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ABSTRACT A model is proposed which takes energy as order in the form of a radial 

probability distribution.  The energy associated with the distribution is calculated using 

the Laplacian as an operator and Planck’s constant/second as a factor.  To complete the 

model, it is assumed that the sample rate for the elements of the distribution is determined 

by the distance light travels in a second.  Dividing the energy associated with a 3-

dimensional distribution, thus obtained, by the sample rate yields an expression for the 

energy associated with a 2-dimensional distribution.  This expression equates to the 

formula for the energy of light.  Dividing the 3-dimensional energy by the square of the 

sample rate yields as 1-dimensional energy, Planck’s constant/second.  The 1-

dimensional energy appears to represent the ambient energy of the universe in the form of 

a rotation.  Using this model, various laws of classical physics are derived.  Newtonian 

time is found to be a function of the radius of the distribution and the distance light 

travels in a second, and is a measure of indirection.  The uncertainty principle is derived 

and relativity rationalized.  Forces appear to arise from the reduction in order implicit in 

the overlap of distributions.  A single order calculation of the constant of gravitation, G, 

is about 1 percent high.   A single order calculation of the electrical potential is within 1 

percent of the expected value.  Consideration of higher and lower order effects yields 

agreement with observation within the accuracy of the numerical calculation.  The 

possible origin of the electron, proton and neutron is discussed. 

 

 

I. INTRODUCTION 

 

 Efforts to find a common representation for all fundamental physical interactions 

have been made since the early twentieth century.1 This current effort to shed light on this 

topic was prompted by research in a seemingly unrelated area, the chemical bond.  

Recent work2 claims that the problem of modeling the chemical bond can be considerably 

simplified by explicitly recognizing the reduction in the electron kinetic energy inherent 

in the overlap of the pairing atom’s electron distributions.  Distributions represent order 

(commonly recognized as organization) with narrow distributions representing higher 

order than broader distributions.  Could it be that energy is order and that the observed 

forces of nature result from the overlap of the distributions representing this order?  The 

current research explores this possibly. 
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II. ENERGY AS ORDER IN THE FORM OF A PROBABILITY DISTRIBUTION 

 

 Suppose that energy is order and this order takes the form of a radial probability 

distribution,  = e-, where  is a radius which, in first order, is expressed as fractions of 

the distance traveled by light in a second, cm, ( < 1.0).  In second order,  is expressed 

as fractions of cm
2.  In third order, cm

3, etc. 

Furthermore, one calculates the energy associated with this distribution by 

evaluating the integral,  

  ∫∫∫b2 d d d ,   

where 2 is the Laplacian3 and b a constant.  Evaluating the integral, and converting to 

metric radial units, one obtains, for energy in 3 dimensions (E3D), E3D = b  cm/r  cm/r , 

where cm is the distance traversed by light in a second, and r is the radius of the 

distribution measured in metric units.   If one takes b = ℎ0,
 where ℎ0 is Planck’s constant 

for one second (Planck’s constant in energy units only),  

 E3D = ℎ0 cm/r cm/r .         (1) 

Note also that higher energies are associated with shorter radii, representing narrower 

distributions. 

   To complete a statistical model, one needs to know the rate at which the 

elements of the distribution are sampled or (re)generated.  Herein this rate is referred to 

as the “paint” rate of the distribution.  Suppose that elements of the distribution traverse 

each of the two axes, on average, the distance, cm .  The paint rate for each of two axes 

then becomes cm/r and the overall paint rate cm/r cm/r.  Distributions representing higher 

energies (narrower distributions) are painted more than wider, less energetic, 

distributions.  Although narrow distributions are painted more often than wide 

distributions, the average distance, cm, traversed along each axis by the elements of the 

distribution is the same in either case.  

For energy in 2 dimensions, one divides  the 3-dimensional energy by the paint 

rate along a single axis,    

 E2D = ℎ0 cm/r.        (2) 

For energy in 1 dimension, one divides the 3-dimensional energy by the overall 

paint rate, cm/r cm/r, 

 E1D = ℎ0.     .    (3) 

 This model would suggest that the natural coordinates of the universe are two 

Cartesian coordinates and an angle.  One-dimensional order appears to be in the form of 

an ambient rotation.  Following this line of argument, two-dimensional order takes the 

form of order, or constraint, along a single Cartesian coordinate combined with a rotation.  

Three-dimensional order adds order, or constraint, along a second Cartesian coordinate. 

Now introduce an arbitrary variable, time(t).  (Time is defined below.)  Expressed 

in terms of time, (1), (2) and (3) become, 

 E3D = ℎ c/r cm/r,      (4) 

 E2D = ℎ c/r and       (5) 

 E1D = ℎ0 

where c and h have their usual metric units.   

E2D appears to be light.  Two-dimensional order is comprised of order in a plane 

rotating about an axis.   Two-dimensional order confines elements of the universe to a 

plane (with average radius r) while not constraining them along the perpendicular axis.  



The two-dimensional order proceeds along the perpendicular axis at the speed of light.  

This is counter intuitive.  In the macro world, direction is associated with order.  Here 

direction is associated with disorder.   

If two-dimensional order proceeds along the perpendicular axis for a distance cm, 

the two-dimensional distribution has painted itself cm/r times.  The two-dimensional 

distribution can be said to paint c/r times per second.  The paint frequency in seconds, c/r, 

is the frequency of light and r is the wavelength.  E2D = ℎ.  

Because light propagates in one direction along its axis of indirection and not 

along both directions, there must be directionality associated with h0. The apparent 

directionality associated with the painting of distributions may account for the presence 

of negative as well as positive electrical charges, spins up as well as down, and perhaps 

anti-matter. 

 

III. CLASSICAL MECHANICS 

 

A. Kinetic Energy 
 

A distribution in 3 dimensions is centered about a point; it does not change 

position.  On the other hand, a distribution in 2 dimensions is centered on a line and 

moves along this line a distance (d) of cm for each interval of cm.  The 3-dimensional 

order can be made to move by appending 2-dimensional order to it.  The 3-dimensional 

order must paint cm/r cm/r times, while the 2-dimensional order (perpendicular to the 

direction of translation) is painted only cm/r times.  Therefore, 3-dimensional order moves 

in proportion to the square root of the number instances of 2-dimensional order appended 

to it.  Designating the number of instances of 2-dimensional order as , one can write, for 

<< cm/r,  

  d = (2)1/2 r, with d as distance.    (6) 

The factor of two arises because translation occurs along only one of the two axes of the 

3-dimensional order. Rearranging (6),  

    = ½ d2 cm/r cm
-2 cm/r.       (7)  

Utilizing the Einstein mass-energy relationship4, E=mc2, to define mass(m), makes E3D = 

mc2 and  E2D = mc2/(cm/r).  Substituting cm/r = mc2/ E2D into (7), one obtains 

    E2D = ½ d2 cm/r cm
-2 mc2.      (8) 

Intuitively one would expect time squared to be a function of the paint rate. Defining 

time(t) as,  

   t = (r/cm)1/2 seconds.       (9)  

Substituting (9) in (8) and recognizing that d/t is velocity (v) gives, 

      E2D = ½ mv2.        (10)  

Since  E2D is the energy of the 2-dimensional order appended to the 3-dimensional mass 

to make it move, one obtains the classic formula for kinetic energy5, kinetic energy = 

½mv2.  Since at the level of Newtonian mechanics, the 2-dimensional energy associated 

with moving masses is not converted to free 2-dimensional energy, light, one can also say 

that kinetic energy must be conserved in interactions among moving masses.  Defining a 

quantity, mass, as m = E3D/c2 turns out to be convenient in expressing the relationships of 

classical physics. 

  



B. Time 
 

Time is a measure of indirection.  Given a fixed amount of energy, large masses 

take longer to move than small masses because of the relatively large amount of 

indirection (paints opposite to the direction of travel) associated with large masses.  Rest 

masses have total indirection.  Light, 2-dimensional order, has no indirection along its 

propagation dimension.  In general, one takes time to move from point A to point B 

because some of the elements in the 3-dimensional distributions, of which we are 

composed, move in a direction opposite to the direction of our travel.   

According to (9), time squared is equal to the inverse of the paint rate along one 

of the axes of the 3-dimensional distribution with which it is associated.  Time 

(Newtonian) is defined with respect to the distribution with which it is associated.  Time 

for a narrow distribution with a large paint rate (e.g. a large mass) has smaller units than 

time for a broad distribution.  It takes more of these units of time to reach a second.  For a 

given amount of energy the narrow distribution moves slower than the broader 

distribution. 

Time turns out to be a convenient variable for use in Newtonian calculations but 

is not fundamental.  Time and mass are derivative variables.  The universe is defined in 

terms of ℎ0 , the background energy; cm , which determines paint rates; and the variable, r. 

 

C. Conservation of Momentum 
 

To demonstrate the conservation of momentum6, mv, one must show that, in 

interactions among isolated masses acting upon each other, velocity is inversely 

proportional to mass.  Motion is induced to a symmetrical 3-dimensional distribution, 

representing mass, by appending 2-dimensional distributions to it.  The resulting 

combined distribution is asymmetric.  Appending a 2-dimensional distribution to a 3-

dimensional distribution skews the 3-dimensional distribution perpendicular to the 

direction of motion.  Velocity is proportional to the degree of asymmetry. 

The symmetry of narrow 3-dimensional distributions, with high overall paint 

rates, representing large masses, are less impacted by the addition of each instance of 2-

dimensional order than are broad 3-dimensional distributions representing smaller masses 

with lower paint rates.  The impact of the addition of an instance of 2-dimensional order 

on the asymmetry of the overall distribution, and the velocity, is directly proportional to 

the overall paint rate, and the associated mass, of the distribution.  When, in an 

interaction, the mass is changed (2-dimensional order transferred from one mass to 

another), velocity must be change in inverse proportion. 

Because the directionality associated with the appended 2-dimensional 

distribution is maintained, velocity must be a vector.  The vector v times m must be 

conserved. 

 

IV. de BROGLIE RELATION 

 

Using the expression for  E2D in (10) and recognizing that E3D = mc2, one 

obtains,   E2D E3D = ½ c2 m2v2.  Since E3D = ℎ c/r cm/r, and E2D = ℎ c/r,   E2D E3D =  (ℎ 

c/r)2 cm/r  = ½c2 m2v2 or  



 mv = h (2)1/2 1/r (cm/r)1/2       (11) 

or        

 mv = h/, the de Broglie relation7,8,       

where the de Broglie wavelength,  = r ((r/cm)/( 2))1/2.   

Notice that when   0, the de Broglie wavelength   , as one would expect for mass 

at rest.  When 2  r/cm, the de Broglie wavelength,   r, as one would expect for 

light. 

 

V. UNCERTAINTY PRINCIPLE 

 

From (11), mv = (2)1/2 ℎ 1/r (cm/r)1/2 = 2 ℎ 1/r 1/(2)1/2 (cm/r)1/2.  From (6) one 

knows that distance, d = (2)1/2 r.  Substituting, one obtains mv = 2 ℎ 1/d (cm/r)1/2.  

Recall that t = (r/cm)1/2.  So, for linear motion in unit time, mv d = ℎ 2 and the 

uncertainties become (mv d) = ℎ (2).   Because increments of distance are associated 

with two units of 2-dimensional order (analogous to photons), the inherent uncertainty in 

2, (2), is 1.  So, one concludes the uncertainty principle9,10:  (mv d) = ℎ.   

 

VI. TIME DILATION 

 

As more 2-dimensional order is superimposed on 3-dimensional order (more 

instances of 2-dimensional order appended to the mass) it can be said the resulting 

moving mass is taking on wave-like character.  This is a concept not inconsistent with 

contemporary thinking.  As the velocity increases toward that of light, proportionally 

more instances of 2-dimensional order are needed to overcome the indirection associated 

with the mass.  It is this dilutive impact of increasing numbers of instances of 2-

dimensional order that causes relativistic effects.  The coefficient 2 in (6) above must be 

changed to (2 cm/r + )/ cm/r to make (6) general.  

 The definition of time given by (9) assumes that velocity is so low (<< cm/r) that 

directionality is infinitesimal. At relatively high velocities this relationship must be 

modified to account for increasing directionality (i.e. increasing ).  Since v2 of a moving 

mass is a function of the associated number of instances of 2-dimensional order, , which 

represent direction, and c2 represents total direction, v2/c2 is a relative measure of 

direction.  With v2 = c2, one has total direction, light. With v2 = 0, one has total 

indirection, rest mass. Time squared, t2, as defined by (9) must be reduced by (1- v2/c2) to 

account for directionality. Time from the prospective of the stationary observer, is related 

to, tm, the time from the perspective of the moving mass by tm
2

 = t2 (1- v2/c2) or tm = t (1- 

v2/c2)1/2, in agreement with the expected relationship11,12. Were v2 to approach c2, from 

the standpoint of the mass, elapsed time would be reduced to the vanishing point, since 

indirection would have been virtually eliminated. 

 

VII. THE ORDER OF THE MACRO WORLD 

 

At the outset one does not know the order of the macro world.  Intuitively one 

would suspect that one does not live in a first order world as this would require the radius 

of the electron to be about a centimeter - surely too large.  Derivation of the electrical 

potential, discussed below, indicates that the macro world is third order.  Calculation of 



both higher and lower order impacts on both the electrical and gravitational potentials, 

also discussed below, confirm that the macro world is third order.  The dimensions of the 

macro world are about c0
2 higher than the smallest elements of the world (c0 is the speed 

of light expressed as a factor of one meter/second).  This puts the dimensions in macro 

world about 1017 greater than those of the micro world. 

 

VIII. INTERACTIONS AMONG 3-DIMENSIONAL DISTRIBUTIONS  

 

When two distributions, A and B, each of the form  = e-r overlap, the order 

associated with the two distributions is decreased.  This results because, in the space 

comprising the overlap, it is impossible to differentiate between the distribution elements 

belonging to A from those belonging to B.  The overlap thus introduces a degree of 

randomness to the distributions.  Because randomness is increased (or order decreased), 

there is an attraction, or force, between distributions.   

The appropriate expression for the energy of a distribution made up of two 

adjoining spherical distributions, herein described as a composite distribution, is  

 ∫∫ b 2 2 r dr dl, where  represents the composite distribution, b is ℎ0 and 2 is the 

Laplacian.  The variable r represents the radial distance from the cylindrical (bond) axis 

and l represents the distance along the bond axis.  Because of the difficulty in evaluating  

the integral, the calculation is done numerically, with integration replaced by summation.  

The elements of the distribution are represented in huge spatial arrays of the form 

phi[i][j] where i is the index for the radius from the cylindrical axis and j the index for the 

distance along the axis.  The elements of the composite distribution are obtained by 

taking the square root of the sum of the squares of the elements of the overlapping 

spherical distributions.  These numerical calculations are described in detail in reference 

2. 

  The energy of the composite distribution EAB is reduced by the energy of the 

individual distributions to obtain the net energy EAB
0.   EAB

0 = EAB- EA-EB.  Multiplying 

by the fraction, S/(1+S), where S is the overlap integral (described in reference 2), gives 

Eb, the energy decrease associated with the overlap.  The energy decrease associated with 

the overlap, i.e the energy associated with the overlap, is called the bonding energy.  

There is a signifigant reduction in energy associated with the overlap of distributions only 

when when they are relatively close together.  The most effective reduction in energy 

occurs when the distance between the center of distributions is about 1.4 r.     

 The components of the universe may be viewed as distributions representing 

order. The overlaps among these distributions could cause there to be attractions, and 

sometimes repulsions, among the components of the universe.  It is these overlaps that 

may account for the strong force found in the nucleus, electricity and magnetism, and 

gravity.   

In order for the distributions to account for many of the forces of nature, the 

distributions would have to have a mechanism to extend their range beyond their core 

radii.  Distributions representing order have extended range because they disaggregate. 

 

  

IX. AGGREGATION AND DISAGGREGATION OF DISTRIBUTIONS 

 



Two distributions of radius, r, and with energy E, when superimposed 

(“aggregated’), make a single distribution of radius r/2 and energy 4E (A distribution’s 

energy changes inversely with the square of the radius.).   Because distributions can be 

aggregated, many diverse distributions combine to look like, from afar, a single 

distribution, with a radius smaller than any of its components.  For example, a nucleus 

can look like a single, relatively narrow distribution, to a valence electron.  Indeed, the 

earth would look like a very narrow distribution to the sun.  Note that, in aggregating 

distributions, although the energy of the aggregated distribution at its radius is higher 

than the energy of the components, at distances large compared to its radius the effective 

energy is the same as the sum of the energies of the components.  In fact, the aggregated 

distribution cannot be approached closer than distances consistent with the radii of its 

components. 

Also, distributions can be disaggregated.   A distribution of radius r, and energy E, 

can be disaggregated into two distributions of radius 2r and energy E/4.  Two 

distributions of radius 2r and energy E/4 give energy E/2.  In general, disaggregation 

causes energy to fall off with 1/r.  That the gravity potential falls off with 1/r, may result 

from disaggregation causing the effective energy of distributions to fall off with 1/r.  

Disaggregation cannot be extended beyond the limits of the order (first order to second 

order, for example) (This is discussed below).). 

It is important, when calculating interactions among distributions, to understand 

the distinction between the energy of a distribution at its core radius (its radius prior to 

disaggregating) and its effective energy at the distance of the calculation.  For example, 

consider two distributions, one, A, with core radius r and energy E, with another, B, with 

core radius r/2 and energy 4E.  When these two distributions interact with another 

distribution, C, at some distance greater than r, B appears to have an energy 2 times that 

of A, not 4 times that of A.  This is because B has to disaggregate from a radius half that 

of A.  So, when calculating interactions among distributions, the effective energy of a 

distribution depends upon one’s distance from it.   

 

X. INTERACTIONS AMONG 3-DIMENSIONAL DISTRIBUTIONS AT 

DISTANCE 

 

 Calculation of the energy of interactions between 3-dimensional distributions at 

distances large compared to their core radii differs from the calculation at distances near 

the core radii.  To compute the long-distance interaction, one disaggregates the 

distributions as distributions of equal radii (The higher energy distribution disaggregating 

more than the lower energy distribution.), until they can overlap at their most favorable 

distance (Usually about 1.4 r, where r refers to the radius of the disaggregated 

distribution.).  One then calculates the relative energy decrease associated with the 

overlap of these distributions, Fab, in the manner described above.  The units of Fab are 

energy per unit energy squared.  Designating the distributions as A and B, the energy of 

the bond,  

 Eb = Fab  EA  EB,       (12) 

where EA and EB represent the energy of the distributions at their core radii.  The factor 

Fab decreases with 1/r of the disaggregated distribution.  Notice that the product of two 

energies results in an energy, not energy squared. 



 

  

XI. CALCULATION OF THE NEWTONIAN CONSTANT OF GRAVITATION, G 

 

According to the law of universal gravitation13, the potential energy difference, 

Eab, between two masses, ma and mb is given by Eab = ma mb G (1/radial distance(d)) 

where G is the gravitational constant.  So,  

 G = [Eab /(ma mb)] d.       (13) 

To determine G one must calculate the gravitational potential between two known masses 

at a known distance, d.  For this calculation it is convenient to choose the distribution 

associated with the hydrogen atom.   

The first order radius r associated with any substancial mass is very small. The 

energy associated with the interaction between masses at or near their core radii is very 

strong.  The first order interaction is too short ranged and too strong to be gravity.  

Gravity is felt in the macroscopic world.  It is a third order interaction.  The higher and 

lower order calculations discussed in a later section confirm this. 

Using a computer program, one can calculate the stabilization associated with the 

overlap of two distributions, each having the Bohr radius14, a0, at their most optimum 

separation (d) where d is expressed as a fraction of a0.  This is done by stepping through a 

series of separations to find the best stabilization.  Designate the relative stabilization 

associated with the optimum overlap of  two distributions having the Bohr radius as Rab.  

Rab has units of radius-2 energy-2.  The energy per unit energy squared factor, Fab = ℎccm 

Rab c0
-2 where c0 is the  magnitude of c.  [The values of c,h and a0 are taken from the 

CODATA values15] Setting E3D in (1) to mc2, that mass is 2.366212210-13 kilogram.   

The energy associated with this mass is 2.1266455104 joule.  Consistent with (12), the 

energy of the bond, Eb = ((2.1266455104))2  ℎccm  Rab  c0
-2.  Consistent with (13),  

G = [(((2.1266455104))2  ℎccm  Rab  c0
-2 d)/( 2.366212210-13)2]  d a0 

The second factor of  d arises because the maximum gravity potential is achieved at a 

distance of d a0 not at 0.  Energy is inversely proportional to r.  So, for the purposes of the 

calculation of G, Eab must be increased by a factor of d.  The magnitude of Rab is found to 

be about 0.118 and d about 1.42.  Considering only the primary order interaction, one 

obtains G = 0.67814510-10.  The accepted value is G = 0.667428(67)10-10 16   

Considering higher and lower order contributions results in G = 0.66737810-10.  These 

other order contributions are discussed below. 

 The absolute energy accuracy of this calculation is about 1 x 10-8(expressed as a 

fraction).  The result, G, is found by finding the peak in the curve of energy versus the 

separation distance.  Since the energy vs. distance curve is continuous and smooth, one 

would expect that the relative accuracy would be better than the absolute accuracy.  

Assuming 10-9 relative accuracy, the accuracy of G is about 10-4 (expressed as a fraction).  

Assuming 5  10-10 relative accuracy, the accuracy of G is about 8  10-5.  Assuming 5  

10-9 relative accuracy, the accuracy of G is about 3  10-4. 

  

XII. THE ELECTRICAL INTERACTION AND CALCULATION OF THE 

ELECTRICAL POTENTIAL 

 



 There are several aspects of the electrical interaction which suggest its origin.  

The fact that particles, no matter their mass, have integral charge suggests that the 

electrical interaction has as its source, rotating 2-dimensional order.   Were this 2-

dimensional order associated with 3-dimensional order (a particle of some mass), 

interactions among the various instances of 2-dimensional order would be the equal when 

disaggregated to distributions of equal radii.  The interaction would be independent of the 

mass with which it is associated.  The energy of the 2-dimensional order associated with 

a given mass is proportional to 1/r and falls off with 1/r, making the interactions among 

the 2-dimensional orders associated with different masses identical. 

 The electrical attribute of a particle does not cause the particle to move, so the 2-

dimensional order associated with the particle must rotate.  Because electrical charge can 

be both plus or minus, it seems reasonable to associate the electrical attribute of a particle 

to a rotation (I do not use the term spin since it is not clear at the outset that this is the 

attribute commonly called “spin”.) of associated 2-dimensional order, with plus and 

minus corresponding to opposite rotations.  (Recall that light must have an associated 

rotation.  Absent a rotation, light would proceed in both directions along its symmetry 

axis.) 

 Key to the understanding of the electrical interaction is the electron. The electrical 

potential can be derived simply from the electron mass.  Substituting the Einstein 

relationship in (1) and substituting ℏ0 for ℎ0 to reflect the rotational nature of the 

interaction, one obtains, 

   electron energy = mec
2 = ℏ0 cm/r cm/r or cm

2 ℏ0 <r-2>,   (14) 

where me is the electron mass.  (The energy of a spherical distribution is sometimes 

written as ℎ0 cm
2<r-2>.)   

Assuming that the macro world is third order and that therefore me is a third order 

measurement, the r in <r-2> in (14) is a third order radius.  Because rotation is an attribute 

superimposed on a particle, one hypothesizes that the electrical interaction may reflect 

the second order <r-2>.  The second order electron <r-2>2nd, where r2nd = c0 times the first 

order electron radius (or 1/c0 of the third) is <r-2>2nd = 7.76344078  1020 m-2.   

One can demonstrate the relationship of the electron radius to the electrical 

potential by calculating the electrical potential at the Bohr radius.  The <r-2> for the Bohr 

radius (a0) is 3.57106486  1020 m-2.  (The ratio 7.76344078/3.57106486 = 2.17398481.  

Increasing <r-2> of the Bohr radius by this factor the yields <r-2>2nd for the electron.) The 

maximum stabilization associated with the overlap of two distributions representing the 

electron (As discussed above, the electrical <r-2> associated with the central proton is the 

same as that of the electron when it is disaggregated to the radius of <r-2>2nd for the 

electron.) occurs at 0.96613612 a0. Recognizing that the electrical potential falls with 1/r, 

the calculated electrical potential at a0 becomes 0.9912983 atomic units. The expected 

electrical potential for an electron in the innermost Bohr orbit is 1.0 in atomic units17.   

The absolute energy accuracy of this calculation is about 2  10-8 (expressed as a 

fraction).  Assuming 10-9 relative accuracy, the accuracy of the electrical potential is 

about 3  10-5 (expressed as a fraction).  Assuming 5  10-10 relative accuracy, the 

accuracy of the electrical potential is about 7  10-5.  Assuming 5  10-9 relative accuracy, 

the accuracy of the electrical potential is about 2  10-5.  Since the approximate 1% error 

in the calculated potential is well outside accuracy of the calculation, it is clear that a 

single order calculation is not adequate. 



If interactions up to the fourth order are considered, the calculated electrical 

potential = 0.9999913 atomic units.  Calculation of higher order and lower order effects is 

discussed below. 

The calculation above confirms that electrical interaction is a second order 

interaction. (As discussed above, the gravitational interaction is third order.)  The 

rotational order associated with the electrical attribute appears to reach out radially by a 

factor of c0 from the first order radius of the mass with which it is associated.  The 

electron itself appears to be a pseudo particle.  It looks like a 3-dimensional particle 

because it is rotating 2-dimensional order and has a mass equivalent.  It may not have a 

mass in the sense of that of other particles. 

 

XIII. INTERACTIONS AMONG THE VARIOUS ORDERS 

 

  Second order and higher effects among instances of 3-dimensional order are 

enhanced via disaggregation/aggregation.  A single probability distribution of energy n 

can be looked at as n1/2 broader distributions a factor 1/n lower in energy.  This 

disaggregation is equivalent to a single distribution of energy n1/2.   Conversely, a single 

probability distribution of energy n can be looked at as 1/n1/2 narrower distributions, a 

factor of 1/n higher in energy.  This aggregation is equivalent to a single distribution of 

energy n n1/2.     Since the distributions representing the various orders can be 

disaggregated or aggregated, significant interactions among the orders are possible. 

   There are two types of higher-order interactions; like-order interactions and cross-

order interactions.  Higher-orders can interact with lower-orders because the higher-

orders overlap with the lower-orders.  The cross-order interactions involve the overlap of 

a broad higher-order distribution with a much narrower lower distribution.  Consider like-

order interactions first.   

   The elemental unit of first-order distributions is cm (the number of meters traveled 

by light in a second).  The elemental unit of second-order distributions is cm
2.  The 

elemental unit of third-order distributions is cm
3, etc.  The energy associated with the 

second-order distribution is 1/c0.  The second-order energy is not 1/c0
2 as one might 

expect because the relative core radius of the second-order is c0
1/2 smaller than the core 

radius of the first-order.  As one proceeds to the higher-orders, the energy of the orders 

decrease by a factor of 1/c0 as the radius increases by a factor of 1/c0.   

   For there to be a like-order, higher-order, interaction, the radius of the higher-

order distribution must be reduced to the radius of the lower-order distribution.  

Aggregating a higher-order which is nominally 1/c0 lower in energy produces a 

distribution at the lower-order radius which, after aggregation, is (1/c0)
1/2lower in energy.  

So, higher-order 3-dimensional distributions are (1/c0)
 1/2 lower in energy than the order 

below.   

Cross-order interactions involve the interaction of a relatively narrow lower-order 

distribution with a much broader higher-order distribution.  (This is a kind of 

superposition of the higher order on the lower order.)  For the cross-order interaction to 

be significant, the lower order radius must be within a few orders of magnitude of the 

higher order distribution.  Optimum interaction occurs when the lower order distribution 

disaggregates to the maximum extent.  For example, consider a first order-second order 

interaction.  The first order is c0 higher in energy than the second order.  Therefore, its 



radius is (1/c0)
1/2 lower than the second order radius.   Disaggregation can increase the 

first order radius to (1/c0)
1/4 of the second order radius.  Using a computer program one 

can calculate the interaction (stabilization) between two distributions, one with a radius 

(1/c0)
1/4 smaller than the other. 

     Higher-order interactions have an impact on the optimum bond length between 

the distributions representing the instances of order.  In particular, cross-order 

interactions reduce the optimum bond length.  Cross order interactions are at a maximum 

when the bond length is zero.  However, decreasing the bond length from the first order 

bond length increases the energy penalty associated with aggregation.  Therefore, to 

calculate higher-order effects, one must adjust for changes in the bond length from the 

optimum bond length of the first-order interaction.    

   The ratio of bond length/first-order bond length is the factor that adjusts the 

interaction energy for changes in bond length from the optimum first order bond length.  

So, higher-order distributions are (bond length/first-order bond length) (1/c0)
1/2 lower in 

energy than the order below.  This results because any increase in the bond length from 

the first-order bond length proportionately decreases the extent of aggregation required of 

the higher-order.  Similarly, any decrease in the bond length from that of the first-order 

bond length increases the extent of aggregation required of the higher-order.    

   If one takes engy1-1 as the stabilization energy associated with the overlap of the 

first order distributions, then the second order stabilization energy engy2-2 is 

 engy2-2 = (bond length/first-order bond length)  engy1-1 /c0
1/2 , 

and the third order stabilization, 

 engy3-3 = (bond length/first-order bond length)2  engy1-1 /c0  . 

   Cross-order interactions must also be adjusted for changes in the bond length 

from the first-order bond length interaction.  The radius of the inner lower-order 

distribution must be adjusted in accordance with its disaggregation.  Since disaggregation 

brings the lower-order distribution's radius to (1/c0)
1/4 of the radius of the higher-order, 

the lower-order's radius must be adjusted by a factor of (bond length/first-order bond 

length)1/4.  In addition to these adjustments, the energy of the higher-order distribution of 

the cross-order interaction must also be adjusted in the same manner as it was adjusted 

for same-order interactions.  Also recognize that cross-order interactions are multiplied 

by 2 as there are two cross-order interactions for each same-order interaction. 

  If one takes engycross0-1 as the stabilization associated with a first order 

distribution superimposed on a (hypothetical) distribution with radius (bond length/first-

order bond length)1/4  (1/c0)
1/4 smaller than the cross-order stabilization at the first order 

bond length, engy0-1 is 

 engy0-1 = 2.0 (bond length/first-order bond length)  engycross0-1 

and the cross-order stabilization associated with the second order overlapping the first 

order is 

 engy1-2 = 2.0 (bond length/first-order bond length)  engycross0-1 /c0
1/2 . 

In the macro world one experiences gravity as a 3-dimensional third order 

interaction.  So, the total interaction, engy, including both lower order and higher order 

interactions is 

 engy = engy3-3 + engy2-3 + engy4-4 + engy3-4 + etc . 

Recognizing that engy2-3 = engy3-4, the total interaction is 

 engy = engy3-3 + 2.0 (bond length/third-order bond length)  engycross2-3 + 



  (bond length/first-order bond length)  engy3-3 /c0
1/2   + 

  2.0 (bond length/first-order bond length) engycross2-3 /c0
1/2 + 

  etc. 

 

Since the calculations are limited to about 10-5 (relative) accuracy, only the first 4 terms 

are meaningful in the calculation of the gravitational constant.  Including these four terms 

yields G = 0.667378 x 10-10.  This is to be compared with the accepted value G = 

0.667428(67)10-10. 

 

    The higher order interactions in the calculation of the electrical potential are 

somewhat different from the above.  The electron, and the electrical aspect of other 

charged particles, are rotating 2-dimensional distributions.  While in some respects they 

appear as 3-dimensional distributions, the energy of interaction of these distributions falls 

off with 1/r without disaggregation.   Because electrical interactions fall off with 1/r 

rather than 1/r2  as do the true 3-dimensional interactions, the electrical interactions are a 

power of 2 lower (or a power of 1/2 of) the true 3-dimensional interactions. 

   The second order electrical stabilization energy eleengy2-2 is 

 eleengy2-2 = (bond length/first-order bond length)  eleengy1-1 /c0
1/4. 

The cross-order stabilization associated with the second order overlapping the first order 

is 

 eleengy1-2 = 2.0  (bond length/first-order bond length)1/2 eleengycross0-1 /c0
1/4   

where eleengycross0-1 is the stabilization associated with a first order distribution 

superimposed on a (hypothetical) distribution with radius (bond length/first-order bond 

length)1/4  (1/c0)
1/4)1/2 smaller than the cross-order stabilization at the first order bond 

length (This differs from the 3-dimensional case above by a power of 1/2 in c0.). 

The third order electrical stabilization energy eleengy3-3 is 

 eleengy3-3 = (bond length/first-order bond length)2  eleengy1-1 /c0
1/2

 . 

Recognizing that the electrical interaction is manifest in the second order, the total 

electrical potential for the Bohr atom, eleengy, including higher order interactions is 

 eleengy = eleengy2-2 + eleengy2-3 + eleengy3-3 + eleengy3-4  + etc.  

So the total interaction is 

 eleengy = eleengy2-2 +  

 (bond length/first-order bond length)  eleengy2-2 /c0
1/4

 + 

 2.0 (bond length/first-order bond length)1/2  eleengycross1-2 /c0
1/4  + 

  (bond length/first-order bond length)2  eleengy2-2 / c0
1/2 + etc. 

Including these four terms the calculated Bohr electrical potential = 0.9999913 atomic 

units. 

 The above derives the electrical potential at the Bohr orbit, where the electrical 

potential is manifest in the second order (There is no electrical interaction in the first 

order world.).  There is no interaction with a lower order.  In the macro world one 

experiences the electrical potential as a third order interaction.  Performing the analogous 

calculation in the third order requires us to add an additional term reflecting the second 

order/third order cross-order interaction.  The Bohr electrical potential calculated from a 

macro world perspective is 

 eleengy = eleengy2-3 + eleengy3-3 + eleengy3-4  + eleengy4-4 + etc. 

Recognizing that eleengy2-3 = eleengy3-4, the total interaction is 



 eleengy = eleengy3-3 +  

 2.0 (bond length/first-order bond length)1/2  eleengycross2-3 /c0
1/4  + 

 (bond length/first-order bond length)  eleengy3-3 / c0
1/4 + 

 2.0 (bond length/first-order bond length)1/2  eleengycross2-3 /c0
1/4  + 

  (bond length/first-order bond length)2  eleengy3-3 /c0
1/2 + etc. 

Notice the addition of a cross term.  This is because, in the macro world, there is a lower 

order term. Including these five terms, the calculated macro electrical potential = 

0.99764235 atomic units. 

 The Bohr electrical potential - macro electrical potential = 0.9999913-0.9976424 

=0.0023498 atomic units.  The electron g factor18, ge= -2.0023193.  ge +2.0 = -0.0023193.  

Since the accuracy of the calculation is in the range of 2 to 5  10-5, one has agreement 

within measurement accuracy.  It appears that the magnitude of ge differs from 2.0 

because the electrical potential in the macro world is different from the electrical 

potential in the macro world. 

 

XIV.  ELEMENTARY PARTICLES 

 

  The model presented here suggests that items of mass, or particles, should be 

considered differently in the micro world than in the macro world in which we live.  In 

the macro world, when an item or particle is split into fragments, these fragments are 

considered as pieces or components of the item or particle from which they came.  The 

micro world presents a different perspective.  Consistent with viewpoint presented here, 

in the micro world, when a non-composite particle (a particle made up of a single 

distribution) is fragmented, the fragments would be represented by broader distributions 

than the particle from which they came.  These broad distributions could not be 

considered as pieces or components of the narrow distribution from which they came.  

From the perspective of this model, elementary particles are those with the most-narrow 

distributions, and highest energy, of their kind.  

 The following analysis explores the possible nature of electrons, protons and 

neutrons.  

 If elementary particles are truly the smallest, most energetic particles of their type 

there must be a factor that limits their energy and <r-2>.  Recall that, for 3-dimensional 

order: 

   particle energy 3D = cm
2 ℎ0 <r-2>, 

 where <r-2> represents the probability distribution.  For rotating 2-dimensional order:  

particle energy 2D = cm
2 ℏ0 <r-2>. 

It would not be meaningful to define a distribution more narrowly than its 

inherent uncertainty.  Recall that cm is the distance traversed by the distribution elements 

as the distribution is regenerated or “painted”.  The inherent uncertainty of the cm distance 

within the 2-dimensional probability distribution is cm
1/2 and the inherent uncertainty of 

cm
2 within the 3-dimensional distribution is cm.  

 Substituting the Einstein relationship in the latter and recognizing that <r-2> is 

limited to cm
1/2 , one obtains, for the smallest and most energic of rotating 2-dimensional 

order,   m = ℏ0 cm
1/2 = 1.82594  10-30 kg.   Since the rotation of the electron is only in 

one direction it is reasonable to take one half of this value.  This gives, for the electron, 

me =  9.12969  10-31 kg.  The accepted value for me is 9.10938  10-31 kg. 



 Substituting the Einstein relationship in the former and recognizing that <r-2> is 

limited to cm
 , one obtains, for the smallest and most energic of 3-dimensional order,  m = 

ℎ0 cm = 1.98644  10-27 kg , about 18% higher than the mass of the proton.  However, if 

one recognizes that, for the distribution representing 3-dimensional order, which has 2 

Cartesian axes, the average distance between distribution elements is 21/2 of r.  This 

yields  m = ℎ0  2
-1/4cm = 1.67039  10-27 kg, close to the accepted value for the proton,  

1.67262  10-27 kg. 

 Since the proton has an electrical charge, it must have an associated rotation of 2-

dimensional order.  This rotational 2-dimensional order should have a relatively small 

associated mass (as the electron has mass).  Since the neutron is neutral and is heavier 

than the proton, the neutron must have a rotation and a counter rotation as well.  It 

follows that the difference between the masses of the neutron and the proton should be 

approximately equal to the mass associated with the rotation.  The difference between the 

mass of the neutron and the mass of the proton is 2.31  10-30 kg.   

 Since the energy associated with the 2-dimensional rotation falls off with 1/r 

(rather than 1/r2 as does the 3-dimensional order), the energy associated with the rotation 

(and the mass associated the rotation) should be less than the energy associated with the 

3-dimensional order by a factor of c0
-1/4.  Taking into account the geometric factors 

described above: 

 mass rotational 2-dimensional order =  2-1/4 (2π)-1 c0
-1/4 mass 3-dimensional order.  

This yields mass rotational 2-dimensional order  = 2.40  10-30 kg, in reasonable 

agreement with observation. 

  

 

XV. CONCLUSION 

 

 The modeling of energy as order represented as a probability distribution is 

notable for its lack of complexity.  Although the concept of the physical world having its 

origin in “order” is difficult to grasp, physical laws follow easily from this concept.   The 

energy of the three forms of matter; mass, light, and background/dark energy differ only 

by a single constant factor.  Recognizing that motion can be induced by skewing 3-

dimentional distributions (mass) by appending 2-dimentional distributions to them, gives 

way to the uncomplicated derivation of the classical laws of motion.  This leads 

seamlessly to the idea that moving masses have a wave character.  Relativistic effects 

arise from the dilutive impact of appending increasing numbers of instances of 2-

dimensional order to achieve higher velocities.  The uncertainty principal results from the 

fact that only integral numbers of instances of 2-dimensional order are appended.  Forces 

arise from the reduction in order arising from the overlap of distributions.  Although the 

derivation of the constant of gravitation and the derivation of electrical potential requires 

an understanding of the aggregation and disaggregation of distributions and the 

magnitude of these constants depends on the order (i.e. 1st, 2nd,3rd) of the macro world, 

the actual numerical calculation of the constants is straight forward.  
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