The Proofs of Legendre’s Conjecture and Three Related Conjectures

Wing K. Yu

Abstracts

In this paper, we are going to prove Legendre’s Conjecture: There is a prime number between
n? and (n + 1)? for every positive integer n. We will also prove three related conjectures. The
method that we use is to analyze a binomial coefficient. It has been developed from the method
of analyzing a central binomial coefficient that was used by Paul Erdés to prove Bertrand’s
postulate - Chebyshev’s theorem.
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1. Introduction

Legendre’s Conjecture was proposed by Andrien-Marie Legendre [1]. The conjecture is one of
Legendre’s problems (1912) on prime numbers. It states that there is a prime number between
n? and (n + 1)? for every positive integer n.

In this paper, we will prove Legendre’s Conjecture by analyzing the binomial coefficient (’ZL)
where A > 3 is an integer. It is developed from the method that was used by Paul Erdés [2]

to prove Bertrand’s postulate - Chebyshev’s theorem [3].

In Section 1, we will define the prime number factorization operator and clarify some terms
and concepts. In Section 2, we will derive some lemmas. In Section 3, we will develop a
theorem to be used in the proofs of the conjectures in the later sections. In Section 4, we will
prove Legendre’s conjecture, and in Section 5, we will prove Oppermann’s conjecture [4],
Brocard's conjecture [5], and Andrica’s conjecture [6].

Definition: [;5,.,{(*")} denotes the prime factorization operator of (**) . It is the product of
the prime numbers in the decomposition of (’}f) in the range of a > p > b. In this operator, p is
a prime number, a and b are real numbers,and An>a2p>b >1.

It has some properties:

It is always true that Fa2p>b{(l$)} >1 —(1.1)
If there is no prime number in Fa2p>b{(l;)}, then Fa2p>b{();:l)} = 1, or vice versa,

if Fa2p>b{()z1)} = 1, then there is no prime number in Fa2p>b{(/17:l)} . —(1.2)
For example, when A =5 and n =4, F162p>10{(240)} =13%-11%=1. No prime number 13 or 11
isin (240) in the range of 16 > p > 10.

If there is at least one prime number in Fa2p>b{(/:?)}f then Fa2p>b{();:l)} > 1, or vice versa,
if Fa2p>b{(l;)} > 1, then there is at least one prime number in Fa2p>b{();:l)} . —(1.3)

For example, when A =5 and n = 4, F202p>16{(240)} =19-17 > 1. Prime numbers 19 and 17
arein (240) in the range of 20 2 p > 16.

Let v, (n) be the p-adic valuation of n, the exponent of the highest power of p that divides n.
Similar to Paul Erd8s’ paper [2], we define R(p) by the inequalities pR® < An < pR®*1 and

determine the p-adic valuation of (’m) .
(A-Dn

vy (1)) = 2 (@) = 3, (A = D) = 2, = 225 (|| = |52 = | 5] ) = ~ew

because for any real numbers a and b, the expression of |a + b|] — |a| — | b] is O or 1.

An
Thus, if p divides ()Zl), then v, ((’11?)) <R(p) <log,(An), or pvp((n )) <pR® < in —(1.4)
Andif An2p > [\/EJ, then0< v, ((’:1)) <R(p)<1 —(1.5)
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Let 77(n) be the number of distinct prime numbers less than or equal to n. Among the first six
consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional
six consecutive natural numbers, at most one can add two prime numbers, p =1 (MOD 6) and

p =5 (MOD 6). Thus, 1t(n) < EJ+2 < §+2. Since some of n=1(MOD 6)and n=5 (MOD 6) are

. . n
not prime numbers, as the number counts increase, T((n) reduces from l§J+2.

Forn>24,m(n) < EJ+1 < §+1 —(1.6)
From the prime number decomposition,

when > V7], () = Dinapntri st Tusp il i) oo b
when < VAR, (%) < izt T e o)

Thus, () < sz;»ﬂ%} Tsps v {%} 'mezp{%}
szpm{%} = mzwn{%} since all prime numbers in n! do not appear in the

range of An>p > n.
n)!
Referring to (1.5), n>p>[\/ﬂj {%} < anp p. It has been proved [7] that for n > 3,

Gn)! -
m}s [Tnsp p <2773,

——l< (/1n) 5 "' when |Vn| 2 24.

(an)!
(A-pn)!

[Tnsp p <2273 Thus, forn >3, T, >P>l\/m{

(an)!

Referred to (1.4) and (1.6), Fl\/mzp{n' (G-pn)!

Van
Thus, for n >3 and |Vin| > 24, ( n) <Dmsponf=——"=}22""%-(n) s ** —(1.7)

2. Lemmas

2(2x-1 x
Lemma 1: If a real number x > 3, then (2x—1) > ( X ) —(2.1)
x—1 x—1

2(2x 1) 2(x-1)(2x-1)'-2(2x-1)(x—1)’ -2

Proof:
Let f; (x) = , then f;'(x) = D) = o <0.

Thus fi(x) is a strlctly decreasing function for x > 1.

2(2x—-1)
x—1

Let f5(x) = ( ) then £, (x) = ((x l)x)'z (ex.lnx"j)’z ex'lnxle-(x-mL)'

R0 () (e (02))= () (nZpe w2 225

fo' () = (ﬁ)x (n=- ) —(2.1.2)

x—1

Since f;(3)=5and lim fi(x) =4, forx>3,wehave52 f;(x) = >4. —(2.1.1)
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1 1 1 1 1 1 1
In (2.1.2), ;=;+;+;+F+;+;+“' —(2.1.3)

2 3 4 5 6

Using the formula: In(1 + x)=x — x? + x— — x— + x— - x— + .-, we have
x 1 - 1
1n;_1n1+_71_ —In(1+ x)_x + sz + 3x3 + 4x4 + 5x5 + 6x6 + - — (2.1.4)
Thus forx >3, In— — L <o —(2.1.5)
x—1 x-1
. x. oy ’ X 1
Since (ﬁ) is a positive number for x >3, f, (x) = (ﬁ) . (lnﬁ - x—_l) <0. —(2.1.6)
Thus f,(x) is a strictly deceasing function for x > 3.
X
Since f,(3) =3.375and lim f,(x) = e =2.718, for x 2 3, 3.375 2> f, (x) = (x"—l) >e —(2.1.7)
X—00 -

Since for x 23, f;(x) has a lower bound of 4 and f,(x) has an upper bound of 3.375,

2(2x 1) )
filx) = > fr(x) = ( = ) is proven. —(2.1.8)

in Aln—)&l
Lemma2:Forn>2and 123, ( n ) > N(—1)(—DnA+1 —(2.2)
Proof:
_ Any_ 22y _ 2A(2A-1)(2A-2)!
When 123andn=2, ("")=(%)= o = A2A-1) —(2.2.3)
AAn=A+1 A24-2+1 -1 A

— e = e =2 () —(22.2)

n(l—l)(’l 1)n-2A+1 2(1_1)2(2 1)-2A+1 2 1-1
B 2(21-1) 2\A
In (2.1) when x = 1 > 3, we have 1 > (/1—1) —(2.2.3)
A(A-1 A(A-1
Since @-1) is a positive number for A > 3, referring to (2.2.1) and (2.2.2), when (@-1)
multiplies to both sides of (2.2.3), we have
A An—-A+1
A(A-1 2(2A-1 A(A-1 A A
(( ))(( ))=/1(21—1)=(M)>(( ))( )= —_
2 A-1 n 2 -1 n(A-1)A-1n-21+1
n AAn—A+1

Thus, ( n ) > when A>3 andn=2. —(2.2.4)

n(l_l)(l—l)n—)ﬁl

. . . (An A=A+t .
By induction on n, when A = 3, if ( n ) > (A1) A-Dn—A+1 is true for n, then for n+1, we have
(}t(n+1)) _ (An+/1 _ (An+2)(An+A-1)--(An+2)(An+1) _ (An)
n+l /7 \n+1/ " QAn+i-n—-1)(An+1-n—2)--(An-n+1)(n+1)
A(n+1) (An+2) (An+2A—1)-(An+2)(An+1) AAn-A+1
n+l (/1n+/1—n—1)(/1n+)l—n—2)---()ln—n+1)(n+1) n(A-1)A-1)n-21+1
A(n+1) (An+2)(An+1-1)-(An+2) i+l 1 AAn—A+1
n+1 (}tn+/1—n—1)(/1n+/1—n—2)---(1n—n+1) n  (n+1) (A-1)A-Dn-1+1
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(An+A)(An+1-1)--(An+2)
>, and > (
An+A-n-1)(An+1-n-2)---(An—n+1) A-1
An+d A An+A-1 5 A An+2 5 A
n+i-n-1 A-1" n+i-n-2" 1-1"  In-n+1 " A-1°
A/l—l 2 1 AATL—A+1 Al(n+1)—l+1

An+1
Notice )(”I D

because

A(n+1) A . _
n+1 A-1D)A-1D 1 (n+1) (A_lyl—ﬂn—l+1_'karxa_1)0r1Xn+n—l+1
AAn-2A+1

Thus —(2.2.5)

From (2.2.4) and (2.2.5), we have forn>2and A > 3, (/17:1) > (-1 @-Dn-2+1

Thus, Lemma 2 is proven.

3. A Prime Number between (A —1)n and An whenn 2 (4 —2) 2 24

Proposition:
For n > (1 —2) > 24, there exists at least a prime number p such that (1 —1)n<p <An. —(3.1)

Proof:
An)!
Whenn > (1 -2) 224, in F)lnzp>n{ e

((/'l—l)n)' }I p 2n+l> vV (n + 2)n > l\/ﬁj Referring to

(An)!
(1.5), we have 0< v, (Fln2p>n{ﬁ}) <SR(p)<1l.Andn=2(1-2)2 [\/ln] >24.
(an)!

- (71”)' l A 2

(n)! (!
Fin NNCOl )
AL G A ops aomn

In Hf;lz (F(/’L—l)n an {((/1(’11‘)) ~ }), for every distinct prime number p in these ranges, the
i l+1

numerator (An)! has the product of p - 2p - 3p ... ip = (i)! - p'. The denominator ((1 — 1)n)!
also has the same product of (i)! - p’. Thus, they cancel to each other in % .

. A-2 (An)! _
Referring to (1.2), []/Z; (F(/l—il)n fﬁi{((ﬂ PRy })
Therefore, whenn >4 —2 > 24,

(An)! an)! (An)!

Cansionl ) = Dol ) T2 (P eoanliZ51)
_ TTi=A- (An)!
= H%:l 1 (Fa_inzp>(a—i1)n{m}>. bl (3.2)

. n (An)' 2n—3 @+1 . .. .
Referring to (1.7), (n) < FAn2p>n{m} 2°"72-(An) 3 7. Applying this inequality to
(2.2), when n > (1 —2) 2 24, we have

/1/'Ln—/1+1 An (/'ln)' _ \/i_n_l_]_

n(;{_l)(/l—l)n—)Hl < (n ) < Fln2p>n{((/1_1)n)!} L2273 (An) 3 :

/1/'ln—/'l+1

l—' { (/171)' }' 2211—3 . /1 \/%—n-l-l S /1 @+1 1 d 22n_3 1
n(ﬂ_]J(l—l)n—A+1 < Ianzps>n az:;;BT (An) .Since (An) s >1an >1,
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222 ((A—_l) .(L)A>(n_1)
(An)! } AAn—2+1 + ) Ut

Dzl ! > 7 ) Vin
(An) 3 *1 52n-3 _n(/l_l)(l—l)n—)ﬁl (An) 3 +2

1 \2
Referring to (2.1.7), when 1 > 3, (E) >e,

an)! }>2/12'((%)'(ﬁ)1)(n_1) 222. (( 1), e>(n 1)

thus, Fln2p>n{((l_1)n)! Van 2 Van =f3(n, 2) —(3.3)
(An) 3 (An) 3
<(y 1) )(X—l)
Let f5(x,y) = where both x and y are positive real numbers. —(3.4)
(xy) (x-1) (x-1)
x—1 x—1
2(x+2)2- ((":—1) : e> 2(x+2)2- ((":—1) -e)
When x = (y -2), f53(x,y) = ' > fi(x) = 1 —(3.5)
NELeTD) 2
(x-(x+2)) 3 12 (x-(x+2)) 3
1 1 4 2
ﬁm@=ﬁuy0—+l(i)+;—;r~wwx&+zﬁ—;—ﬂﬁﬁ JACORYAIC)
_ 2 1) 4 2 1 7 s
where f5(x) = -+ in ( ) +5 - ln(x (x +2)) = 36D
4x+6 x2+2x-2 7 . N .
fs'(x) = D (i) + 21D + Fr + e > 0. Thus, f5(x) is a strictly increasing
function for x > 1.
When x =7, f5(x)=—+l (7+1) +§_7-2+_1__l (7) ——ln(7+ 2) ———%>0.

Thus, for x > 7, f5(x)>0.Then, f,'(x) = f,(x) - fs(x) > 0. Thus, f,(x) is a strictly increasing
function for x > 7.

17 15
2:(18)% () e’ 56a7E+18

When x =16, f,(x) = I lpp———— 1,thenforx <16, f,(x)<1. —(3.6)
(16-18) 3 :
16
2-(19)2-(2) -e'®  1814E+20
When x =17, f,(x) = (‘i7)+1+2 =7 185];20 >1,thenforx 217, f,(x)>1. —(3.7)
(17-19) 3 :
Referring to (3.5), when x = (y -2) 217, f5(x,y) > f,(x) > 1. —(3.8)
_ (x—-1)
v ((5) )
From (3.4), f5(x,y) = NG
N2y
( ) (xy) 3
af . (x,y
= fay) - (I () +1-22 @mn——)ﬁuwﬁuw —(3.9)
_ _ Yy _2
wh:re)fs(x ,Y) = ln( ) +1 "y In(yx) — 3\/_ -
fsxy) _ Jy Vy vy 2
o i l(y)+12\/. ln(x)+6\/_+6x\/_+ >0whenx>1andy>1.

Thus, fg(x,y) is a strictly increasing function with respect to x when x> 1and y > 1.
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2

When x = (y-2)27, f6(xy)-ln( )+1—— In(7-9)— ¥ 2.

ﬁ 7
LD - ) fox,y) >0.

Thus, when x > (y =2) 27, fy(x,y) >0, then from (3.9),

Thus, f5(x,y) is a strictly increasing function with respect to x when x > (y-2)>7. —(3.10)
Referring to (3.8), when x = (y -2) 2 17, f5(x, y) > 1. Thus, when x > (y -2) 2 17, f5(x,y) > 1.

letx=nandy=A2,thenwhenn>(1-2)217, f3(n,1) > 1. —(3.11)
From (3.2), (3.3) and (3.11), whenn > (1 -2) > 24,

(An)! = (An)! —
Fln2p>n{((/—l O )'} [1i1 (FlTnzw(l_il)n{((/l—l)n)! }) > fz(n, 1) > 1. (3.12)
Referring to (3.10), ]'[fj’}‘l (an o= 1)n{#}) is a strictly increasing function with respect
ton whenn > (1-2) > 24. —(3.13)

=11 (An)! _ (An)! i= ( (An)! )
| bty (FA—ian>(A_i1)n{—(()l—1)n)! }> = Dinepa-0nf gt [Tzt an el T
. (An)! i= (An)!
Referring to (1.1), F/‘lnzp>(/‘1—1)n{((/1 e )|} 1 and H <Ff+_11 op> (’1[:1)“{—((1—1)11)!}) >
Referring to (3.12), at least one of these two parts is greater than 1.
(An)! . . .
If FAn2p>(A—1)n{m} > 1, then referring to (1.3), there exists at least a prime number p
suchthat 1 —1)n<p < in. — (3.14)
i=1-2 (An)! _ (An)! _
IfI1:21 (F% op> (/11+11)n{—((/1_1)n)! }) =1, then FAn2p>(1_1)n{—((A—1)n)! }> 1. (3.15)

1>

i=1-2 (A_n)! ) —(An)!
If I1:2% (FL% - (Al+11)n{((l_1)n)!} > 1, then at least one factor Fiu—nfp (zl+11)n{((/1_1)n)!

When a factor T'an . @a-vaf (an):

an G-nn{ro=E ) > 1, let integer m = (i+1)n, then m > n.
i+1° i+1

. am) . _ (Am)! _
Referring to (3.13), FZ% - (,1l+11)m{—((/1 RSy 1= FA"EW(A‘U”{—((A—Dm)! }> (3.16)
% =(n)-(An—-1)-(An—2)--- ((A —1)n + 1). This product has n factors.

% = (Am)-(Am —1)-(Am — 2) - - - ((A — )m + 1). This product has m= (i+1)n factors.
. _ . (/'Lm)' . n
Since m = (i+1)n, G_Dmr contains the factors of —((/1 D! (i+1D™
(am)!
((A-Dm)!
_ (Am)! (An)! . (Am)!
= F/1m2p>/1n{m} : F;anp>(/1—1)n{m} Dineps-nni@ + D"} F(/l—l)nzp{m}-

Notice that (i + 1) £ (A — 1). Prime numbersin (i + 1) are not in the range of \n2p > (1 — 1)n.
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(am)! .
((/1—11?;m)! }r rln2p>(/1—1)n{(l + 1)n}’ and F(A—l)nzp{

. (Am)!
not in the range of An > p > (1 — Dn, Dipopsa—1)nd Flmzpﬂn{m} }=1,

(am)!
(A-1)m)!

} are

Since prime numbers in [},5 010

. (am)!
Dinsps-1n{ @+ D" =1, and Dpspsa-1)nf F(/l—l)nzp{L} 1=1

(A-1m)!
(Am)t , _ (An)!
(A—1)m)! } - F/lnzp>(l—1)n{((l_1)n)! }

=12 _Gny G
ThUS, If l_[i=1 (Fi_nlzp;ﬂ;ll)n{((l_l)n)! }) >1, then Fln2p>()‘_1)n{((l—1)n)!

least a prime number p such that (A — 1)n<p < An. —(3.17)

Referring t0 (3.16), [}p5ps(a-1)nf

}>1, and there exists at

Combining (3.13), (3.14), (3.15), and (3.17), we have proven the Proposition, (3.1):

For n > (1 —2) > 24, there exists at least a prime number p such that (1 —1)n <p < An.

It becomes a theorem: Theorem (3.1).

4. The Proof of Legendre’s Conjecture

Legendre’s Conjecture states that there is a prime number between n? and (n + 1)? for every
positive integer n. —(4.1)

Proof:

Referring to Theorem (3.1), for integers j > k — 2 > 24, there exists at least a prime number p
such that j(k — 1)<p< jk. —(4.2)
When k=j+1226,thenj=k—12>25

Applying k =j +1into (4.2),then j2<p <j(j +1)< (j + 1)?

Letn=j 225, thenwe have n?<p < (n+ 1)% — (4.3)

For 1 < n <24, we have a table, Table 1, that shows Legendre’s conjecture valid. — (4.4)

Table 1: For 1 < n < 24, there is a prime number between n? and (n + 1)2.

n 1 2 3 4 5 6 7 8 9 10 11 12
n? 1 4 9 16 25 36 49 64 81 100 121 144
p 3 5 11 19 29 41 53 67 83 103 127 149
(n+ 1)? 4 9 16 25 36 49 64 81 100 121 144 | 169
n 13 14 15 16 17 18 19 20 21 22 23 24
n? 169 196 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576
p 173 199 | 229 | 263 | 307 | 331 | 373 | 409 | 449 | 491 | 541 | 587
(n+1)% | 196 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576 | 625

Combining (4.3) and (4.4), we have proven Legendre’s conjecture.
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Extension of Legendre’s conjecture

There are at least two prime numbers, p,, and p,, , between j2 and (j + 1)? for every positive
integer j such that j2 < p,, < j(j+1) and j(j+1) < p,, < (j + 1)? where p,, is the nt" prime number,
Pm is the mt" prime number, and m > n +1. — (4.5)
Proof:

Referring to Theorem (3.1), for integers j > k — 2 > 24, there exists at least a prime number p
such that j(k — 1)<p< jk.

When k —1=j > 25, then j(k — 1) = j2 < p, < jk = j(j+1). Thus, there is at least a prime number
p, suchthat j% <p, <j(j+1) when j =k —1225.

When j =k —2>25,then k = j + 2. Thus, j(k —1) = j(j+1) < pp < jk =j (j+2) < (j + 1) 2. Thus,
there is at least another prime number p,, such that j(j+1) < p,, < (j + 1) when j = k —2 > 25.

Thus, when j > 25, there are at least two prime numbers p,, and p,,, between j2 and (j + 1)?
such that j2 < p,, < j(j+1) < pm < (j + 1)? where m > n +1 for p,, > p,, . — (4.6)

For 1 <j <24, we have a table, Table 2, that shows (4.5) valid. —(4.7)

Table 2: For 1 < j < 24, there are 2 prime numbers such that j? < p, < j(j+1) < pp, < (j + 1)2.

j 1 2 3 4 5 6 7 8 9 10 | 11 | 12
52 1 4 9 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144
Pn 2 5 | 11 | 19 | 29 | 41 | 53 | 67 | 83 | 103 | 127 | 149
Jj(+1) 2 6 | 12 | 20 | 30 | 42 | 56 | 72 | 90 | 110 | 132 | 156
Pm 3 7 | 13 | 23 | 31 | 43 | 59 | 73 | 97 | 113 | 137 | 163
G+1D% | a4 9 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | 169
j 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24
52 169 | 196 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576
Pn 173 | 199 | 229 | 263 | 393 | 331 | 373 | 409 | 449 | 491 | 541 | 587
jj+1) | 182 | 210 | 240 | 272 | 306 | 342 | 380 | 420 | 462 | 506 | 552 | 600
P 191 | 211 | 251 | 277 | 311 | 349 | 389 | 431 | 467 | 521 | 557 | 613
(G+1)> | 196 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576 | 625

Combining (4.6) and (4.7), we have proven (4.5). It becomes a theorem: Theorem (4.5).
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5. The Proofs of Three Related Conjectures

Oppermann’s conjecture was proposed by Ludvig Oppermann [4] in March 1877. It states that
for every integer x > 1, there is at least one prime number between x(x —1) and x?, and at
least another prime between x?2 and x(x+ 1). —(5.1)

Proof:

Theorem (4.5) states there are at least two prime numbers, p,, and p,,, , between j2 and

(j + 1)? for every positive integer j such that j2 < p,, < j(j+1) and j(j+1) < p,, < (j + 1)? where
m2n +1 for p,,, > py.

Jj(j+1) is a composite number except j = 1. Since j? < p,, < j(j+1) is valid for every positive
integer j, when we replace j with j+1, we have (j + 1)? <p, < (j+1)(j+2).

Thus, we have j(j+1) < p, < (j + 1)2< p, < (j+1)(j+2). —(5.2)

When x > 1, then (x — 1) 2 1. Substitute j with (x — 1) in (5.2), we have
x(x — 1)< pp < x%<p, <x(x+1) —(5.3)
Thus, we have proven Oppermann’s conjecture.

Brocard's conjecture is named after Henri Brocard [5]. It states that there are at least 4 prime
numbers between (p,,)? and (p,+1)?, where p,, is the n" prime number, for every n > 1.

— (5.4)
Proof:

Theorem (4.5) states there are at least two prime numbers, p,, and p,,, , between j2 and

(j + 1)? for every positive integer j such that j2 < p, < j(j+1) and j(j+1) < pm < (j + 1)?
where m 2 n +1 for p,, > p,,. When j > 1, j(j+1) is a composite number. Then Theorem (4.5)
can be written as j2 < p,, < j(j+1) and j(j+1) < pp, < (j + 1)2.

In the series of prime numbers: p,=2, p,=3, pP3=5, p4=7, ps=11... all prime numbers except p;
are odd numbers. Their gaps are two or more. Thus when n > 1, (py+1— Pn) 2 2.
Thus, we have p,, < (p, +1) < Pps1 Whenn > 1. — (5.5)

Applying Theorem (4.5) to (5.5), when n > 1, we have at least two prime numbers p,,;, Pm2 in
between (p,)? and (p, + 1)? such that (p,)? < pm1 < Pn(Prtl) < Pmz < (P, + 1)?, and at least
two more prime numbers p,,3, Pma in between (p, + 1)% and (p,.+1)? such that

(P, + D?<Pm3 < Prs1( Pptl) <Pma < (P,)° -

Thus, there are at least 4 prime numbers between (p,,)? and (p,,41)? for n > 1 such that
(Pn)? <Pm1 < Pr(Patl) < Pmz < (P, + 1)? <Pz < Prat( Patl) < Pma < (P, 1)? — (5.6)

Thus, Brocard's conjecture is proven.
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Andrica’s conjecture is named after Dorin Andrica [6]. It is a conjecture regarding the gaps
between prime numbers. The conjecture states that the inequality \/m -/ Pn < 1holds

for all n where p, is the n* prime number. If g,= p,.1 - P, denotes the nt"* prime gap,

then Andrica’s conjecture can also be rewritten as g, <2,/ p, + 1. — (5.7)

Proof:

From Theorem (4.5), for every positive integer j, there are at least two prime numbers p,,

and p,, between j2 and (j + 1)? such that j2 <p,, < j(j+1) < ppy < (j + 1)2 where m 2 n +1

for pm > pp.

Since m2n +1, we have p,;, 2 P41

Thus, we have j2 < p, . — (5.8)
And ppi1 < P < ( + 12 —(5.9)
Since j, pn , Pns1 and (j + 1) are positive integers,

j<Pn — (5.10)

And / pps1<j+1 — (5.11)
Applying (5.10) to (5.11), we have / P41 <+/ Pn + 1. — (5.12)
Thus, / Pns1 —+/ Pn <1 holds for all n since in Theorem (4.5), j holds for all positive integers.

Using the prime gap to prove the conjecture, from (5.8) and (5.9), we have
On= Pn+1—Pn<(+1)%—=j%=2j+1.From (5.10), j <./ p,.
Thus, gn = Pn+1 = Pn<2{ Pn+1l. — (5.13)

Thus, Andrica’s conjecture is proven.
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