSGrad [15].

4 Experiments

4.1 Materials and Safety

One Acer Nitro 5 laptop with an Intel Core i7 processor, NVIDIA GeForce
RTX 3050 graphics card, and dual M.2 solid state drive was obtained for the
procedures. An Oracle VirtualBox virtual machine running bidirectionally func-
tional sharing between the Windows 11 host and Ubuntu Linux distribution
was installed. The procedures were conducted using custom C++ and Python3
computer code. The JupyterLab and Visual Studio Code text editors and in-
formation development environments were used. Excel was used to generate all
of the graphs.
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There were minimal safety risks, as the procedures were all conducted on a
computer. To prevent eye strain, this project was only worked on for 3 hour
intervals during the day, with 50% of all blue light on the display being filtered
out any time working after 8 PM.

4.2 Convex Surface Testing

Figure 1: Convex Surfaces for Objective Functions used in Testing Search Al-
gorithms

In this first experiment, three convex surfaces were generated for locating ex-
trema. The surfaces represented possible objective functions of ft(θ). The ver-
tical dimension was the one of interest. The surfaces used were fabricated using
multivariable objective functions. They took parameters x and y, augmented
them, and returned them. The first returned x2 and y2, the second returned x3

and y2, and the third one returned x4 and y4.For a given optimizer, Mersenne
twister generator was used to select psuedorandom points on each graph.

Each optimizer used the recommended hyperparameterization from their
original papers or from subsequent projects detailing experiments using them.
For FASFA, the same settings recommended for Adam were used. For 100
iterations, α = 0.001, β1 = µ = 0.8, and β2 = ν = 0.999, the optimizers were
tracked on the surfaces. For Adam and FASFA, the first and second moment
estimates were also tracked.

4.3 Multilayer Perceptron Testing

For image-based testing using backpropagation, MNIST [11] numbers, CIFAR-
10 [5], and MNIST fashion [16] were used. One testing model of three blocks
using convolution, max pooling, and dropout layers in addition to a multilayer
perceptron using one flattening layer and three dense layers of 64, 32, and 10
layers was fabricated. It used the ReLU activation function in the hidden layers
and SoftMax in the output layer. Once again, α = 0.001, β1 = µ = 0.8, and
β2 = ν = 0.999 was used. Furthermore, mini batch size was 100 and the loss
function was sparse categorical crossentropy. For 10 epochs, SGD, AdaGrad,
RMSProp, Adam, and FASFA were used in identical versions of the model
described earlier on each of the three datasets. At the end of each epoch, a
cross-validation using 80% training and 20% testing split was calculated using
a confusion matrix. The values were then recorded for each optimizer.
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For testing the effect of the learning rate on loss minimization for stochastic
optimization, synthetic data was used. Crest shaped patterns of data were gen-
erated using Sci-Kit Learn. The Sci-Kit Learn multilayer perceptron framework
was used to replicate the same model from earlier, excluding the convolution,
max pooling, and dropout layers. Once again, β1 = µ = 0.8, and β2 = ν = 0.999
were the decay rate hyperparameters. The learning rate, or step size was in-
cremented by a factor of 0.001 across 10 intervals. SGD, Momentum, Nesterov,
AdaGrad, RMSProp, Adam, Adam1, Adam2, and FASFA were tested, as they
all use a learning rate of some sort. The number of samples generated was
50000, with the same 80% training and 20% testing split for validation. The
cross-validation was calculated using the same confusion matrix and the accu-
racy values were recorded for analysis.

5 Results

Figure 2: Vertical Traversal of Gradient Descent Methods for the Coalescing
Convex Points on Three Surfaces

Figure 1 shows the relationship between optimizers and magnitude of movement
on the third axis. These are the results of the first experiment. The line graphs
do not act in respect to time, but based on the number of iterations. Bar graphs
at each interval were constructed as well, but because of the space limitations,
those were omitted.

Graphs 1, 2, and 3 show a shared trend between the techniques used. SGD
carried the lowest magnitude of descent. RMSProp and AdaGrad followed,
with similar performance on minimization. Adam outperformed all three of
these methods by quite a significant margin. Finally, FASFA performed the
best. Notably, the early stages of training showed a dramatic shift in descent
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for FASFA, with those values sometimes existing at almost four times the ones
for SGD, AdaGrad, RMSProp, and Adam.

In terms of stability, the expected values from past research suggested that
SGD would be the least stable optimization technique while Adam would be
the most. SGD exceeded past research claims in terms of stability, and Adam
retained its claims. However, AdaGrad seems to be rather unstable under these
circumstances. Notably, despite FASFA having a high jump in movement early
on, it remains relatively stable throughout the later iterations. These trends are
especially apparent in graph 1.

Figure 3: Comparison of Adam and FASFAWith Exact Same Hyperparameters,
Where β1, β2 are Functionally the µ, ν

In figure 2, the comparison between Adam and FASFA was made. The other
optimizers were omitted because they do not use two exponential decay rates.
Separate line graphs for each variable were also constructed, but were combined
to save space. Adam is shown in graph 1, and FASFA in graph 2.

The first moment estimate showed a decay in both graphs 4 and 5. FASFA
showed to have an initial spike on all three surfaces, while this trend was not
apparent in Adam. However, by the first quarter of timesteps, the first moment
estimate was significantly less in FASFA than in Adam. The second moment
estimate showed an interesting trend in FASFA. While in Adam, it decays in
a similar pattern to gradient, in FASFA it shoots upward and plateaus. The
graph shows dips and spikes, but that is likely because of the inherit variability
of the surfaces. Towards the end, FASFA does exhibit some decay in this term,
but not to the extend that is in Adam.

Gradient in respect to the vertical distance shows a similar pattern between
Adam and FASFA. Adam’s gradient decays as expected, indicating that a min-
imum of sorts on the objective function is being approached through the same
logic as the first derivative test. However, FASFA’s gradient approaches 0 faster
than Adam’s. This offered some convincing evidence that even with Adam’s
default parameters, FASFA still performs at an increased rate.
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Figure 4: Progression of Accuracy in multilayer perceptrons for the Different
Methods of Stochastic Optimization

Figure 3 depicts the results of the cross-validation using multilayer percep-
trons. This was the result of the third experiment. Graphs 6, 7, and 8 depict the
increase in accuracy as the networks trained. These graphs are not in respect
to time, but into the epochs trained. The independent bar graphs were omitted
because of the space limitations.

The trends seen in graphs 1, 2, and 3 remained prevalent. The graphs showed
that once again, FASFA produced the best results the fastest. SGD showed to
perform the worst. Furthermore, AdaGrad and RMSProp remained close to
one another with Adam being the closest to matching FASFA. Though FASFA
and Adam typically ended the training with accuracy values above 90%, FASFA
reached that point earlier on. Furthermore, in each instance, the final accuracy
value for FASFA was always higher than that of Adam.

One difference between this experiment and the first was that AdaGrad was
more stable than RMSProp, which can be seen on graph 8. Across the three
datasets, the performance was rather consistent, and the training stability of
FASFA in particular seems to be similar to Adam, but it just converges faster,
resulting in the higher accuracy.
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Figure 5: Trends of Accuracy Across Learning Rates from Multilayer Percep-
trons

The figure above shows the accuracy trends resulting from backpropagation
using various optimizers. The stability across the learning rate being incre-
mented by a factor of 0.001 across ten intervals. The individual bar graphs for
each interval were omitted because of space limitations.

In terms of accuracy, most of the networks were approximately close. FASFA
remained as one of the top scoring algorithms. Adam and Adam2 also showed a
similarly high performance. Adam1 and AdaGrad performed the worst. In the
beginning, SGD, Momentum, and Nesterov showed they favor low learning rates.
AdaGrad showed to increase in performance with a higher one. Algorithms such
as Adam, Adam2, and FASFA showed to retain their capabilities with a diverse
set of commonly used learning rates.

It is shown in graph 9 that SGD, Momentum, Adam, Adam2, and FASFA
were relatively stable. Nesterov and RMSProp, for the most part, remained
somewhat stable, apart from the extremes. AdaGrad and Adam1 were the least
stable by far, with Adam1 having an almost oscillatory effect between 0.004 and
0.006 learning rate.

6 Discussion and Conclusions

The purpose of this project was to develop a new method of stochastic opti-
mization that is both innovative and leverages existing methods. The method,
like many others before it, is inspired by SGD. Other researchers have also at-
tempted to introduce new mechanisms into the Adam framework to address its
weaknesses. The attempts included things such as adding proportion terms and
implementing Nesterov momentum [6,10,15].

FASFA uses Nesterov momentum but retaining the bias correction term
from Adam [9, 12]. In addition, it also features a control term ξdecay that
gives either progressive or conservative updates depending on the sum of µ
and ν. Furthermore, FASFA uses Nesterov momentum on both m̂ and n̂ for
estimating diagonals from the Fischer information matrices. Despite innovating
in these areas, FASFA keeps the helpful properties from the current meta of
optimization, Adam. This is most present in the hyperparameters, which would
make implementing the method simple and effective for a new user that is not
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aware of how convex optimization techniques work. In addition, the order of
computations is concrete between Adam and FASFA [9].

FASFA is a novel invention that excels with low learning rates and mini
batch sizes, while retaining respectable performance and stability using high
ones. In all three experiments, FASFA showed promise even when using other
optimizers’ default settings. The learning rate experiments showed that its
training stability was remarkably high even with high step sizes.

Some flaws within the experiments could lie within the limited testing algo-
rithms. Stochastic gradient descent for artificial intelligence is used most fre-
quently with the multilayer perceptrons [2]. Therefore, the scope of the project
focused completely on these methods. Although some basic surface testing was
done using the optimizer outside of the multilayer perceptrons, it was still rather
limited. Based on these results and the convergence analysis, the optimizer will
theoretically work and deliver strong performance on any model that wants to
minimize loss, which is the vast majority of artificial intelligence algorithms 2.
However, scientific validation should be conducted to show evidence for this
claim.

Future research could include a myriad of things such as testing the opti-
mizer in a more traditional machine-learning setting. This could include pairing
it with various regression or classification algorithms such as support vector ma-
chines, k-nearest-neighbors, isolation forests, and k-means clustering. FASFA’s
regret bound proof is based on Adam’s. However, some researchers have shown
arguments towards the original regret bound for Adam being incorrect and
proposing their own regret bounds [1, 4]. Another future study could involve
deriving FASFA’s regret bound using the alternate methods and comparing
them to the one shown in this project. Furthermore, there exists a derivative
of Adam based on the infinity norm called AdaMax [9]. Since FASFA follows
the same structure as Adam, a derivative of it following the infinity norm could
also be feasible.
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7 Appendix

7.1 Regret Bound

In this section, an attempt at determining the regret bound is shown. Adam
and FASFA follow many of the same rules, so the proof is similar as well. To
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begin, the mathematical object that is being traversed has some basic properties
for this convergence to work. The main one is that it cannot have any irregular
non-convexity. First it is defined that f : Rd → R is convex for x, y ∈ Rd. When
λ ∈ [0, 1],

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− γ)y)

holds. This surface can be lower bound by a tangential hyperplane. Assuming
the surface is convex for x, y ∈ Rd, then

f(y) ≥ f(x) +∇f(x)T (y − x)

holds [9]. These definitions can be used as an advantage when upper bounding
possible regret by replacing the tangential hyperplane with one generated by
the update rules from algorithm 1.

The next two proofs FASFA shares in common with Adam because they
share the bias correction step. To make notation easier to understand, some

simplifications are going to be made. Let gt
∆
= ft(θt), and gt,i be the gradient

at element i. Logically, g1:t,i ∈ Rt represent the sequence of gradients over the
iterations until t. To illustrate, g1:t,i = [g1,i, g2,i...gt,i] [9].

Suppose g1:t,i exists and is bound within the gradient intervals ∥gt∥2 ≤ G
and ∥gt∥∞ ≤ G∞. All things considered, inequality

T∑
t=1

√
g2t,i
t
≤ 2G ∥g1:t,i∥2

can be proved by inducting over iterations in the series until T . For T = 1

as the first instance of a natural number in the iterations,
√

g21,i ≤ 2G ∥g1:t,i∥2
becomes the base case. The cumulative inductive step becomes

T∑
t=1

√
g2t,i
t

=

T−1∑
t=1

√
g2t,i
t

+

√
g2T,i

T

and then

T∑
t=1

√
g2t,i
t
≤ 2G∞

√
∥g1:T,i∥22 − g2T +

√
g2T,i

T

after some more basic replacements. Because it is known that ∥g1:T,i∥22 ≤
∥g1:T,i∥22 +

(
g4T,i/4 ∥g1:T,i∥22

)
, the subsequent step of the derivation is achieved

by taking the square root of both sides of the inequality. This brings it to√
∥g1:T,i∥22 − g2T ≤ ∥g1:T,i∥2 −

g2T,i

2 ∥g1:T,i∥2
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and then √
∥g1:T,i∥22 − g2T ≤ ∥g1:T,i∥2 −

g2T,i

2
√
TG2

∞

which readies the inequality for the final step. So

G∞

√
∥g1:T,i∥22 − g2T +

√
g2T,i

T
≤ 2G∞ ∥g1:T,i∥2

is arrived at after substituting
√
∥g1:T,i∥22 − g2T and rearranging the terms.

Looking backwards, it can be seen that this indeed works under the two in-
troductory definitions about the concavity of the surfaces, which was at the
beginning of this section [9].

Beginning with the summation

T∑
t=1

m̂2
t,i√
tn̂t,i

=

T−1∑
t=1

m̂2
t,i√
tn̂t,i

+
m̂2

T,i√
T n̂T,i

from the inductive inequality, the last term can be expanded to

T∑
t=1

m̂2
t,i√
tn̂t,i

≤
T−1∑
t=1

m̂2
t,i√
tn̂t,i

+

√
1− νT

(1− µT )2
(
∑T

k=1(1− µ)µT−kgk,i)
2√

T
∑T

j=1(1− ν)νT−jg2j,i

using the optimizer update rules. Combining and evaluating the summations
gives

T∑
t=1

m̂2
t,i√
tn̂t,i

≤
T−1∑
t=1

m̂2
t,i√
tn̂t,i

+

√
1− νT

(1− µT )2
(1− µ)2√
T (1− ν)

T∑
k=1

T

(
µ2

√
ν

)T−k

∥gk,i∥2

where a substitution can take place. In order to prevent this from getting ugly,
some new notation is introduced just to simplify this section and the ending

regret bound. Using the formal definition γ
∆
= µ2

√
ν
and substituting it into the

last equation gives

T∑
t=1

m̂2
t,i√
tn̂t,i

=

T−1∑
t=1

m̂2
t,i√
tn̂t,i

+
T√

T (1− ν)

T∑
k=1

γT−k ∥gk,i∥2

after rearranging the variables. After,

T∑
t=1

m̂2
t,i√
tn̂t,i

≤
T∑

t=1

∥gt,i∥2
t(1− ν)

T−t∑
j=0

tγt ≤
T∑

t=1

∥gt,i∥2
t(1− ν)

T∑
j=0

tγt

14



is achieved after placing an upper bound on the left hand side of the inequality
from the inductive step. Taking this a step further gives

T∑
t=1

∥gt,i∥2
t(1− ν)

T∑
j=0

tγt ≤ 1

(1− γ)2
√
1− ν

T∑
t=1

∥gt,i∥2
t

by upper bounding the previous inequality. This is the second big component
that will be used in the main derivation of the regret bound because it is useful
to know the convergence properties of the optimizer across every possible real
iteration for the searching of min f(θ)

θ∈R

or max f(θ)
θ∈R

[9].

Regret is

R(T ) =

T∑
t=1

ft(θt)− inf
θ∗∈χ

T∑
t=1

ft(θ
∗)

with reference to parameter T . So basically, extending the second definition for
the convex surfaces gives

ft(θt)− ft(θ
∗) ≤ gTt (θt − θ∗) =

d∑
i=1

gt,i(θt,i − θ∗i )

for regret. So

R(T ) ≤
T∑

t=1

d∑
i=1

gt,i(θt,i − θ∗i )

is created when the upper bound is placed on the regret after summing on
t ∈ T [3, 7].

Beginning with the FASFA update rule of

θt+1 = θt − αt
m̂ξdecay√

n̂
= θt − αtξdecay

µ1,tmt−1 − (1− µ1,t)gt√
n̂t

it can be applied into the context of regret by focusing on dimension i. Sub-
tracting θ∗i and squaring the sides gives

(θt+1,i − θ∗i )
2 = (θt,i − θ∗i )

2

− 2αξdecay
1− µt

(
µtmt−1,i√

n̂t,i

− −(1− µt)gt,i√
n̂t,i

)
(θt,i − θ∗i )

+ (αtξdecay)
2

(
m̂t,i√
n̂t,i

)2

15



so that rearranging the terms gives

2αtξdecay(1− µt)

(1− µt)
√

n̂t,i

gt(θt,i − θ∗i ) = (θt,i − θ∗i )
2 − (θt+1,i − θ∗i )

2

− 2αtξdecayµt

(1− µt)
√
n̂t,i

mt−1,i(θt,i − θ∗i )

+ (αtξdecay)
2

(
m̂t,i√
n̂t,i

)2

for the next step. For upper bounding with an arithmetic geometric series, it
helps to simplify one side of the equation. Here it is pretty evident that the left
side would be much easier to simplify than the right one. It can be cleared into

just gt(θt,i − θ∗i ) by taking
(1−µt)

√
n̂t,i

2αtξdecay(1−µt)
and multiplying it onto every term

into the equation. Doing this gives

gt,i(θt,i − θ∗i ) =
(1− µt)

√
n̂t,i

2αtξdecay(1− µt)
((θt,i − θ∗i )

2 − (θt+1,i − θ∗i )
2)

− µt

(1− µt)
mt−1(θt,i − θ∗i )

+ αt
ξdecay(1− µ2)

2(1− µt)
(m̂t,i)

2

which leaves only one more major adjustment left before upper bounding for
the regret.

On the right side of this equation, the (θt,i − θ∗i ) is going to be problematic.
Algebraically, it is difficult to deal with here. This could be fixed by splitting
the term up into ones that are more manageable using Young’s inequality of
ab ≤ ap/p+ bq/q as a pseudo substitution. Let

a =
4
√

n̂t−1,i√
at−1

(θ∗i − θt,i)

and

b =

√
at−1

4
√

n̂t−1,i

mt−1,i

exist. This implies inequality

µt

(1− µt)
mt−1,i(θ

∗
i − θt,i) ≤

µt

(1− µt)

(√
n̂t−1,i

2at−1
(θ∗i − θt,i)

2 +
at−1

2
√
n̂t−1,i

m2
t−1,i

)

16



holds. So,

gt,i(θt,i − θ∗i ) =
(1− µt)

√
n̂t,i

2αtξdecay(1− µt)
((θt,i − θ∗i )

2 − (θt+1,i − θ∗i )
2)

+
µt

(1− µt)

(√
n̂t−1,i

2at−1
(θ∗i − θt,i)

2 +
at−1

2
√

n̂t−1,i

m2
t−1,i

)

+ αt
ξdecay(1− µ2)

2(1− µt)
(m̂t,i)

2

is given by implementing the identity.
Next, the inequality from the expansion from earlier is applied to to gt,i(θt,i−

θ∗i ) to get part of the regret bound by summations on i ∈ d for the ft(θt)−ft(θ∗)
and subsequently on t ∈ T for the points on convex functions. Both summations
started at i = 1, and t = 1. So in turn,

R(T ) ≤
i=1∑
d

(θ1,i − θ∗i )
2
√

n̂1,i

2α1ξdecay(1− µ)
+

d∑
i=1

T∑
t=1

(θt,i − θ∗i )
2

2ξdecay(1− µ)

(√
v̂t,i

at
−
√

v̂t−1,i

at−1

)

+
µαG∞

(1− µ)
√
1− ν(1− γ)2

d∑
i=1

∥g1:T,i∥2 +
αG∞

(1− µ)
√
1− ν(1− γ)2

d∑
i=1

∥g1:T,i∥2

+

d∑
i=1

T∑
t=1

µt(θ
∗
i − θt,i)

2
√
n̂t,i

2αtξdecay(1− µt)

becomes

R(T ) ≤ D2

2αξdecay(1− µ)

d∑
i=1

√
T v̂T,i +

(1 + µ)αG∞

(1− µ)
√
1− ν(1− γ)2

d∑
i=1

∥g1:T,i∥2

+
D2

∞G∞
√
1− ν

2αξdecay

d∑
i=1

T∑
t=1

µt

√
t

(1− µt)

after factoring the third and fourth terms and considering that ∥θt − θ∗∥2 ≤ D
paired with ∥θm − θn∥∞ ≤ D∞. Also, αt = α/

√
t was substituted into the

inequality [9].
Using an upper bound on the last term in the inequality by

T∑
t=1

µt

√
t

(1− µt)
≤

T∑
t=1

λt−1
√
t

(1− µ)
≤ 1

(1− µ)(1− λ)2

in which

R(T ) ≤ D2

2αξdecay(1− µ)

d∑
i=1

√
T v̂T,i +

(1 + µ)αG∞

(1− µ)
√
1− ν(1− γ)2

d∑
i=1

∥g1:T,i∥2

+

d∑
i=1

D2
∞G∞

√
1− ν

2αξdecayµ(1− λ)2
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becomes the regret bound. But this is assuming the user does not enter in
negative decay rates for µ, ν, in which this regret bound becomes invalidated
apart from the control term ξdecay in the settings because of its outer absolute
value function [9].
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