ON THE INFINITUDE OF COUSIN PRIMES

T. AGAMA

ABSTRACT. In this paper we prove that there infinitely many cousin primes
by deducing the lower bound

> 1>(1+0(1)

p<z
p,p+4€P\{2}

where C := C(4) > 0 fixed and P is the set of all prime numbers. In particular
it follows that
> e

p,p+4€P\{2}

by taking x — oo on both sides of the inequality. We start by developing a
general method for estimating correlations of the form

> Gn)G(n+1)
n<lx

for a fixed 1 <1 < 2 and where G : N — RT.

2C log?

1. Introduction and statement

The area method developed in [1] serves as universal tool and a black box for
studying problem related to correlations. The applications are vast, as it allows us
to study the distribution of certain class of integers including but not limited to the
primes. The area method, by itself, allows one to decompose any correlated sum of
the forms below

Z G(n)G(x —n)

n<x

and

> Gn)G(n+1)

n<lx

where 1 <[ < z for some G : N — R into double sums under certain local condi-
tion that can easily be handled using just classical tools like the partial summation
or the Riemann-Stieltjes integration by parts. It turns out this method can also
be very much adapted to similar problems like the distribution of sexy primes and
the twin prime conjecture, which has been applied and can be found in [3]. In this
paper, we prove the infinitude of primes that are distance four apart. The same
approach used in [3] is still used in the current paper, except for a change in the
shift. In particular, we prove the following result
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Theorem 1.1. Let P denotes the set of all prime numbers, then we have the esti-
mate

1 T

#{p<z|pt+4apeP\{2}} > (1+0(1))Mlog2x

where D(4) > 0 fized.

In the sequel, for any f,g : N — R, we will write f(n) = o(1) to mean
lim f(n) =0. Also f(n) < g(n) would mean there exist some constant ¢ > 0 such
n—o0

that f(n) < cg(n) for all sufficiently large values of n. The following equivalence
f(n) ~ g(n) if and only if lim % =1 is also standard notation.
n—oQ

2. The area method

This section introduces and develops a fundamental strategy for solving problems
involving arithmetic function correlations. This method is basic in that it employs
the attributes of four primary geometric shapes: the triangle, trapezium, rectangle,
and square. Exploiting the regions of these forms and putting them together in a
coherent manner will result in the basic identity we will generate.

Theorem 2.1. Let {r;}}_; and {h;}} 1 be any sequence of real numbers, and let

r and h be any real numbers satisfying Z r; =1 and Z h; =h, and
j=1 J=
n
(r + h2)1/2 _ Z<Tj2 + h?)1/2,
j=1
then
n n j j—1 n—1 n—j
erhj_Zhj<Z7"i+ZTi> QZTJ hj+k~
j=2 j=2 i=1 i=1 j=1 k=1
Proof. Consider a right angled triangle, say AABC' in a plane, with height h and
base r. Next, let us partition the height of the triangle into n parts, not necessarily
equal. Now, we link those partitions along the height to the hypotenuse, with the
aid of a parallel line. At the point of contact of each line to the hypotenuse, we
drop down a vertical line to the next line connecting the last point of the previous
partition, thereby forming another right-angled triangle, say AA;B;C; with base
and height r; and h; respectively. We remark that this triangle is covered by the
triangle AABC, with hypotenuse constituting a proportion of the hypotenuse of
triangle AABC. We continue this process until we obtain n right-angled triangles
AA;B;Cj, each with base and height r; and h; for j = 1,2,...n. This construction
satisfies

h:ihj andr:irj
j=1 j=1

and
n

(r? + h?)V/? = Z(rf +h3)H2,
j=1
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Now, let us deform the original triangle AABC by removing the smaller triangles
AA;B;C; for j = 1,2,...n. Essentially we are left with rectangles and squares
piled on each other with each end poking out a bit further than the one just above,
and we observe that the total area of this portrait is given by the relation

A =r1he + (r1+r2)ha + - (ri+ 12+ +rp2)hn 1+ (1 2+ )b
=r1(ha +ha+ - hy) +r2(hs + ha+ -+ hp) + -+ rp—2(hn-1 + hn) + Tn_1hy

n—1 n—j

=313 hja (2.1)
1 k=

<.
Il
-

On the other hand, we observe that the area of this portrait is the same as the
difference of the area of triangle AABC and the sum of the areas of triangles
AA;B;C; for j =1,2,...,n. That is

1 1 n

This completes the first part of the argument. For the second part, along the
hypotenuse, let us construct small pieces of triangle, each of base and height (r;, h;)
(i =1,2...,n) so that the trapezoid and the one triangle formed by partitioning
becomes rectangles and squares. We observe also that this construction satisfies
the relation

n

(2 +W)V2 =D 0+ h]),

i=1
Now, we compute the area of the triangle in two different ways. By direct strategy,
we have that the area of the triangle, denoted A, is given by

A:1/2(§ri)(§;hi>. (2.3)

On the other hand, we compute the area of the triangle by computing the area of
each trapezium and the one remaining triangle and sum them together. That is,

n n—1 n—1 n—2
A= hn/Q(Zrz‘ + ZT,) +hn—1/2(ZTi + ZT,) —+ -+ 1/27“1}11. (24)
=1 =1 1=1 =1

By comparing equation (2.1) with equation (2.2), and comparing equation (2.3)
with equation (2.4) in the resulting equation the result follows immediately. (Il

Corollary 2.2. Let f : N — C, then we have the decomposition

o> fmftn+q)= Y fn) > fim).

n<zx—1j<z—n 2<n<zx m<n—1
Proof. Let us take f(j) =r; = h; in Theorem 2.1, then we denote by G the partial

sums

Q:Zf(j)
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and we notice that

Do+ =3 VTGP + G
=2 VUG + 707

<
Il
—

Zﬁzn:f(y)

Since /(G2 + G?) = GV2 =2 > f(4) our choice of sequence is valid and, there-
j=1

fore the decomposition is valid for any arithmetic function.
Theorem 2.3. Let f : N — R, a real-valued function. If
Z fm)f(n+1l) >0

n<x

then there exist some constant C := C(lo) > 0 fized such that

Do f)f(n+lo) > o= D0 f) D f(m)

n<lx 2< <z mgn—l

Proof. By Theorem 2.1, we obtain the identity by taking f(j) =r; = h;

SO fmf+i) = > fn) Y fm)

n<lz—1j<z—n 2<n<z m<n—1

It follows that

SNt < Y S ) fn+ )

n<lzx—1j<z—n nlz—1j<x
:Zf(n f(n+1) +Zf f(n+2)
n<x n<z
+ Zf(n (n+1y) + Zf f(n+x)
n<x n<x
< M)l Y f(n)f(n + o)
n<x

+ [N (lo)| Z f(n)f(n+1l)

n<z

o Y fFm) o)+ 4 [R(0) D F(n) £(

n<z n<x

- <|M(zo>| F W)+ 1

-+ R(lo) )Zf n -+ lo)

n<z

C(lp)x Zf fn+1o)

n<x

+

O

TL-I-l())
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where max{|M(lp)|, IN(lo)],.-.,|R(lo)|} = C(lp). By inverting this inequality, the

result follows immediately.

O

The nature of the implicit constant C(ly) could also depend on the structure of
the function we are being given. The von mangoldt function, contrary to many
class of arithmetic functions, has a relatively small such constant. This behaviour
stems from the fact that the Von-mangoldt function is defined on the prime powers.

Thus one would expect most terms of sums of the form

ST AmA(n+))

n<lzr—1j<zr—n

to fall off when j is odd for any prime power n = p* such that j + p* # 2°.

3. Main result

We are now ready to prove the main result of this paper. We assemble the tools

we have developed thus far to solve the problem.

Theorem 3.1. Let P denotes the set of all prime numbers, then we have the esti-

mate

#{p<a|p+dpeP\{2}} > (1+o(1)) .

where D(4) > 0 fized.

Proof. Let us consider the function ¢ : N — R defined as

logp if n=pecP
d(n) = .
0 otherwise

so that by virtue of Corollary 2.2 we obtain the lower bound

n<xz 2<n<z m<n—1

1
2D(4) log2 x

(3.1)

for D :=D(4) > 0 fixed. Now using the weaker estimate found in the literature [2]

> 9(n) = (1+o0(1)x

n<x
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we obtain the following estimates by an appeal to summation by parts

Z I(n Z d(m) = (1+ o(1)) Z d(n)n

2<n<zx m<n—1 2<n<zx
(o) 3 () — (14001 / ( S o )
2<n<zx p) 2<n<t

€T

= (1+o0(1))z? = (1+0(1)) /(1 + o(1))tdt
2

= (1+o0(1)a2 - (1+0(1))=

5 +0(1)

:172
= (1+o(1) . (3.2)

By plugging (3.2) into (3.1) we obtain the estimate

1 x?
219 Y(n+4) —D(l-i-o(l))?

n<x

= (1+0(1)) 552

On the other hand, we can write

ddmpWn+4) = > logplog(p+4)

n<zx p<z
p+4,peP\{2}

R Z log? p
p<z
p+4, pG]P’\{2}

so that by an application of partial summation we have

Z log? p < log® = Z 1. (3.3)
p<z p<z
p+4,peP\{2} p+4,peP\{2}

By combining (3.2), (3.1) and (3.3) the lower bound follows as a consequence. [

Corollary 3.2. There are infinitely many primes p € P\ {2} such that p+4 € P.

Proof. Appealing to Theorem 3.1, we have the lower bound

1 T
2D(4) log” &
where D(4) > 0 fixed. By taking limits © — oo on both sides, we have

lim #{p<z|[p+4peP\{2}} =0c0

r—>00

#{p<wz|p+4peP\{2}} > (1+0(1))

thereby ending the proof. [l

Remark 3.3. It is worth noting that with Theorem 3.1 lower bound, we have proven
the infinity of cousin primes. This method is useful in terms of generality because
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it may be used to find lower bounds for a wide range of correlated sums of the type.
> Gn)G(n+ k)
n<z

for a uniform 1 < k < z.

4. Conclusion

The method used to prove the twin prime conjecture in this study is straightfor-
ward and elegant. This method can also be used to develop an estimate for universal
sums of the form in the spirit of addressing the binary Goldbach conjecture

Z G(n)G(x —n)

which we do not pursue in this paper.
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