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Abstract
Many measurements of astronomical objects involve transverse vectors, directions tangent to the Celestial Sphere, such as 

polarization vectors, jets, major and minor axes, to name a few.  Applying the Hub Test to a sample of transverse vectors yields 
measures of the correlations among the vectors’ directions. How well do the directions aim toward points on the sphere, i.e. do they 
convergence? Do the directions avoid some point on the sphere, i.e. do they divergence? Judging significance requires developing 
statistics of samples of randomly directed transverse vectors, which is what this paper describes. Many artificial samples with 
randomly directed transverse vectors are created and the Hub Test is applied to each. The many results make distributions that are fit 
by suitable formulas. Thus probability distributions can be recovered by knowledge of  the parameters, a great reduction in storage 
space. The collection of parameters for the many distributions makes the reference Library, a compact archive of statistical informa-
tion. Having such a Library streamlines the process of  finding the significance of Hub Test results. Two computer programs are 
provided in the Appendices so that creating the distribution parameter data can be repeated.
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1. Introduction

Many of the astronomical quantities observed are or are related to vectors pointing perpendicular to the line-of-sight, tangent to 
the Celestial Sphere. We have, for example, the polarization direction of electromagnetic radiation and the direction of asymmetries 
like jets. It is natural to ask if the directions measured for a sample of sources are correlated, aligned. But ‘aligned’ can have a number 
of meanings.

The Hub Test of alignment extends the transverse directions, making Great Circle geodesics on the Celestial Sphere. The 
transverse directions are perfectly aligned if they intersect at some point H on the sphere. The directions are well-aligned when the 
Great Circles converge in a small area near some point Hmin . The Hub Test can find correlations for samples with hubs Hmin that are 

near the sources as well as the distant Hubs that other alignment tests would also detect.
The Hub Test differs from other tests that evaluate the correlations of transverse vectors dispersed over the Celestial Sphere. The 

notion of alignment is different. The idea that transverse vectors can align with a point on the sphere, focused as in Fig. 3, differs 
from the requirement that transverse vectors align because they point in the same direction. ‘Pointing in the same direction’ means 
having the same position angle, parallel. Being parallel is not required with the Hub Test when, as in Fig. 3, the transverse vectors 
focus on a nearby point. The `S’ and `Z’ tests, and similar tests, find alignments by comparing polarization position angles. Compar-
ing position angles directly at different points on the curved surface of a sphere is complicated by parallel transfer. Such complica-
tions have been faced and resolved and the `S’ and `Z’ tests are well documented and reliably detect that type of alignment. Refs. 1-5.

This article describes a way to produce statistics for the Hub Test. The Hub Test is described in more detail in Ref. 4. However, 
any quantity obtained by calculation from observations has a significance determined by the statistics of identical procedures applied 
to random data. The goal here is to create a ‘Library’ of statistics for a large number of artificial cases. Then one is able to estimate 
the significance of an observed sample by reference to the ‘Library’ of artificial cases, for use when such an estimate is sufficient. 
Avoiding the process of creating statistics for each observed sample may be a convenient time-saver.

The process is split into several parts. First, a computer program generates many ‘random runs’, with each ‘run’ an application of 
the Hub Test to a sample with randomly directed transverse vectors. The data is collected and stored in ‘runData’ data files. A 
discussion appears in Sec. 2 and the FORTRAN-90 program in Appendix A performs the tasks.

Next, by the Mathematica program in Appendix B, the outcomes of those random runs form distributions which can be fit by 
suitable functions. The process is discussed in Sec. 3. Those fitting functions have three parameters, the scale constant, the location of 
the peak and the distribution width. By storing the parameters in a data file, ‘fitData’, one can reconstitute the distributions and make 
probability distributions. For the probability distributions, the scale constant is fixed by the requirement that a probability distribution 
must integrate to unity. Thus the probability distributions are fixed by the values of two parameters, the location of the peak and the 
half-width.

Once the fitData file is built, one can then apply the Library to observed samples whose alignments have been measured with the 
Hub Test. For an experimentally observed sample, one can interpolate the Library’s cases. One gets a probability distribution for 
random data by interpolating the Library data with the observed sample by comparing two properties, the number of sources and the 
root-mean-square sample radius. Or, another path is possible. One can fit the Library data with fitting functions for the peak and half-
width. Then substitute the observed sample’s properties to find a candidate probability distribution for the observed sample.  

This article deals with the first and second steps, generating random runs and fitting the resulting distributions. Applying the 
Library to find the significance of Hub Test results for observed samples is a topic for another article, Ref. 7.  

2. Generating Random Runs

The Hub Test, Ref. 6, is based on the alignment of transverse vectors with points on the Celestial Sphere. In Fig. 1, the “alig-
nment angle” η of polarization direction ψ with the point H on the sphere is the acute angle η between two great circles at S,  0° ≤  η  ≤  
90° . The alignment angle η measures how well the polarization direction  vψ matches the direction vH  toward the point H.  Perfect 

alignment occurs when η  =  0° and the two great circles overlap. Perpendicular great circles, η   =  90°, indicates maximum “avoi-
dance” of the polarization direction vψ with the point H on the sphere. 
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Figure 1: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear 
polarization direction  vψ lies in the tangent plane and determines the purple great circle on the sphere. A point H on the sphere 

together with the point S determine a second great circle, the blue circle drawn on the sphere. Clearly, H and S must be distinct in 
order to determine a great circle. The angle η measures the alignment of the polarization direction ψ with the point H. 

With N sources Si, i  =  1, ..., N, there are N alignment angles ηiH at each point H . One can calculate an average alignment angle 

η at H,

η(H)  =  1

N
∑i=1

N ηiH  , (1) 

where 
cos( ηiH  ) = | vψ.vH  |  , (2)

cos( ηiH  ) = | 
cosδS cosψ sinδH + cosδH sin(αH-αS) sinψ - cos(αH-αS) cosψ sinδS

1 - cos(αH-αS) cosδH cosδS + sinδH sinδS 
2

| , (3)  

where α and δ are the longitude and latitude of the ith source S and the point H. The notation ‘α’ and ‘δ’ may evoke an association 
with Right Ascension and Declination, but the formulas work with the longitudes and latitudes of any astronomical coordinate 
system. Each angle ηiH is taken to be the acute angle solving (2) or (3). If the ηiH are acute, then the average alignment angle η(H) at 

the point H must also be acute. The alignment angle η(H) is a function of position H on the sphere. It is symmetric across diameters,  

η(H)  =  η(-H), because H and -H lie on the same great circles through the sources Si.  

For random polarization directions, the average  η(H) should be near 45°, since each alignment angle ηiH  is acute, 0° ≤ ηiH  ≤ 90°, 

and random polarization directions should not favor large values or small values of ηiH , and, therefore, average to about 45°. But, 

recalling Brownian Motion, the sum in Eq. (1) on the right is a sum over random angles ηiH  scattered above and below 45°. By 

Random Walk theory, the sum of (ηiH  - 45°) should go like N1/2, so η(H) should differ from 45° by an amount proportional to N-1/2. 

Therefore as N grows larger for randomly directed samples, the average  η(H) should approach nearer to 45°. Those expectations are 

confirmed by the data. See Figs. 8, A1, and A3 in Ref. 7.
Points H where the average alignment angle  η(H)  is smaller than 45°, the great circles tend to converge and where the angle 

η(H)  is larger than 45°, the great circles can be said to diverge. The extremes of the function  η(H)  measure extreme convergence and 

extreme divergence of the great circles determined by the polarization directions. 
In this article and notebook, we often use “min” to label the smallest alignment angle ηmin, the minimum value of the function 

η(H), Eq. (1). We have  ηmin  =  η(±Hmin) ≤  η(H), for all H.  The associated points on the Celestial Sphere are the “alignment hubs” 

Hmin and -Hmin. Thus “min” is associated with convergence of the polarization directions. The hubs Hmin and -Hmin are points on the 

Celestial Sphere where the polarization directions are best aimed. For divergence, the “avoidance hubs”  Hmax and -Hmax locate 
places where the polarization directions most avoid, as indicated by the largest alignment angle ηmax, the maximum value of the 

function η(H). We have  ηmax  =  η(±Hmax) ≥  η(H), for all H. And, almost always, an avoidance related quantity is labelled with 

“max”.
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To avoid clumping, we create an artificial sample in the form of a square array. It follows that the number of sources N must be a 
perfect square, N  =  m2 for some integer m. One expects a square array to be uniformly spaced over the region. Even though the array 
is on the surface of a sphere with its inherent curvature, we call it a ‘square array’ or sometimes a ‘square matrix’.

The square array of sources is meant to approximate a circle of nominal radius on the sphere. See Fig. 2. The square is midway 
between being inscribed within and being superscribed about the circle. The radius of the circle is called the ‘nominal radius’ ρNOM, 
the arc distance from the center of the circle to a point on the circle. The sample array is rotated to avoid coincidences with the 
orientation of the grid.  

For bookkeeping purposes, the samples are listed by the number of sources N and the nominal radius ρNom, (N, ρNOM). A great 
many random runs are processed for each sample (N, ρNOM). At the time of writing, there are 294 samples (N, ρNom), the grid  has 
1° spacing, and each sample is processed with 10,000 random runs.

For calculations and comparison with observed samples, the root-mean-square radius ρRMS, which is also shown in Fig. 2, is 
considered a better representation of the sample’s size. It is straightforward to calculate the rms radius of any sample, so using ρRMS 
for comparisons is convenient. 

Figure 2:  Grid, source array, and circles. An artificial sample of  N  =  81 sources (green) arranged in a square array on the surface of 
the Celestial Sphere. The square approximates a circle (red) with a ‘nominal’ radius ρNom  =  16°.  The blue circle has the root-mean-
square radius of the square array, here  ρRMS  =  12.5°.  For each random run, the sources (green) are assigned random polarization 
directions (not shown). Then the alignment function η(H), Eq. (1), is calculated at the 21,400 grid points H (brown). 

The Fortran-90 computer program in App. A generates the random runs by creating the grid and the square array of sources. 
Then the program assigns random polarization directions to the sources and evaluates the function  η(H) on the grid. The maximum 

and minimum values of  η(H) are saved, as well as some other quantities of interest,  such as the hubs Hmin and Hmax, which are the 

grid points where the extreme values occur on the sphere. Each saved data file has the random run data associated with just one 
number of sources N but all the region radii ρNom, (one N, all ρNom). The data files are saved as plain text and are available via the 
links in Ref. 8. 
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3. Fitting the Distributions of Random Run Quantities

Next, we download, one at a time, the files containing the random run data. Each file has the random run data for a given  
number of sources N and all the  nominal radii ρNOM. The data is analyzed by the Mathematica notebook in App. B, one value of N 
at a time. 

The random run data includes the smallest alignment angle ηmin for alignment and the largest alignment angle  ηmax  for  avoid-

ance, as well as other results. For each case (N, ρNom), the random run values for  ηmin and  ηmax  are collected in bins, forming 

histograms. As illustration, two of the histograms are displayed in Figs. 3 and 4.
An examination of the histogram for ηmin in Fig. 3 and the histogram for ηmax in Fig. 4 reveals that the distributions are steeper 

on the side toward   η → 45°. For ηmin, the histogram is steeper on the high η side, while, for  ηmax, the histogram is steeper on the low 

η side. One finds that all the distributions of  ηmin and ηmax  show steep slopes toward 45°. See, for example, Figs. B2 and B3. This 

behavior appears to be an inherent property of the statistics.  
For fitting random data distributions, the most convenient fitting function would be Gaussian. But Gaussians are symmetric 

about the peak, so we must entertain some other function. Fortunately, we find that the steep slope can be accommodated by multiply-
ing the Gaussian by a step function, making a ‘Step-Gaussian’. For  ηmin, the step function is unity below the peak and vanishes above 

the peak, while, for  ηmax,  the step function is unity above the peak and vanishes below the peak. 

For  ηmin in Fig. 3, since the step function vanishes to the right of the peak, that makes the right side of the fitting function 

descend rapidly to zero as η increases past the peak. One can say that the less populated right side pushes probability to the left. 
However, on the left, the step function is nearly unity. And the left side is more important than the right side, because the left 

side is where the smallest alignment angles ηmin for well-aligned samples are found. Thus, for small ηmin, the tail of the curve drops 

off like a Gaussian, but with a probability gain of some 20% over a symmetric Gaussian. The normalization factor can be calculated 
directly, see Ref. 7. 

Appropriately revised comments apply for the distribution of the largest avoidance angle  ηmax in Fig. 4. For the measure of 

avoidance ηmax, the distribution occurs above 45°, with the steep side on the left of the peak, the side toward 45°. See Fig. 4. The 

appropriate step function vanishes to the left and is unity to the right of the peak. Again, the important side, the right side, has a 
Gaussian dropoff for large η, but with a 20% increase over a symmetric Gaussian distribution.

N = 121

R = 10000

ρRMS = 1.53 deg.

35 ° 40 ° 45 °
0

500

1000

1500

ηmin

Δ
R

2. ° = ρNominal

Figure 3:  The histogram and fit for N  =  121  and  ρNom  =  2°, the distribution of the R  = 10,000 values of the smallest alignment 
angle ηmin  from the random runs. As noted in the text, the histogram approximates the shape of the probability distribution, aside 

from a normalizing scale factor. These distributions are fit by a Gaussian multiplied by a step function, a ‘Step-Gaussian’. Thus, the R  
=  10,000 values can be represented by the two parameters, the location of the peak and half-width, needed to determine the fitting 
function.
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Figure 4:  The histogram and fit for N  =  121  and  ρNom  =  2°, the distribution of the R  = 10,000 values of the largest avoidance 
angle ηmax  from the random runs. These distributions are fit by a Gaussian multiplied by a step function, a ‘Step-Gaussian’. 

Consider the histogram of the smallest alignment angles ηmin from R  =  10,000 runs that is displayed in Fig. 3. The height of a 

bar in Fig. 3 is the number ΔR of the random runs that gave a value of ηmin in the interval δη, the width of a bin. Thus, the quantity 

ΔR/R is the likelihood that random runs give a value of  ηmin in the bin. The histogram has the shape of the probability distribution  

Pmin(η) for ηmin, differing by a normalization factor. Instead of integrating to 10,000, a probability distribution is normalized and 

integration yields unity. 

The probability distribution is normalized, 1  =  ∫ Pmin η .  Since the sum Σ ΔR  =  R, it follows that 1  =  Σ ΔR

Rδη
δη and that 

Pmin(η)  ≈ ΔR

Rδη
 . Therefore, by fitting the histogram, we have also found the probability distribution Pmin(η).

As noted above, there is a complication. In each figure, Figs. 3 and 4, the side toward  ηmin → 45° has a steeper slope than the 

other side. The steeper slope is on the right in Fig. 3 and on the left in Fig. 4. Thus, to accommodate this behavior, the fitting curve 
shown in blue in Fig. 3 combines a Gaussian with a unit step-function, one that is unity well to the left of the peak, and zero well to 
the right. We choose the Step-Gaussian distribution function

fmin(η)  =  a 1 + 
4

(η-η0-b)

b 
-1


-
1

2


η - η0

b

2

, (4)

To fit the histogram for ηmax in Fig. 4, we have another step function, but with a couple of sign changes,

fmax(η)  =   a 1 + 
-4

(η-η0+b)

b 
-1


-
1

2


η - η0

b

2

, (5) 

where the scale factors a, half-widths b , and values η0 at the peaks are varied to fit the  ηmin and  ηmax histograms like those in Figs. 3 

and 4. These equations appear again in Sec. B5 of App. B,  Eqs. (B4, B5), where the histograms are fit.  

There are two free variables in Eq. (4) and two more in Eq. (5) that can be chosen so that a scaled version fits random run 
histograms like the ones shown in Figs. 3 and 4. We call η0 the ‘peak’ value, the value of η at the peak, and b is called the ‘half-width’ 

usually denoted σ. The presence of the step functions  1 + 
±4

(η-η0∓σ)

σ 
-1

 moves the peak and half-width a little from their Gaussian 

values without the step function. The fitting function has two parameters just like a Gaussian, namely the peak η0 and the half-width 

σ. 
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Note that the step function is introduced without an associated parameter. Adding adjustable parameters was deemed ineffective 
at producing better fits. It is true that, with additional parameters, the step function can be adjusted to give better fits than without 
such parameters. One could reasonably argue that the ‘4’ in the step functions could be replaced by some parameter ‘c’ and varied. 
However, we stay with ‘4’ because ‘4’ gives comparable fits to those of the best fits found when ‘c’ was varied. 

We did not mention that ‘a’ in Eq. (4) and (5) is a free variable. The scale factors ‘a’  are largely ignored because we are 
interested in the probability distributions. With a probability distribution the factor ‘a’ is replaced by a function of σ that is deter-
mined by the requirement that the likelihood of all possible outcomes be unity.

Upon completion of these steps, we have a set of four parameters,  η0
min, σmin,  η0

max, and σmax, for many samples (N, ρNom). 

The file containing the output, the fitData table, is available via the link in Ref. 9. 
Our work here is done. Based on the samples treated here, the parameters for an experimentally observed sample can be 

estimated and a value for the significance of the Hub Test results can be found. As mentioned previously, the process of applying the 
results of this article to real data is treated in another article, Ref. 7. 

4. Conclusion 

To conclude this work, let us give a brief overview of the rest of the story, completed in Ref. 7. Consider only the case of 
alignment, with the value of the smallest alignment angle   ηmin  of the sample polarization directions with any point on the sphere. 

Correlations with the largest avoidance angle  ηmax have a similar story.

Given the Step-Gaussian function in Eq. (4), the problem of determining the significance of an observed ηmin reduces to 

estimating the values of two parameters,  η0 and σ, since those two values determine the probability distribution Pmin(η). The 

distribution  Pmin(η) is the same as  fmin(η) in Eq. (4) except for normalization, we must change the scale factor ‘a’ so the integral of   

Pmin(η) over all η is unity. 

By knowing the observed values of N and ρRMS of an experimentally observed sample, we can estimate the parameters  η0
min 

and σmin by comparing the observed N and ρRMS with the  values of (N , ρRMS) of the collection of  η0
min and σmin found in this 

article. The comparison yields an estimate of the probability distribution  Pmin(η) of the smallest alignment angle ηmin for the observed 

sample. 
Once determined, the probability distribution for an observed sample can be integrated to obtain the significance of an observed  

ηmin. For example, to find the significance, or p-value, of the smallest alignment angle ηmin, one finds the likelihood of smaller 

random run values by integrating Pmin(η) from below, 

p(ηmin)  =  ∫
-∞

η
min Pmin(η) η . (6)

Thus, by Eqs. (4) and (6) the significance p of the correlated behavior indicated by the smallest alignment angle ηmin rests on finding 

the two probability distribution parameters  η0
min and σmin in (4), where these were written η0 and b. For details, consult Ref. 7.

Quantitative measures, like ηmin  and ηmax, require statistics to figure out how likely it is that their values reflect some unusual 

process or characteristic that is in need of explanation. Results that are usual or commonplace contribute in bulk to the overall picture. 
But it is the occasional and unlikely outcomes that signal special attention. Observing bulk random linear polarization directions from 
a number of sources would compel only an explanation of why those sources are linearly polarized. When the directions point 
significantly to some specific location on the Celestial Sphere, then additional explanation is expected. This paper lays the founda-
tional drudge work that contributes to the goal of distinguishing usual outcomes from those that are special.
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The various files and versions in Ref. 10 and 11 may be updated out-of-synch with one-another. 
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! Appendix A
! A Fortran-90 Computer Program for Generating Random Runs
! CONTENTS
! A1. Introduction
! A2.  Begin the program, INTERFACE blocks
! A3.  Type Declarations
! A4.  Set parameters to control the program
! A5.  Construct the grid
! A6.  Construct samples and apply the Hub Test
! A7.  Save results to files, end program
! A8.  External functions
!23456789112345678921234567893123456789412345678951234567896123456789712345678981234567899123456789
! Preface
! We use standard right-handed Cartesian coordinates x,y,z. For spherical coordinates,
! the latitude is -Pi/2 at the South Pole (x,y,z) = (0,0,-1) and +P/2 at the North Pole (0,0,+1).
! At the Equator, lat = 0 . Angles are in radians unless stated otherwise.
! This file: 20220515RunDataGenerator6.f90, the sixth version.
! To download a copy, follow the link in Ref. 11.
!
! A1. Introduction
!      The Hub Test evaluates the correlation of transverse vectors on a sphere such as the
! polarization directions of light from astronomical sources. Statistics are
! needed to judge the significance of the Hub Test results. This program applies
! the Hub Test to randomly directed transverse vectors. Each application of the Hub Test is
! called a ‘random run.’
!       The program starts with INTERFACE blocks in Sec. A2, because there are external programs
! defined in Sec. A8 after the END PROGRAM statement. The INTERFACE blocks are followed
! by Type Declarations in Sec. A3.
!       Some parameters controlling the program are set in Sec. A4 Settings. In Sec. A5, we define
! a grid of evenly spaced points on the Celestial Sphere. These grid points are the points H on the
! sphere where the function Eta Bar is evaluated. It is only necessary to cover one hemisphere because
! the main Hub Test function is symmetric across diameters. The grid covers the hemisphere centered
! on the positive y-axis.
!    Artificial samples are constructed and evaluated in Sec. A6. See Fig. 2 in the text. Each sample is a
! a square array, so the number of sources N must be a perfect square. The number N is called
! nSrc in the program. The size of the array is intended to approximate a circular region with a
! nominal radius RhoNom.  By the ‘radius’ of a circular region on a sphere, we mean the angular distance
! from the center to the edge. The two quantities N and RhoNom determine a single case.
!    Next, the Hub Test is applied, still in Sec. A6. Given one of the artificial samples, we calculate the
! average alignment angle function EtaBar at the grid points. The maximum and minimum of the alignment
! function are collected along with the grid points where the extreme values occur. The location of these
! extrema are called ‘Hubs’. The program generates many random runs for each case of  (N,RhoNom).
! Another program, in Appendix B, takes the random runs and determines Hub Test statistics.
!     In Sec. A7, the collected data is written to files. Each file name contains the number of sources,
! one N for each file. The results for all the region radii RhoNom are included in the file with the given N.
! Thus, there is one file for N = 9 sources, one for N = 16 sources, etc, with each file containing all the
! array sizes RhoNom. Then the program ends.
!     In Sec. A8, some external functions are defined for use in the program.
!
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program RunData
                    ! A2. INTERFACE Blocks
!
IMPLICIT NONE
                    ! The functions are defined below, after the program ends.
INTERFACE   ! er, radial unit vector to a point on the Celestial Sphere at a given longitude, latitude
    FUNCTION er(Lon, Lat) RESULT  (w) !Lon, Lat = longitude, latitude
        REAL, DIMENSION(3) :: w
        REAL, INTENT(IN) :: Lon,Lat  ! longitude and latitude
    END FUNCTION
END INTERFACE
INTERFACE   ! eN, local North at the point on the sphere with the given longitude, latitude
    FUNCTION eN(Lon, lat) RESULT  (w)
        REAL, DIMENSION(3) :: w
        REAL, INTENT(IN) ::Lon,Lat  ! longitude and latitude
    END FUNCTION
END INTERFACE
INTERFACE   ! eE, local East at the point on the sphere with the given longitude, latitude
    FUNCTION eE(Lon, lat) RESULT  (w)
        REAL, DIMENSION(3) :: w
        REAL, INTENT(IN) ::Lon,Lat  ! longitude and latitude
    END FUNCTION
END INTERFACE
INTERFACE   ! the longitude at the point on the sphere with the given radial vector r
    FUNCTION LonFromR(r) RESULT (w)
        REAL :: w
        REAL, INTENT(IN) :: r(3)   ! the given radial vector
    END FUNCTION LonFromR
END INTERFACE
INTERFACE   ! LatFromR,  the latitude at the point on the sphere with the given radial vector r
    FUNCTION LatFromR(r) RESULT (w)
        REAL :: w
        REAL, INTENT(IN) :: r(3)   ! the given radial vector
    END FUNCTION LatFromR
END INTERFACE
INTERFACE   ! Rotation matrix for a rotation about the x-axis through an angle theta
    FUNCTION rotAboutX(theta) RESULT  (w)
        REAL, DIMENSION(3,3) :: w
        REAL, INTENT(IN) :: theta   ! the rotation angle
    END FUNCTION
END INTERFACE
INTERFACE   ! Rotation matrix for a rotation about the y-axis through an angle theta
    FUNCTION rotAboutY(theta) RESULT  (w)
        REAL, DIMENSION(3,3) :: w
        REAL, INTENT(IN) :: theta   ! the rotation angle
    END FUNCTION
END INTERFACE
INTERFACE   ! Rotation matrix for a rotation about the z-axis through an angle theta
    FUNCTION rotAboutZ(theta) RESULT  (w)
        REAL, DIMENSION(3,3) :: w
        REAL, INTENT(IN) :: theta   ! the rotation angle
    END FUNCTION
END INTERFACE
INTERFACE   ! The cross product r0xr1 of two vectors r0 and r1
    FUNCTION cross(r0,r1) RESULT  (w)
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        REAL, DIMENSION(3) :: w
        REAL, INTENT(IN) ::  r0(3), r1(3)   ! the two vectors
    END FUNCTION
END INTERFACE
!

                    ! A3. Type declarations
!
!   General
REAL, PARAMETER ::  PI  = 4* ATAN(1.)    ! the constant pi, 3.14159...
REAL ::  rotZtoY(3,3)
INTEGER :: i,j,k,m,n,ir, iN ! dummy indices
REAL  ::  x,y,z     ! dummy variables, usually Cartesian coordinates
REAL, DIMENSION(3) :: r, r0, r1, r2, r3, r4, r5, r6   ! dummy vectors
REAL :: theta   ! generic angle
!   Grid
INTEGER, PARAMETER ::   MaxDimGrid = 30000    ! maximum number of grid points
INTEGER :: nGrid    ! the number of grid points
REAL  :: LonH, latH, LonGrid0(MaxDimGrid), LatGrid0(MaxDimGrid) ! initial longitude and latitude of the grid points
REAL  :: LonGrid(MaxDimGrid), LatGrid(MaxDimGrid) ! longitude and latitude after the grid is rotated
REAL ::  Rgrid(MaxDimGrid,3)    ! unit radial vectors to the grid points
REAL ::  LonRand, LatRand ! Random longitude and latitude
!   Samples.
!   Each sample is identified by (nSrc, RhoNom), the number of sources and the region’s nominal radius
!   Number of sources
INTEGER, PARAMETER ::   MaxNumSources = 1600    ! maximum number of sources
INTEGER, PARAMETER ::   MaxNumOfnSrc = 25    ! maximum number of different values of nSrc
INTEGER  ::   nSrcList(MaxNumOfnSrc) ! list of the numbers of sources evaluated in the program
INTEGER  ::   nSrc ! number of sources
INTEGER  ::   rootNsrc    ! square root of the number of sources
INTEGER  ::   NumberOfnSrc  ! number of distinct nSrc cases considered
!   Nominal radius of the sample’s region
INTEGER, PARAMETER ::   MaxNumRgnRadii = 25    ! maximum number of nominal radii considered
REAL  ::  RhoNomList(MaxNumRgnRadii)  ! the list of nominal radii evaluated in the program
INTEGER ::  numberOfRgnRadii    ! the number of region radii evaluated in the program
!   The square array of sources
REAL  ::    LonS, latS, LonSource0(MaxNumSources), LatSource0(MaxNumSources) ! initial source longitudes 
!           and latitudes
REAL  ::    LonSource(MaxNumSources), LatSource(MaxNumSources) ! final longitude and latitude after moving
REAL ::     RSource(MaxNumSources,3) ! unit radial vectors to the sources from the origin
REAL ::     NSource(MaxNumSources,3),ESource(MaxNumSources,3) ! local North, local East at each source, nit vectors
REAL ::     rCenterSrc0(3), rCenterSrc(3),LonCenterSrc,LatCenterSrc ! unit radial vectors to the center before and
!            after moving the sources,  longitude, latitude
REAL, DIMENSION(3) ::  rSrcAve   ! unit radial vectors to the center, approx. equal to but calculated differently 
!                       from rCenterSrc
REAL ::     aSM, daSM  ! arc length of one side of the square array of sources, nearest neighbor distance
REAL ::     dotRSrcWithAve    ! dot product of each source to the center of the sample
REAL ::     rSrcSum(3)   ! the sum of the sources’ unit radial vectors
REAL ::     RhoRMSsquared, RhoRMS    ! root mean square radius squared, root mean square radius
REAL  ::    psiSource0(MaxNumSources),psiSource(MaxNumSources)  ! polarization position angle
!   Mixed quantities, Grid with sources, grid with hubs, source with polarization, etc
REAL    ::  rSrcxrGrid(MaxNumSources,MaxDimGrid,3) !  SxH, unit vector, cross product of source S and grid point H
INTEGER, PARAMETER ::   minGridCenterToHmin = 2  ! minimum number of grid spaces between hub Hmin 
!                               and sources’ center
INTEGER, PARAMETER ::   minGridCenterToHmax = 2 ! minimum number of grid spaces between hub Hmax 
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!                               and sources’ center
REAL :: rSrcxPsiSource(MaxNumSources,3) ! the cross product of the radial source vector with the polarization direction,
!             a unit vector
!   We split the random runs into units of random runs each.
INTEGER ::   nRunMax       ! the number of random runs in one unit
INTEGER ::   kiloRunMax    ! the number of units of random runs generated for each sample (nSrc,RhoNom)
INTEGER  ::  nRun, kiloRun  ! run # counter, kilorun # counter
!   Results
REAL :: sumForjEtaBar !   total of the alignment angles Etaij from the sources to the grid point j
REAL :: jEtaBarToGrid(MaxDimGrid) ! average of the alignment angles eta from the sources to each grid point j
REAL :: EtaBarMin, EtaBarMax !   minimum, maximum of the average alignment values jEtaBarToGrid
REAL :: EtaBarMin1, EtaBarMax1 !  copies of minimum, maximum of the average alignment values jEtaBarToGrid 
!                       needed for logic
REAL :: jEtaBarMin(2), jEtaBarMax(2)    ! (jmin, EtaBarMin) and (jmax, EtaBarMax), grid point ID# j and extreme 
!               alignment angle value
REAL :: SourceCenterToH ! angle from rSrcAve to grid point j calculated for all j, saved only for the min eta hub jmin 
!       and max eta hub jmax
LOGICAL :: okMin, okMax ! As average alignment angles are found these are TRUE for the smallest (largest) average 
!                alignment angle so far
REAL :: OutRunData(MaxNumSources,24) !  output data to be saved in a file
CHARACTER (len=20) :: file_name ! variable file name for output data
!   Set the grid parameters and the source square array parameter (‘SM’ for Source Matrix)
REAL, PARAMETER ::  dTheta1  = 1.0*(2*Pi/360) ! Grid spacing in radians
REAL, PARAMETER ::  gridExtent  = 1.6 ! the angle in radians from the pole to the grid edge, Pi/2 is a 
!                                   hemisphere, Pi is a sphere
REAL, PARAMETER ::  thetaSM  = 0.015 ! Rotate the source array to avoid coincidences with the coordinate axes
PRINT *,    ‘The nearest neighbor grid spacing is  ‘, dTheta1, ‘ radians and ‘, dTheta1*(360./(2.*Pi)),’ degrees. ‘
PRINT *,    ‘The Grid extends from the pole by an arc of  ‘, gridExtent, ‘ radians, Pi/2 would cover a hemisphere.’
PRINT *,    ‘The Source Array is rotated by an angle of ‘, thetaSM, ‘ radians.’
!

                    ! A4. Set parameters to control the program
!
!   Set the number of sources N. Note that nSrc = N must be a perfect square, 9, 16, 25, ...
NumberOfnSrc = 14 ! The number of values of nSrc processed
nSrcList(1:NumberOfnSrc) =  (/9,16,25,36,49,64,81,100,121,225,256,324,625,900/)
!   Set the nominal region radii RhoNom. Note that the radii are in radians
numberOfRgnRadii = 21   ! The number of nominal region radii processed
RhoNomList(1:numberOfRgnRadii) =   (/1./7,1./6,1./5,1./4,1./3,1./2,1.,3./2,2.,3.,4.,6.,8.,10., &
            & 15.,16.,24.,32.,42.,52.,64./)*2.*Pi/360. ! nominal region radii in radians
PRINT *,    ‘The list of the numbers of sources evaluated is  ‘, nSrcList(1:NumberOfnSrc)
PRINT *,    ‘The nominal region radii in radians are ‘, RhoNomList(1:numberOfRgnRadii)
PRINT *,    ‘The nominal region radii in degrees  are ‘, RhoNomList(1:numberOfRgnRadii)*(360./(2.*Pi))
! The number of random runs to be generated for each case (N, RhoNom)
! Usually, I set nRunMax = 1000.  Then, for each case (N,RhoNom), we have # = kiloRunMax*nRunMax.
nRunMax = 1000  !The number of random runs in one unit
kiloRunMax =  10  !The number of units of random runs for each case (N,RhoNom)
PRINT *,    ‘The number of cases (N,RhoNom) is ‘, NumberOfnSrc*numberOfRgnRadii
PRINT *,    ‘The number of random runs for each case (N,RhoNom) is ‘, kiloRunMax*nRunMax
PRINT *,    ‘Combining all cases, the total number of random runs is ‘, numberOfRgnRadii*kiloRunMax*nRunMax
!
CALL RANDOM_SEED()  ! Needed for pseudo-random number generator

                    ! A5.  Construct the Grid, an array of points, uniformly spaced in longitude and latitude
!
! When gridExtent = Pi/2 = 1.57, the points on the sphere form a grid covering one hemisphere.
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! Initially, the grid is constructed centered on the North Pole, for convenience.
! The grid has points separated by a fixed amount, dTheta1,  in longitude and latitude.
! Once set up, the grid is rotated to the positive y-axis, so the grid covers the hemisphere with y > = 0.
! The sample is constructed very near to the y-axis. Thus, the center point of the sample is close to
! yHAT = (0,1,0) and the center of the grid is located at the point (0,1,0).
!
!                       Initially, build the grid centered on the North Pole, (0,0,1)
    n=0   ! n is the counter for the grid points
    j=1   ! j is the counter for latitude
    i=1   ! i is the counter for longitude
DO  WHILE (j < gridExtent/dTheta1)   ! latitudes run from PI/2 to PI/2 - gridExtent
    latH = PI/2. - j*dTheta1 - dTheta1/SQRT(2.)  ! latitudes start at the pole and work away
    DO  WHILE (i < CEILING(2.*Pi*COS(latH)/dTheta1))    ! longitudes run from 0 to 2Pi, spacing depends on latitude
        LonH = i*dTheta1/(COS(latH))    ! longitude
        LonGrid0(n)=LonH        ! save the longitude in a table
        LatGrid0(n)=LatH        ! save the latitude in a table
        n=n+1   ! that grid point is done, move on
        i=i+1    ! that longitude is done, move on
    END DO
        i=1   ! reset longitude index to its initial value
        j=j+1 ! that latitude is done, move on to the next latitude
END DO
    nGrid = n  ! the number of grid points
PRINT *,    ‘The number of grid points is ‘, nGrid
!
!   rotation matrix: rotate about the x-axis so that zHAT goes to yHAT, yHAT goes to -zHAT, xHAT fixed
rotZtoY = RESHAPE((/ 1,0,0,0,0,-1,0,1,0 /), SHAPE(rotZtoY))
!   Check the rotation:
        !x=1.
        !y=10.
        !z=100.
! PRINT *, ‘rot.(1,10,100) = ‘, matmul(rotZtoY,(/x,y,z/))    !Check zHAT goes to yHAT, etc.
! rotate the grid
        k=1  ! k is the counter for grid points
DO  WHILE(k<=nGrid)
        r0 = er( LonGrid0(k),LatGrid0(k) )  ! 3D coordinates of the grid point
        r = MATMUL(rotZtoY,r0)              ! 3D coordinates after being rotated z to y
            Rgrid(k,1) = r(1)       ! x-coordinate of the grid point after the grid is rotated z to y
            Rgrid(k,2) = r(2)       ! y-coordinate
            Rgrid(k,3) = r(3)       ! z-coordinate
        LonGrid(k) = LonFromR(r)    ! longitude of the grid point after the rotation
        LatGrid(k) = LatFromR(r)    ! latitude of the grid point after the rotation
            k=k+1   ! grid point k is done, move on to k+1
END DO
!

                    ! A6. Construct samples and apply the Hub Test
!
! The samples are square arrays of sources, so the number of sources for a given sample must be a
! perfect square, N = m^2. Currently there are 14 cases of N running from 9 to 900, May 2022.
! The samples are constructed centered very close to the y-axis, near the point (0,1,0) on the sphere.
! The square array that is meant to uniformly cover a circle with a nominal radius, ‘squaring the circle.’
! The size of the array is adjusted to approximate a circular area with a nominal radius, the angular
! distance from the center to the edge. There are 21 nominal radii from 1/7 degree to 64 degrees,
! With 14 cases of N, each with 21 different sizes of array, there are 14*21 = 294 samples.
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!
! Select N, one N at a time
DO 2000 iN = 1,NumberOfnSrc     ! index iN picks the number of sources N from the list nSrcList
        nSrc = nSrcList(iN) ! the number of sources, nSrc = N
PRINT *,    ‘For this set of cases with different RhoNom, the number of sources is nSrc = N = ‘, nSrc
       rootNsrc = NINT( SQRT( REAL(nSrc)  ) )  ! the integer square root of the number of sources
! PRINT *,    ‘n^1/2 = ‘, rootNsrc
!

                    ! A6a. Create the square array of sources, ‘SM’ stands for Source Matrix
!
!   Center the source array a little off the y-axis to avoid resonances with coordinate axes and grid points
CALL RANDOM_NUMBER(r1)  ! a random 3-vector with (x,y,z) values between 0 and 1
! In the following step, the random displacement from yHAT is small, with coordinates between -dTheta/2 and +dTheta/2
        rCenterSrc0 = (/0.,1.,0./) + dTheta1*(r1-(/0.5,0.5,0.5/) )  ! a small displacement from yHAT
        rCenterSrc = rCenterSrc0/SQRT(DOT_PRODUCT(rCenterSrc0,rCenterSrc0)) ! Make it a unit vector
! PRINT *,    ‘The center of the square array  has x,y,z coordinates ‘, rCenterSrc
        LonCenterSrc = LonFromR(rCenterSrc) ! longitude of the center of the square array of sources
        LatCenterSrc = LatFromR(rCenterSrc) ! latitude of the center of the square array of sources
! PRINT *,    ‘(longitude, latitude) of rCenterSrc = ‘, LonCenterSrc, LatCenterSrc
!
! Apply the Hub Test for each nominal radius, one radius at a time
        kiloRun = 0     ! counter for the number of random run units nRunMax processed
DO 1000 ir = 1,numberOfRgnRadii     ! index ir picks the nominal region radius RhoNom from the list RhoNomList
!Create square array of sources
        aSM = RhoNomList(ir)*((SQRT(2.)+2.)/2.) ! length of a side is about 1.7 times the nominal radius
        daSM = aSM/(rootNsrc-1)             ! The space between neighboring sources along a row or column
!
! Determine the longitudes and latitudes of the sources
        n=1  ! n is the counter for sources
DO 120  j = 1,rootNSrc  ! j is the counter for latitudes of sources
        latS = LatCenterSrc  -((REAL(rootNsrc) + 1.)/2.)*daSM + j*daSM
        DO 100 i = 1, rootNSrc  ! i is the counter for the longitudes of the sources
            LonS = LonCenterSrc +(-((REAL(rootNsrc) + 1.)/2.)*daSM + i*daSM)/(COS(latS))
            LonSource0(n)=LonS      ! save the longitude in a table
            LatSource0(n)=LatS      ! save the latitude in a table
            n=n+1       ! on to the next source
        100 CONTINUE
120 CONTINUE
!
! Rotate the square array about the y-axis by some angle thetaSM, where ‘SM’ indicates Source Matrix
! The rotation reassures that the square array is out of alignment with the grid.
DO 140 k = 1,nSrc   ! k is the counter for the sources
        r0 = er( LonSource0(k),LatSource0(k) ) ! Initial 3D coordinates of the source
        r = MATMUL(rotAboutY(thetaSM),r0)      ! Final 3D coordinates of the source
        RSource(k,1) = r(1)     ! x-coordinate of the source k after the array is rotated about y
        RSource(k,2) = r(2)     ! y-coordinate of the source k
        RSource(k,3) = r(3)     ! z-coordinate of the source k
        LonSource(k) = LonFromR(r)  ! longitude of source k after the square array is rotated about y
        LatSource(k) = LatFromR(r)  ! latitude  of source k after the square array is rotated about y
        r = eN( LonSource(k),LatSource(k) ) ! 3D components of local North at the source
        NSource(k,1) = r(1)     ! x component of local North at the source
        NSource(k,2) = r(2)     ! y component of local North at the source
        NSource(k,3) = r(3)     ! z component of local North at the source
        r = eE( LonSource(k),LatSource(k) ) ! 3D components of local East at the source
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        ESource(k,1) = r(1)     ! x component of local East at the source
        ESource(k,2) = r(2)     ! y-component
        ESource(k,3) = r(3)     ! z-component
140 CONTINUE
!
! Calculate the RMS radius of the source matrix:
        rSrcSum = (/0.,0.,0./)  ! Initially the sum is zero
DO 160  n=1,nSrc    ! n is the counter for sources
        rSrcSum = rSrcSum + RSource(n,1:3)  ! the sum of the sources’ unit radial vectors
160 CONTINUE
        rSrcAve = rSrcSum/SQRT(DOT_PRODUCT(rSrcSum,rSrcSum)) ! Unit vector to sources’ center
! The two ways to get the center of the array should agree:
!PRINT *,    ‘The difference should be small. rSrcAve - rCenterSrc  = ‘, rSrcAve - rCenterSrc
        RhoRMSsquared = 0.  ! the square of the root-mean-square radius of the source array, initially zero
DO 180 n = 1,nSrc   ! n is the counter for sources
        dotRSrcWithAve=MIN(1.,DOT_PRODUCT(RSource(n,1:3),rSrcAve)) ! dot product of the source with the array’s center.
! Note: Since RSource and rSrcAve are unit vectors, the dot product must be less than unity.
! However, when RSource and rSrcAve are the same, imprecision may push the dot product past unity.
        RhoRMSsquared = RhoRMSsquared +((ACOS(dotRSrcWithAve ))**2)/nSrc    ! Sum the squares of the distance 
!                                   to the center
180 CONTINUE
        RhoRMS = SQRT(RhoRMSsquared) ! root-mean-square distance of sources from the source array’s center, rSrcAve
!PRINT*,     ‘number of sources nSrc, nominal radius RhoNom, RMS radius RhoRMS:’, nSrc, RhoNomList(ir)*180/Pi,
!                 RhoRMS*180/Pi
!

                    ! A6b. Start the Hub Test by calculating the alignment angle function EtaBar at the grid points
!
! For each of the 294 samples, the sources are assigned randomly directed polarization directions.
! Then the function Eta Bar is calculated at the grid points.
! The maximum and minimum values of Eta Bar and their locations on the sphere are collected.
! The results for the samples are collected and saved in files, one file for each sample number N.
! Currently, there are 10,000 records for each sample (N,RhoNom), so 2,940,000 records in total.
! For the purpose of users to check this program, there is an option to reduce the number of cases to a small number.
! To run with 294 samples and 10,000 random runs each see Sec. A3 Settings.
!
! Calculate the unit vector along the cross product of the radial vectors, source i with each grid point j
DO 230 i = 1,nSrc  ! i is the counter for sources
        DO  220 j = 1,nGrid ! j is the counter for grid points
            r0 = RSource(i,1:3) ! 3D radial unit vector to the source i
            r1 = RGrid(j,1:3)   ! 3D radial unit vector to the grid point j
            r2 = Cross(r0,r1)   ! r0xr1, cross product of source and grid point
            r3 = r2/SQRT(DOT_PRODUCT(r2,r2)) ! Unit vector in direction of the cross product
            rSrcxrGrid(i,j,1) = r3(1)   ! x component of unit vector along cross product
            rSrcxrGrid(i,j,2) = r3(2)   ! y component of unit vector along cross product
            rSrcxrGrid(i,j,3) = r3(3)   ! z component of unit vector along cross product
        220  CONTINUE
230  CONTINUE
!
! Make the random runs:
    EtaBarMin = Pi  ! Set the initial minimum value of the alignment angle function. A high value on purpose.
    EtaBarMax = -Pi ! Initial maximum value of the alignment angle function. A low value on purpose.
301 CONTINUE
DO 350 nRun = 1,nRunMax    ! nRun is the counter for random runs
! Assign random polarization directions psi
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        CALL RANDOM_NUMBER(psiSource0) ! populate the array psiSource0 with N random numbers 0 to 1.
        psiSource = Pi*psiSource0      ! N random polarization directions, with values 0 to PI.
! Calculate SxPsi, the unit vector along the cross product of the radial vector to the Source i and its polarization vector Psi
        DO 330 i = 1,nSrc   ! i is the counter for sources
            r = SIN(psiSource(i))*NSource(i,1:3) - COS(psiSource(i))*ESource(i,1:3) ! r is SxPsi, by an easily derived formula
            rSrcxPsiSource(i,1) = r(1)  ! x-component of cross product SxPsi
            rSrcxPsiSource(i,2) = r(2)  ! y-component of cross product SxPsi
            rSrcxPsiSource(i,3) = r(3)  ! z-component of cross product SxPsi
        330  CONTINUE
! Calculate the angle from the center of the source array to each grid point j
        DO 340  j = 1,nGrid  ! j is the counter for grid points
            SourceCenterToH =  ACOS(DOT_PRODUCT(rCenterSrc,rGrid(j,1:3))) ! angle from the center of the sources 
!                                           to grid point j
            EtaBarMin1 = EtaBarMin  ! dummy parameter to assist with LOGIC
            EtaBarMax1 = EtaBarMax  ! dummy parameter to assist with LOGIC
! Sum the alignment angles Etaij from each source i to the grid point j and divide by N to get the average.
! The average is the alignment angle function EtaBar(j) evaluated at grid point j.
! EtaBar(j) is the fundamental function of the Hub Test.
            sumForjEtaBar = 0.  ! Sum over sources at grid point j, initially zero
            DO  345  i = 1,nSrc ! i is the counter for the sources
                sumForjEtaBar = sumForjEtaBar + ACOS(ABS(DOT_PRODUCT(rSrcxPsiSource(i,1:3),rSrcxrGrid(i,j,1:3)))) 
! where we sum the angles Etaij
            345 CONTINUE
            jEtaBarToGrid(j) = sumForjEtaBar/nSrc ! find average alignment angle from sources to the grid point j
! Find the extreme values of the alignment angle function EtaBar, the minimum and maximum of the EtaBar(j)
! okMin, okMax are LOGIC conditions to get minimum and maximum EtaBar at any grid point
            okMin = (( jEtaBarToGrid(j) < EtaBarMin ).AND.(SourceCenterToH > minGridCenterToHmin*dTheta1)) 
! where the second clause keeps Hmin away from the sources
            IF (okMin .EQV. .TRUE.)  THEN
            EtaBarMin1 = jEtaBarToGrid(j)   ! replace previous min with new min if the new EtaBar(j) is smaller
            END IF
            IF (okMin .EQV. .TRUE.)  THEN
            jEtaBarMin = (/REAL(j), EtaBarMin1/) ! The combination (j,EtaBarMin) to identify the grid point j and the 
!           current min EtaBar
            END IF
            IF (okMin .EQV. .TRUE.)  THEN   ! Logic can be obtuse
            EtaBarMin = EtaBarMin1
            END IF
            okMax = (( jEtaBarToGrid(j) > EtaBarMax ).AND.(SourceCenterToH > minGridCenterToHmax*dTheta1))
!           where the second clause keeps Hmax away from the sources
            IF (okMax .EQV. .TRUE.)  THEN
            EtaBarMax1 = jEtaBarToGrid(j)   ! replace previous max with new max if the new EtaBar(j) is larger
            END IF
            IF (okMax .EQV. .TRUE.)  THEN
            jEtaBarMax = (/REAL(j), EtaBarMax1/)    ! The combination (j,EtaBarMax) to identify the grid point j
!                             and the current max EtaBar
            END IF
            IF (okMax .EQV. .TRUE.)  THEN   ! Logic can be obtuse
            EtaBarMax = EtaBarMax1
            END IF
        340 CONTINUE
!

                    ! A7. Save the results to files, end program
!
! The maximum and minimum of the alignment function Eta Bar are collected, along with the grid
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! point data where the extreme values occur.
! The collected data is written to a file, one file for one value of the number N of sources;
! Thus there is one file for 9 sources, one for 16 sources, etc. Each file contains all the array sizes.
!
! Prepare the output
!PRINT *,    ‘A random run determines the following quantities that are to be saved:’
!PRINT *,    ‘nRun, rCenterSrc, RhoRMS, longitude, latitude, unit radial vector to Hmin, minimum alignment angle,’
!PRINT *,    ‘longitude, latitude, unit radial vector to Hmax, maximum avoidance angle, nSrc, RhoNominal’
!PRINT *,    ‘Compare rCenterScr, rSrcAve’, rCenterSrc(1:3), rSrcAve(1:3)
        OutRunData(nRun,1) = nRun + nRunMax*kiloRun - (ir-1)*nRunMax*kiloRunMax
        OutRunData(nRun,2) =  rCenterSrc(1) ! x coord. rCenter
        OutRunData(nRun,3) =  rCenterSrc(2) ! y coord. rCenter
        OutRunData(nRun,4) =  rCenterSrc(3) ! z coord. rCenter
        OutRunData(nRun,5) = jEtaBarMin(1)  ! ID# for grid point Hmin where EtaBar is Min
        OutRunData(nRun,6) =  RhoRMS        ! RMS radius of source array
        OutRunData(nRun,7) =  -999.         !  Not used
        OutRunData(nRun,8) = lonGrid(jEtaBarMin(1)) ! longitude for Hmin
        OutRunData(nRun,9) =  latGrid(jEtaBarMin(1)) ! latitude for Hmin
        OutRunData(nRun,10) = rGrid(jEtaBarMin(1),1)  ! x-coord of Hmin
        OutRunData(nRun,11) = rGrid(jEtaBarMin(1),2)  ! y-coord of Hmin
        OutRunData(nRun,12) = rGrid(jEtaBarMin(1),3)  ! z-coord of Hmin
        OutRunData(nRun,13) = jEtaBarMin(2)           ! EtaBarMin
        OutRunData(nRun,14) = jEtaBarMax(1)  ! ID# for grid point Hmax where EtaBar is Max
        OutRunData(nRun,15) = -999.         !  Not used
        OutRunData(nRun,16) = -999.         !  Not used
        OutRunData(nRun,17) = lonGrid(jEtaBarMax(1)) ! longitude for Hmax
        OutRunData(nRun,18) = latGrid(jEtaBarMax(1))  ! latitude for Hmax
        OutRunData(nRun,19) = rGrid(jEtaBarMax(1),1)  ! x-coord of Hmax
        OutRunData(nRun,20) = rGrid(jEtaBarMax(1),2)  ! y-coord of Hmax
        OutRunData(nRun,21) = rGrid(jEtaBarMax(1),1)  ! z-coord of Hmax
        OutRunData(nRun,22) = jEtaBarMax(2)           ! EtaBarMax
        OutRunData(nRun,23) = nSrc                    ! number of sources
        OutRunData(nRun,24) = RhoNomList(ir)              ! Nominal radius of the sample array
        EtaBarMin = Pi  ! reset min EtaBar for the next random run
        EtaBarMax = -Pi ! reset max EtaBar for the next random run
350 CONTINUE
!
! Append the random run data to a file
IF(kiloRun < 0.9) THEN              ! Initialize the file to accept the first unit of random runs
    WRITE (file_name,”(‘2205randomV6N’,i0,’.dat’)”)nSrc  ! The file name includes the number of sources
! PRINT*,”file name is “,trim(file_name)
    OPEN(Unit=5,file=file_name)
    WRITE(5,4000)   TRANSPOSE(OutRunData(1:nRunMax,1:24))
    CLOSE(5)
    ELSE IF(kiloRun > 0.9) THEN         ! Append succeeding units of random runs to the file
        WRITE (file_name,”(‘2205randomV6N’,i0,’.dat’)”)nSrc  ! The file name includes the number of sources
! PRINT*,”file name is “,trim(file_name)
        OPEN(Unit=5,file=file_name,STATUS=’OLD’, POSITION=’APPEND’)
        WRITE(5,4000)   TRANSPOSE(OutRunData(1:nRunMax,1:24))
        CLOSE(5)
END IF
4000 FORMAT(24E16.7,/)   !The FORMAT statement for the output files, 24 real numbers per record
    kiloRun = kiloRun + 1   ! that unit of random runs is done, start the next batch unless following LOGIC says no
IF(kiloRun < ir*kiloRunMax) THEN ! Repeat until done with random runs for RhoNom(ir)
    GoTo 301
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END IF
!
! Print*, ‘The nominal radius and the number of random runs done with that radius are ‘, RhoNomList(ir), nRun
1000 CONTINUE ! one nominal radius processed, move to the next nominal radius if there is one
!
PRINT *,    ‘The number of random runs generated for this N is’,   numberOfRgnRadii*kiloRunMax*nRunMax
2000 CONTINUE ! one number of sources N processed, move to the next N if there is one
!
END PROGRAM RunData
!

                    ! A8. External functions
!
! er, radial unit vector to a point on the Celestial Sphere at a given longitude, latitude
FUNCTION er(Lon, lat)   RESULT (w)  ! er, radial unit vector
    IMPLICIT NONE
    REAL, DIMENSION(3) :: w
    REAL, INTENT(IN) ::Lon,lat  ! longitude and latitude
w = (/COS(Lon)*COS(lat),SIN(Lon)*COS(lat),SIN(lat)/)
END FUNCTION
FUNCTION eN(Lon, lat)   RESULT (w)   ! eN, local North at the point on the sphere with a given longitude, latitude
    REAL, DIMENSION(3) :: w
    REAL, INTENT(IN) ::Lon,lat      ! longitude and latitude
w = (/-COS(Lon)*SIN(lat),-SIN(Lon)*SIN(lat),COS(lat)/)
END FUNCTION
FUNCTION eE(Lon, lat)   RESULT (w)  ! eE, local East at the point on the sphere with a given longitude, latitude
    REAL, DIMENSION(3) :: w
    REAL, INTENT(IN) ::Lon,lat      ! longitude and latitude
w = (/-SIN(Lon),COS(Lon),0./)
END FUNCTION
FUNCTION LonFromR (r) RESULT (w)   ! the longitude of the point on the sphere with the given radial vector r
IMPLICIT NONE
REAL :: w
REAL, PARAMETER ::  PI  = 4* ATAN(1.)
REAL, INTENT(IN) :: r(3)        ! the given radial vector
IF ((r(1) > 0.).AND.(r(2) >= 0.)) THEN
   w = ATAN(ABS(r(2)/r(1)))
ELSE IF ((r(1) < 0.) .AND.(r(2) >= 0.)) THEN
   w = PI - ATAN(ABS(r(2)/r(1)))
ELSE IF ((r(1) < 0.).AND.(r(2) < 0.)) THEN
   w = PI + ATAN(ABS(r(2)/r(1)))
ELSE IF((r(1) > 0.).AND.(r(2) < 0.)) THEN
   w = 2.*PI - ATAN(ABS(r(2)/r(1)))
ELSE IF((r(1) == 0.).AND.(r(2) >= 0.)) THEN
   w = PI/2.
ELSE IF((r(1) == 0.).AND.(r(2) < 0.)) THEN
   w = 3*PI/2.
END IF
END FUNCTION LonFromR
FUNCTION LatFromR (r) RESULT (w)   ! the latitude of the point on the sphere with the given radial vector r
IMPLICIT NONE
REAL :: w
REAL, PARAMETER ::  PI  = 4* ATAN(1.)
REAL, INTENT(IN) :: r(3)        ! the given radial vector
IF (SQRT(r(1)**2 + r(2)**2) > 10.**(-4)) THEN
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   w = ATAN(r(3)/(SQRT(r(1)**2 + r(2)**2)))
ELSE IF (Sqrt(r(1)**2 + r(2)**2) < 10.**(-4) ) THEN
   w = SIGN(1.,r(3))*Pi/2. ! sign(1.,r(3))*
END IF
END FUNCTION LatFromR
FUNCTION rotAboutX(theta) RESULT  (w) ! Rotation matrix for a rotation about the x-axis through an angle theta
        REAL, DIMENSION(3,3) :: w
        REAL, INTENT(IN) :: theta      ! rotation angle
        w = RESHAPE((/ 1.,0.,0.,0.,COS(theta),SIN(theta),0.,-SIN(theta),COS(theta) /), shape(w))
   END FUNCTION
FUNCTION rotAboutY(theta) RESULT  (w) ! Rotation matrix for a rotation about the y-axis through an angle theta
        REAL, DIMENSION(3,3) :: w
        REAL, INTENT(IN) :: theta      ! rotation angle
        w = RESHAPE((/ COS(theta),0.,-SIN(theta),0.,1.,0.,SIN(theta),0.,COS(theta) /), shape(w))
   END FUNCTION
FUNCTION rotAboutZ(theta) RESULT  (w) ! Rotation matrix for a rotation about the z-axis through an angle theta
        REAL, DIMENSION(3,3) :: w
        REAL, INTENT(IN) :: theta     ! rotation angle
        w = RESHAPE((/ COS(theta),SIN(theta),0.,-SIN(theta),COS(theta),0.,0.,0.,1. /), shape(w))
   END FUNCTION
FUNCTION cross(r0,r1) RESULT  (w) ! The cross product r0xr1 of two vectors r0 and r1
        REAL, DIMENSION(3) :: w
        REAL, INTENT(IN) ::  r0(3), r1(3)   ! the two given vectors
        w(1) = r0(2)*r1(3) - r0(3)*r1(2)    ! x-component of the cross product
        w(2) = r0(3)*r1(1) - r0(1)*r1(3)    ! y-component of the cross product
        w(3) = r0(1)*r1(2) - r0(2)*r1(1)    ! z-component of the cross product
   END FUNCTION

Appendix B. A Computer Program for Fitting Random Run Distributions

CONTENTS 
Preface
B1. Preliminary
B2. Import the FORTRAN runData files
B3. Organize the data for Appendix B
B4  Investigate some of the data
B5. Fit the random run distributions.
B6. Build the Library
B7. Display some of the distributions

Preface

Appendix A created samples with randomly directed polarization directions, transverse vectors. The Hub Test was applied to a 
large number of times. In Appendix B, the results of the Hub Test from App. A are analyzed, resulting in formulas for the distribu-
tions of the App. A results. The parameters of the distribution formulas are saved and constitute a reference ‘Library’ that contains 
information sufficient to reconstruct the distributions. Furthermore, the Library can generate probability distributions for the Hub Test 
results from randomly directed samples. Such information is convenient for deducing the significance of Hub Test results from 
observed samples.  

The following is a Mathematica notebook. To get a ready-to-run version follow one of the links in Ref. 10. 
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B1. Preliminary

Imagine the points are plotted on the Celestial sphere and we are looking down on the sphere from the outside. See Figs. 1 and 2, for 
example. 

The date and time that this statement was evaluated: Wed 22 Jun 2022 07:12:35GMT-4

The computer time expended so far is 1.344 seconds.

The computer memory in use is 95 386 696 bytes.

Definitions:

mean the arithmetic average of a set of numbers, 1
N
∑i=1

N ni

stanDev the standard deviation. Given a set of N numbers ni with mean value m, the standard deviation is  


1

N
∑i=1

N (ni - m)2
1/2

,  the square root of the average of the squares of the differences of the numbers with the mean. Note that we 

divide by N to get the average of the deviations squared.

In[4]:= (*The 'home directory' has the notebook. *)

homeDirectory = NotebookDirectory[];

In[5]:= mean[data_] := (1 / Length[data]) Sum[data〚i4〛, {i4, Length[data]}];

(* arithmetic average, Eq. (B1) *)

stanDev[data_] := (1 / Length[data]) Sum(data〚i5〛 - mean[data])2, {i5, Length[data]}
1/2

(*standard deviation, Eq. (B2)*)

B2. Upload the FORTRAN runData files 

Upload and analyze the files saved in Appendix A one at a time.  Each file contains the random run data, runData, for one value of N, 
the number of sources. 
For example, “2205randomV5N9.dat” has the runData for N = 9 sources, including all 21 region radii.

Definitions:
fortranRunData: raw FORTRAN output 
1. run # 2., 3., 4. x,y,z coordinates of the center of the sample 5. grid point ID for Hmin (not useful, unknown grid) 6. r.m.s 
radius of region 7. not used (-999.) 8., 9. longitude, latitude of Hmin 10., 11., 12. x,y,z coords. for Hmin 13. ηmin 

14. grid point ID for Hmax (not useful, unknown grid) 15., 16. not used (-999.) 17.,18. longitude, latitude of Hmax 19., 
20., 21. x,y,z coords. for Hmax 22. ηmax 23. nSrc, the number of sources 24. ρNom, nominal region radius

runData0: raw FORTRAN output organized into records each 24 items long

runData: runData0 reorganized for the Mathematica program 
1. nRun 2. r at Region Center 3a. grid data for Hmin 3b. ηmin 4a. grid data for Hmax 4b. ηmax 5. nSrc 6.  radius ρNom

runData in detail:
1. nRun 2. rCenterSrc 3a. grid data: {gridIDHmin, ρRMS, notUsed1, longHmin, latHmin, rHmin}, 3b. ηmin 4a. grid data: 

{gridIDHmax, notUsed2, notUsed3, longHmax, latHmax, rHmax},  4b. ηmax 5. nSrc 6.  nominal radius ρNom

nRun run #, from 0 to 10,000 for each case (nSrc, ρNom)
rCenterSrc 3D rectangular coords for the average of the source locations, the center of the sample
gridIDHmin ID # for the grid point at Hmin, meaningless without the grid
ρRMS root mean square radius of the sources’ locations from the sample center
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notUsed1 another unused real number, -999.
longHmin, latHmin longitude, latitude of the hub Hmin where η(H ) is the minimum ηmin

rHmin 3D rectangular coords of Hmin
ηBarmin  the minimum ηmin of the alignment angle function  η(H ) 

gridIDHmax ID # for the grid point at Hmax, meaningless without the grid
ρRMS root mean square radius of the sources’ locations from the sample center
notUsed2,3 more unused real number slots, -999.
longHmax, latHmax longitude, latitude of the hub Hmax where η(H ) is the maximum ηmax

rHmax 3D rectangular coords of Hmax
ηBarmax  the maximum ηmax of the alignment angle function  η(H )

nSrc the number of sources in the sample
ρNom the nominal radius of the sample region

In[7]:= SetDirectory[homeDirectory];

(*fortranRunData= ReadList["2205randomV5N9.dat",Real];*)

(*fortranRunData= ReadList["2205randomV5N16.dat",Real];*)

fortranRunData = ReadList["2205randomV5N25.dat", Real];(*Selected*)

(*fortranRunData= ReadList["2205randomV5N36.dat",Real];*)

(* fortranRunData= ReadList["2205randomV5N49.dat",Real];*)

(*fortranRunData= ReadList["2205randomV5N64.dat",Real];*)

(*fortranRunData= ReadList["2205randomV5N81.dat",Real];*)

(*fortranRunData= ReadList["2205randomV5N100.dat",Real];*)

(*fortranRunData= ReadList["2205randomV5N121.dat",Real];*)

(*fortranRunData= ReadList["2205randomV5N225.dat",Real];*)

(*fortranRunData= ReadList["2205randomV5N256.dat",Real];*)

(*fortranRunData= ReadList["2205randomV5N324.dat",Real];*)

(*fortranRunData= ReadList["2205randomV5N625.dat",Real];*)

(*fortranRunData= ReadList["2205randomV5N900.dat",Real];*)

The uploaded data file contains 5 040 000 numbers in 210 000 records, each 24 numbers long.

B3. Organize the data for the Mathematica code 

Definitions:
fortranRunData, runData0:
1. nRun 2,3,4. rCenterSrc x,y,z 5. gridID for Hmin (not useful, unknown grid) 6. ρRMS 7. -999. (notUsed1) 8., 9. longitude, 
latitude of  Hmin 10,11,12. rHmin x,y,z 13. ηmin 14. gridID for Hmin (not useful, unknown grid) 15., 16. -999. 

(notUsed2,3) 17., 18. longitude, latitude of  Hmin 19,20,21. rHmin x,y,z 22. ηmax 23. nSrc 24.  nominal radius ρNom

In[10]:= runData0 = Partition[fortranRunData, 24];(*Partition the data into 24-item records*)

Length[runData0];

Print["The first record: ", runData0〚1〛]

Print["The last record: ", runData0〚-1〛]
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The first record: {1., 0.0000954966, 0.999984, -0.00568294, 37., 0.00212949, -999.,

1.62929, -0.0276712, -0.0584373, 0.997908, -0.0276677, 0.703947, 104., -999., -999.,

1.60266, 0.0943891, -0.0317185, 0.995043, -0.0317185, 0.860122, 25., 0.00249333}

The last record: {10 000., 0.0000954966, 0.999984, -0.00568294, 8822., 1.04921,

-999., 0.619663, 0.101757, 0.809863, 0.577757, 0.101581, 0.637981, 8722., -999.,

-999., 2.30459, 0.679356, -0.521005, 0.577757, -0.521005, 0.982946, 25., 1.11701}

(*Some time ago, and not with the current data files,

MMA would not read the following number correctly. I am not sure why,

cosmic rays? The following statement fixed it. If not all the data in a file uploads,

you may need to search for similarly offending numbers.*)

(*runData0〚1,6〛 = -999.*)

In[15]:= nRun = Table[runData0〚n, 1〛, {n, Length[runData0]}];(*run #, recycles for each ρNom*)

rCenterSrc = Table[{runData0〚n, 2〛, runData0〚n, 3〛, runData0〚n, 4〛}, {n, Length[runData0]}];

(*x,y,z coords. sample center*)

gridIDHmin = Table[runData0〚n, 5〛, {n, Length[runData0]}];(*not used*)

ρRMS = Table[runData0〚n, 6〛, {n, Length[runData0]}];

(*rms distance sources to sample center*)

notUsed1 = Table[runData0〚n, 7〛, {n, Length[runData0]}];

longHmin = Table[runData0〚n, 8〛, {n, Length[runData0]}];(*longitude Hmin*)

latHmin = Table[runData0〚n, 9〛, {n, Length[runData0]}];(*latitude Hmin*)

rHmin = Table[{runData0〚n, 10〛, runData0〚n, 11〛, runData0〚n, 12〛}, {n, Length[runData0]}];

(*x,y,z Hmin*)

ηBarmin = Table[runData0〚n, 13〛, {n, Length[runData0]}];(*the minimum ηmin*)

In[24]:= gridIDHmax = Table[runData0〚n, 14〛, {n, Length[runData0]}];(*not used*)

notUsed2 = Table[runData0〚n, 15〛, {n, Length[runData0]}];

notUsed3 = Table[runData0〚n, 16〛, {n, Length[runData0]}];

longHmax = Table[runData0〚n, 17〛, {n, Length[runData0]}];(*longitude Hmax*)

latHmax = Table[runData0〚n, 18〛, {n, Length[runData0]}];(*latitude Hmax*)

rHmax = Table[{runData0〚n, 19〛, runData0〚n, 20〛, runData0〚n, 21〛}, {n, Length[runData0]}];

(*x,y,z Hmax*)

ηBarmax = Table[runData0〚n, 22〛, {n, Length[runData0]}];(*the maximum ηmax*)

In[31]:= nSrc = Table[runData0〚n, 23〛, {n, Length[runData0]}];

(*the number of sources in the sample*)

ρNom = Table[runData0〚n, 24〛, {n, Length[runData0]}];

(*the nominal radius of the sample region*)

runData same order as runData0, but reorganized for the Mathematica program
1. nRun 2. r at Region Center 3a. grid data for Hmin 3b. ηmin 4a. grid data for Hmax 4b. ηmax 5. nSrc 6.  radius ρNom

In detail:
1. nRun 2. rCenterSrc 3a. grid data: {gridIDHmin, ρRMS, notUsed1, longHmin, latHmin, rHmin}, 3b. ηmin 4a. grid data: 

{gridIDHmax, notUsed2, notUsed3, longHmax, latHmax, rHmax},  4b. ηmax 5. nSrc 6.  nominal radius ρNom
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In[33]:= (*Reorganize the runData for the Mathematica code:*)

runData = Table[{ nRun〚n〛, rCenterSrc〚n〛, {{gridIDHmin〚n〛,

ρRMS〚n〛, notUsed1〚n〛, longHmin〚n〛, latHmin〚n〛, rHmin〚n〛}, ηBarmin〚n〛},

{{gridIDHmax〚n〛, notUsed2〚n〛, notUsed3〚n〛, longHmax〚n〛, latHmax〚n〛, rHmax〚n〛},

ηBarmax〚n〛}, nSrc〚n〛, ρNom〚n〛 }, {n, Length[runData0]}];

runData〚1〛;

B4 Investigate some of the data

Definitions:
allRgnRadii the list of nominal region radii ρNom for the samples, in degrees

runDataRgn[ir] a collection of all runData for the irth nominal radius ρNom. Recall that we consider only one nSrc at a time since 
only one nSrc data is uploaded at a time.

nRunDataRgn[ir] the number of records with the irth nominal radius ρNom 
ratios root mean square radius to nominal radius  ρRMS/ρNom 
aveRATIO (min ratio + max ratio)/2, for plotting purposes only
flatPlaneRatio  ρRMS/ρNom on a flat 2D plane, derived elsewhere, see Sec. A6a. for the construction on the sphere

In[35]:= allRgnRadii = Union[Table[runData〚n, -1〛, {n, Length[runData]}]]
360.

2. π

;

(*the nominal region radii ρNom in degrees*)

Nominal Radii. Check for anomolies. Maybe two are nearly equal.

There are 21 different nominal radii ρNom in the runData table for N = 25. sources.

The nominal radii in degrees are {0.142857, 0.166667, 0.2, 0.25,

0.333333, 0.5, 1., 1.5, 2., 3., 4., 6., 8., 10., 15., 16., 24., 32., 42., 52., 64.}

In[39]:= UnionTable"Nom: ", ρNom〚n〛
360.

2. π

,

" degrees, ratio RMS/Nom: ", ρRMS〚n〛 / ρNom〚n〛, {n, Length[ρNom]};

ratios = Union[Table[ρRMS〚n〛 / ρNom〚n〛, {n, Length[ρNom]}]];(*ρRMS/ρNom*)

aveRATIO = (Min[ratios] + Max[ratios]) / 2.;(*For plotting purposes.*)

flatPlaneRatio =
1. + 2.-1/2

6.1/2

nSrc〚1〛1/2 + 1

nSrc〚1〛1/2 - 1

1/2

; (*Eq. (B3),

like ratios = ρRMS/ρNom above, but on a flat 2D plane *)
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In[43]:= lpRMStoNom = ShowListPlot

UnionTableLog10, ρNom〚n〛
360.

2. π

, ρRMS〚n〛 / ρNom〚n〛, {n, Length[ρNom]},

PlotStyle  {{PointSize[Medium], Black}, {PointSize[Medium], Green}},

PlotStyle  PointSize[Medium], FrameTicks  Automatic,

PlotLabel  " Ratio of RMS radius to nominal radius" , FrameLabel 

{"log10(ρNom)", "ρRMS/ρNom "}, GridLines  Automatic, Frame  True, Axes  False,

GraphicsGreen, LineLog10, ρNom〚1〛
360.

2. π

 - 0.1, flatPlaneRatio,

Log10, ρNom〚Length[ρNom]〛
360.

2. π

 + 0.1, flatPlaneRatio, Black,

Text[StyleForm[ "N = ", FontSize  12, FontWeight  "Plain"], {0., aveRATIO}],

Text[StyleForm[ ToString[nSrc〚1〛, InputForm, NumberMarks  False],

FontSize  12, FontWeight  "Plain"], {0.3, aveRATIO}];

Out[44]=

N = 25.
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Figure B1. The ratio of the RMS radius to the nominal radius of the sample. See Fig. 2. The ratio depends on the size of the array, but 
only by a few percent. The green line is the ratio for square arrays constructed on a flat plane, without any distortions due to the 
curvature of the sphere and without the small random relocations of the array’s center in Sec. A6a.

In[45]:= (*The table runDataRgn[ir] is a collection

of all runData for the irth nominal radius ρNom.*)

Table[runDataRgn[ir] = {}, {ir, Length[allRgnRadii]}];

Forir = 1, ir ≤ Length[allRgnRadii], ir++,

Forj = 1, j ≤ Length[runData], j++, If ρNom〚j〛 - allRgnRadii〚ir〛
2. π

360.

2

< 10.-10,

AppendTo[runDataRgn[ir], runData〚j〛] 

nRunDataRgn[ir_] := Length[runDataRgn[ir]]

(*the number of runData records that have the irth nominal radius ρNom*)

B5. Fit the random run distributions.
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The fits compress the data. By fitting functions to the distributions of random run quantities ηmin  and ηmax and keeping just the 

mean and standard deviation of other quantities, we keep the essence of the random run results without keeping their bulk.  All the 
many runs downloaded in Sec. B2 for a specific number of sources N and a specific radius ρNom reduce to the handful of numbers 
needed to recreate the distributions from the fitting function formulas.

Definitions

rCenter[ir] r at Region Center

nSrcRgn[ir] number of sources
ρRgn[ir] nominal radius ρNom

ηBarMinData[ir], ηBarMaxData[ir] tables of ηmin, ηmax for samples with nominal radius ρRgn[ir]

rHminT[ir], rHmaxT[ir] tables of radial unit vectors to Hmin, Hmax

sortηBarMin[ir], sortηBarMax[ir] tables of ηmin,  ηmax, smallest first

η0B[ir], η0Bmax[ir] Guess the peak for the step-Gaussians
σB[ir], σBmax[ir] Guess the half-widthGuess the half-width

hl0[ir], hlMax0[ir] histograms of ηmin,  ηmax values 

hl[ir], hlMax[ir] assign histogram heights to midpoints of bins
nlmB[ir], nlmBMax[ir] step-Gaussian fits to histograms of ηmin, ηmax values  

amin[ir], amax[ir] amplitudes for the fits
bmin[ir], bmax[ir] half-widths for the fits, ‘b’ becomes σ
x0min[ir], x0max[ir] value of x at the peaks of the fits, ‘x0’ becomes η0  
damin[ir],dbmin[ir],dx0min[ir], damax[ir],dbmax[ir],dx0max[ir] standard errors calculated for the fits
anglerHminToCenter[ir], anglerHmaxToCenter[ir] tables of arc distance from hubs Hmin, Hmax to sample center
θrHminToCenter[ir], θrHmaxToCenter[ir], average (mean) arc distance hubs to sample center
σθrHminToCenter[ir], σθrHmaxToCenter[ir] standard deviation of those arc distances

fitData output data produced by Appendix B

fitData0, fitData   Parameters of the alignment (min) and avoidance (max) random run distributions. Angles in radians.
1a. nSrcRgn[ir]    Number of sources 1b. ρRgn[ir]  Nominal sample radius  1c. ρRMS  RMS sample radius  1d.  nRunDa-
taRgn[ir]  number of random runs 
2a. x0min[ir] (η0min)   peak ηmin distribution 2b. dx0min[ir] standard error for η0

3a. bmin[ir] ( σmin)   half-width ηmin distr. 3b. dbmin[ir]  standard error for σ

4a. amin[ir] amplitude of  ηmin distribution 4b. damin[ir] standard error for amplitude 

5a. x0max[ir] (η0max)   peak ηmax distribution 5b. dx0max[ir] standard error  for η0

6a. bmax[ir] ( σmax)   half-width ηmax distr. 6b. dbmax[ir]  standard errorfor σ

7a. amax[ir] amplitude of  ηmax distribution 7b. damax[ir] standard error for amplitude 

In[48]:= fitData = {}; t1 = TimeUsed[];

Forir = 1, ir ≤ Length[allRgnRadii], ir++,

rCenter[ir] = runDataRgn[ir]〚1, 2〛(*r


at Region Center*);

nSrcRgn[ir] = runDataRgn[ir]〚1, -2〛(*number of sources*);

ρRgn[ir] = runDataRgn[ir]〚1, -1〛(*nominal radius ρNom*);

ηBarMinData[ir] = Table[runDataRgn[ir]〚i1, 3, 2〛 , {i1, Length[runDataRgn[ir]]}]

(* ηmin table*);

ηBarMaxData[ir] = Table[runDataRgn[ir]〚i1, 4, 2〛 , {i1, Length[runDataRgn[ir]]}]

(* ηmax table*);

rHminT[ir] = Table[ runDataRgn[ir]〚i1, 3, 1, 6〛 , {i1, Length[runDataRgn[ir]]}]

(*radial unit vector to Hmin*);

rHmaxT[ir] = Table[ runDataRgn[ir]〚i1, 4, 1, 6〛 , {i1, Length[runDataRgn[ir]]}]

20220210FortranRunDataToMMAToFitData.nb     25



(*radial unit vector to Hmax*);

sortηBarMin[ir] = Sort[ηBarMinData[ir]](* table of ηmin, smallest first*);

η0B[ir] = mean[ηBarMinData[ir] ] (*Guess the peak for the step-Gaussian. *);

σB[ir] = stanDev[ηBarMinData[ir] ](*Guess the half-width.*);

hl0[ir] = HistogramList[sortηBarMin[ir],

{η0B[ir] - 5 σB[ir], η0B[ir] + 5 σB[ir], 0.4 σB[ir]}](*histogram of ηmin values*);

hl[ir] = Table[{(1 / 2) (hl0[ir]〚1, i1〛 + hl0[ir]〚1, i1 + 1〛), hl0[ir]〚2, i1〛},

{i1, Length[ hl0[ir]〚2〛 ]}](*assign histogram heights to midpoints of bins*);

nlmB[ir] = NonlinearModelFithl[ir], a 1 + 
4

x-x0-b

b

-1

Exp-
1

2.

x - x0

b

2

, b > 0,

a,
nRunDataRgn[ir]

12
, {b, σB[ir]}, {x0, η0B[ir]}, x

(*Eq. (B4)*)(*step-Gaussian fit to histogram of ηmin values, x is ηmin*);

{amin[ir], bmin[ir], x0min[ir]} = {a, b, x0} /. nlmB[ir]["BestFitParameters"]

(*parameters of the fit*);

{damin[ir], dbmin[ir], dx0min[ir]} = nlmB[ir]["ParameterErrors"]

(*standard errors of parameters*);

sortηBarMax[ir] = Sort[ηBarMaxData[ir]](*table of ηmax, smallest first*);

η0Bmax[ir] = mean[ηBarMaxData[ir] ]; (*Guess the mean for the step-Gaussian. *)

σBmax[ir] = stanDev[ηBarMaxData[ir] ]; (*Guess the half-width.*)

hlMax0[ir] = HistogramList[sortηBarMax[ir], {η0Bmax[ir] - 5 σBmax[ir],

η0Bmax[ir] + 5 σBmax[ir], 0.4 σBmax[ir]}](*histogram of ηmax values*);

hlMax[ir] = Table[{(1 / 2) (hlMax0[ir]〚1, i1〛 + hlMax0[ir]〚1, i1 + 1〛), hlMax0[ir]〚2, i1〛},

{i1, Length[ hlMax0[ir]〚2〛 ]}](*assign histogram heights to midpoints of bins*);

nlmBMax[ir] = NonlinearModelFithlMax[ir], a 1 + 
-4

x-x0+b

b

-1

Exp-
1

2.

x - x0

b

2

, b > 0,

a,
nRunDataRgn[ir]

12
, {b, σBmax[ir]}, {x0, η0Bmax[ir]}, x

(*Eq. (B5)*)(*step-Gaussian fit to histogram of ηmax values, x is ηmax*);

{amax[ir], bmax[ir], x0max[ir]} = {a, b, x0} /. nlmBMax[ir]["BestFitParameters"]

(*parameters of the fit*);

{damax[ir], dbmax[ir], dx0max[ir]} = nlmBMax[ir]["ParameterErrors"]

(*standard errors of parameters*);

anglerHminToCenter[ir] =

Table[ArcCos[Abs[rHminT[ir]〚i〛.rCenter[ir]] - 0.00001], {i, Length[rHminT[ir]]}]

(*arc length from Hmin to sample center*);

θrHminToCenter[ir] = mean[anglerHminToCenter[ir]](*average arc length*);

σθrHminToCenter[ir] = stanDev[anglerHminToCenter[ir]]

(*standard deviation of the arc lengths*);

anglerHmaxToCenter[ir] =

Table[ArcCos[Abs[rHmaxT[ir]〚i〛.rCenter[ir]] - 0.00001], {i, Length[rHmaxT[ir]]}]

(*arc length from Hmax to sample center*);

θrHmaxToCenter[ir] = mean[anglerHmaxToCenter[ir]](*average arc length*);

σθrHmaxToCenter[ir] = stanDev[anglerHmaxToCenter[ir]]

(*standard deviation of the arc lengths*);

AppendTo[fitData, {{nSrcRgn[ir],
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ρRgn[ir], runDataRgn[ir]〚1, 3, 1, 2〛(*ρRMS*), nRunDataRgn[ir]},

{x0min[ir], dx0min[ir]}, {bmin[ir], dbmin[ir]},

{amin[ir], damin[ir]}, {x0max[ir], dx0max[ir]}, {bmax[ir], dbmax[ir]},

{amax[ir], damax[ir]}, {σθrHminToCenter[ir],

θrHminToCenter[ir]}, {σθrHmaxToCenter[ir],

θrHmaxToCenter[ir]}} ](*collect output data in fitData table*)



t2 = TimeUsed[];

FittedModel : The property values {ParameterErrors} assume an unconstrained model. The results for these properties may not

be valid, particularly if the fitted parameters are near a constraint boundary.

FittedModel : The property values {ParameterErrors} assume an unconstrained model. The results for these properties may not

be valid, particularly if the fitted parameters are near a constraint boundary.

FittedModel : The property values {ParameterErrors} assume an unconstrained model. The results for these properties may not

be valid, particularly if the fitted parameters are near a constraint boundary.

General : Further output of FittedModel::constr will be suppressed during this calculation.

The computer time needed to fit the data is 114.234 seconds.

The large file uploaded in Sec. B2 for N sources, with N =

25, and for the collection of regions with 21 radii ρNom yields

21 records in the fitData table, one for each ρNom.

B6. Build the Library

Add the fitData records from the previous section to the Library. 

Definitions:
sortfitData fitData sorted with smallest number of sources first, then with smallest nominal radii
fitData0 pre-existing fitData table

In[54]:= sortfitData = Sort[fitData];(*just in case it wasn't sorted*)

In[55]:= Print["The number of sources being considered now is N = ", Round[nSrcRgn[1]], "."]

Print[

"Some of the fitData records calculated above for N sources and various ρNom are: "]

Table[Print[sortfitData〚i〛], {i, 1, Length[sortfitData], 4}];
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The number of sources being considered now is N = 25.

Some of the fitData records calculated above for N sources and various ρNom are:

{{25., 0.00249333, 0.00212949, 10 000}, {0.685476, 0.000866607},

{0.0689418, 0.0010357}, {1601.72, 21.5285}, {0.885171, 0.000895432},

{0.0688858, 0.00107016}, {1602.84, 22.2783}, {0.216135, 0.150129}, {0.203678, 0.145209}}

{{25., 0.00581776, 0.00496513, 10 000}, {0.680116, 0.00101775},

{0.0682995, 0.00121633}, {1611.86, 25.6827}, {0.890708, 0.000945214},

{0.0682551, 0.00112962}, {1616.04, 23.9294}, {0.188003, 0.122187}, {0.183158, 0.119692}}

{{25., 0.0349066, 0.029797, 10 000}, {0.634422, 0.000634549},

{0.0610906, 0.000758281}, {1633.24, 18.138}, {0.936116, 0.000499395},

{0.0613099, 0.00059678}, {1627.95, 14.1777}, {0.190864, 0.122616}, {0.19543, 0.124122}}

{{25., 0.139626, 0.11932, 10 000}, {0.60211, 0.000438061},

{0.058819, 0.00052351}, {1599.86, 12.7396}, {0.968668, 0.000562113},

{0.0591053, 0.000671757}, {1613.15, 16.4028}, {0.25102, 0.235553}, {0.248295, 0.235192}}

{{25., 0.418879, 0.361509, 10 000}, {0.596685, 0.000424447},

{0.0588581, 0.000507238}, {1612.52, 12.4328}, {0.973158, 0.000518576},

{0.0584868, 0.000619716}, {1617.4, 15.3327}, {0.305708, 0.513204}, {0.310163, 0.520224}}

{{25., 1.11701, 1.04921, 10 000}, {0.597052, 0.000334124},

{0.0578935, 0.000399293}, {1610.29, 9.93663}, {0.973337, 0.000506434},

{0.0565756, 0.000605192}, {1631.67, 15.6159}, {0.3789, 0.991165}, {0.378232, 0.990255}}

In[58]:= (*Start a new Library or update an existing Library*)

SetDirectory[homeDirectory];

(*Start a new Library:*)fitData0 = {};

(*Update an existing Library:*)

(*fitData0 = Get["NEW20220618fitData21Rgns14Nsv5NEW.dat"]; *)

The fitData0 table initially contains 0 records.

In[61]:= For[i = 1, i ≤ Length[fitData], i++, AppendTo[fitData0, sortfitData〚i〛]]

(*Add the records calculated above.*)

After appending the fitData table calculated above, the fitData0 table now contains 21 records.

In[63]:= SetDirectory[homeDirectory];

(*Save the fitData0 table to the Library file*)

(*Put[fitData0,"NEW20220618fitData21Rgns14Nsv5NEW.dat"]*)
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B7. Display some of the distributions

In[64]:= lpEtaBarMinMaxHistograms =

TableshowNLMB[ir] = ShowHistogramsortηBarMin[ir]
360.

2. π

, {η0B[ir] - 5 σB[ir],

η0B[ir] + 5 σB[ir], 0.4 σB[ir]}
360.

2. π

, FrameTicks  { {Automatic, Automatic} ,

{{{5, 5 °}, {10, 10 °}, {15, 15 °}, {20, 20 °}, {25, 25 °}, {30, 30 °}, {35, 35 °},

{40, 40 °}, {45, 45 °}, {50, 50 °}, {55, 55 °}}, Table[{j, ""}, {j, 0, 55, 5}] }},

PlotLabel  allRgnRadii〚ir〛 "° (ρNom)", FrameLabel 

{"ηmin", "ΔR", allRgnRadii〚ir〛 "°"}, GridLines  Automatic,

Frame  True, PlotNormal[nlmB[ir]] /. x  y
2. π

360.
,

y, (η0B[ir] - 5 σB[ir])
360.

2. π

, (η0B[ir] + 5 σB[ir])
360.

2. π

,

ListPlotTablehl[ir]〚i, 1〛
360.

2. π

, hl[ir]〚i, 2〛 , {i, Length[hl[ir] ]},

GraphicsTextStyleForm[ "N = ", FontSize  8, FontWeight  "Plain"],

(η0B[ir] - 4. σB[ir])
360.

2. π

, 1200.,

TextStyleForm[ ToString[Round[nSrc〚1〛], InputForm, NumberMarks  False],

FontSize  8, FontWeight  "Plain"], (η0B[ir] - 3.0 σB[ir])
360.

2. π

, 1200.,

TextStyleForm[ "R = ", FontSize  8, FontWeight  "Plain"],

(η0B[ir] - 4. σB[ir])
360.

2. π

, 1000.,

TextStyleForm[ ToString[Round[Length[sortηBarMin[ir]]], InputForm,

NumberMarks  False], FontSize  8, FontWeight  "Plain"],

(η0B[ir] - 2.6 σB[ir])
360.

2. π

, 1000. , {ir, 1, Length[allRgnRadii], 4};
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Out[65]= 
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

Figure B2. Some of the ηmin histograms for the number N of samples currently being treated, N =

25 sources. The solid curves are the Step-Gaussian fits.

The plots are labelled by the nominal radii of each sample's region.
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Figure B3. Some of the ηmax histograms for the number N of samples currently being treated, N =

25 sources. The solid curves are the Step-Gaussian fits.

Note the shift of a few degrees from the lowest ρNom to the largest.
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In[69]:= ir = 7;

ShowHistogramsortηBarMin[ir]
360.

2. π

,

{η0B[ir] - 5 σB[ir], η0B[ir] + 5 σB[ir], 0.4 σB[ir]}
360.

2. π

,

FrameTicks  { {Automatic, Automatic} ,

{{{5, 5 °}, {10, 10 °}, {15, 15 °}, {20, 20 °}, {25, 25 °}, {30, 30 °}, {35, 35 °},

{40, 40 °}, {45, 45 °}, {50, 50 °}, {55, 55 °}}, Table[{j, ""}, {j, 0, 55, 5}] }},

PlotLabel  allRgnRadii〚ir〛 "° = ρNom", FrameLabel  {"ηmin", "ΔR", allRgnRadii〚ir〛 "°"},

GridLines  Automatic, Frame  True, PlotNormal[nlmB[ir]] /. x  y
2. π

360.
,

y, (η0B[ir] - 5 σB[ir])
360.

2. π

, (η0B[ir] + 5 σB[ir])
360.

2. π

,

ListPlotTablehl[ir]〚i, 1〛
360.

2. π

, hl[ir]〚i, 2〛 , {i, Length[hl[ir] ]},

GraphicsTextStyleForm[ "N = ", FontSize  12, FontWeight  "Plain"],

(η0B[ir] - 4. σB[ir])
360.

2. π

, 1200.,

TextStyleForm[ ToString[Round[nSrc〚1〛], InputForm, NumberMarks  False],

FontSize  12, FontWeight  "Plain"], (η0B[ir] - 3.0 σB[ir])
360.

2. π

, 1200.,

TextStyleForm[ "R = ", FontSize  12, FontWeight  "Plain"],

(η0B[ir] - 4. σB[ir])
360.

2. π

, 1000., Text

StyleForm[ ToString[Round[Length[sortηBarMin[ir]]], InputForm, NumberMarks  False],

FontSize  12, FontWeight  "Plain"], (η0B[ir] - 3.0 σB[ir])
360.

2. π

, 1000. 

runDataRgn[ir]〚1, 3, 1, 2〛
360.

2. π

;

NumberFormrunDataRgn[ir]〚1, 3, 1, 2〛
360.

2. π

, 3;

Clear[ir]
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Out[70]=
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Figure B4.  Each of  R  =  10,000 random runs yields a value of the smallest alignment angle ηmin. Those 10,000 values make the 

histogram drawn here. The fit to the histogram makes a distribution that depends on only two parameters, the location of the peak η0 

and the half-width σ. 

Out[75]=
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Figure B5.  Each of  R  =  10,000 random runs yields a value of the largest avoidance angle ηmax. Those 10,000 values make the 

histogram drawn here. Note the symmetry about η  =  45° of the  ηmin  and ηmax histograms in Figs. B4 and B5. 

Conclusion.
Figs. B4 and B5 summarize the article. The R  =  10,000 random runs are generated by the computer program in Appendix A for 

each case (N, ρNom). The results collected in the table runData contain, as well as other information, the 10,000 values of the 
smallest alignment angle ηmin and the 10,000 values of the largest avoidance angle ηmin . The computer program in Appendix B fits 

each histogram, reducing the 10,000 values to two parameters, the location of the peak η0 and the half-width σ. Those two parameters 

plus other potentially useful or interesting data are collected in the fitData table. The fitData table is then available to other programs 
to  reconstitute the distribution functions. Those distribution functions can be used to estimate the probability distributions appropriate 
for observed samples and determine the significance of Hub Test results. Thus, the fitData table is a ‘reference Library’ of 
distributions.
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The date and time that this statement was evaluated: Wed 22 Jun 2022 07:15:17GMT-4

The computer time expended so far is 160.265 seconds.

The computer memory in use is 591 467 120 bytes.
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