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Summary 

To conceptualize the contents herein, the reader should be familiar with… 

Boltzmann’s equation 𝑆 = 𝑘𝐵 . ln⁡(𝑤) 

Einstein’s equation 𝐸 = 𝑚. 𝑐2 

Planck’s equation 𝐸 = ℎ. 𝜈 

These equations shaped a mainstream runway for modern physics. But that runway was constructed on an 

existing field. A shared system of Units of Measurement thereby frames each equation. This system can 

only be adapted with utmost care since any potential error would have fundamental consequences. Utmost 

care costs time. For example, only in 1983 was it agreed to replace distance measurements by time 

measurements (multiplied with the velocity of light). This update, based on Einstein’s theory of relativity 

(some 28 years after his passing) as well as significant experimental data, streamlined the system of Units 

of Measurement, and thereby multiple theories and equations. 

This is how it works in general. We verify our equations and theories through experiments. Thereby, all 

results are based on the current system of Units of Measurement. Only very occasionally does this lead to a 

streamlining of the system. The latter then typically is a by-product, and not an intention. There are few 

exceptions. 

But what would happen should we reverse that by basing a system of Units of Measurement on a presumed 

validity of our equations? The forthcoming system would inherently confirm the validity of the equations 

that it is based upon. In its concept this would therefore deliver a ‘belly watching’ system rather than 

objective science. 

Yet at some point in time, one may have developed enough trust in some equations to dare follow this 

reverse approach. In a way, this is comparable to using computers for designing a next generation of 

computers.  

In this manuscript we will trust the validity of the above three equations. As we will see, this trust not only 

leads to an extremely streamlined system of Units of Measurement, but also reveals how bits and pieces fall 

together. Gravity finds its place. 
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About (the making of) this Manuscript 

 

As a physics student at the Technical University Delft (Netherlands), my prime goal was to jump through 

the hula hoop of graduation. I did. But I also found that physics deserved better. As one of my professor’s 

stated, ‘physicists are the richest people’: they can travel (in mind) through the entire universe in a way that 

couldn’t be afforded by the combined wealth of all the billionaires in the world.  I wanted such travel too. 

At that time, I decided that once, in a then far away utopian future, I would depart. 

And about 30 years later that moment arrived. Departing rather empty bagged from a scientific point of 

view, I thereby found myself in a surprisingly large wild west arena of ‘lunatics’ (my words): generally lone 

wolves, like myself. But when I derived ‘Planck’s units’ without intention and without initially even 

realizing this; I gained confidence. Apparently, despite limited luggage, I didn’t derail from mainstream 

physics. I found intriguing results in my efforts by standing on the shoulders of Boltzmann, Einstein, and 

Planck.  

Over the past 10 years I published some results while ‘enroute’ on www.vixra.org, a lightning rod for 

lunatic thoughts, but also a place for needles in the haystack. This manuscript describes my entire travel so 

far. It embeds some of the previous publications. Pieces thereof turned out to fit in a beautiful way, shaping 

a summit from which I could see bottoms of deeper valleys. Information and gravity found a place.  

It is time to share this.  

I adapted my language to first year students in physics. But don’t let that mislead you. My objective is to 

reach all. Hoping to inspire.  

  

http://www.vixra.org/
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“As lead-author I am glad you won’t see the original version of this manuscript. Intended straight lines 

were spaghetti. Words were chosen wrongly. The spelling checker and thesaurus failed.  

Then how about raising unforeseen questions? How about then having to answer in a way that could 
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(1) Streamlining Units of Measurement 

(UoM’s) 

A scientific description of the natural world 

requires a system for Units of Measurement 

(UoM’s). In general, physics uses the International 

System (S.I.), from the French ‘Système 

International d’unités’. 

As we will demonstrate, the S.I. is neither 

normalized nor absolute. Though this will not lead 

to false results, it blurs some fundamentals of 

physics and leads to mathematical complications 

that, at the bottom line, are man-made.  

To avoid this, we begin our effort by developing a 

streamlined system of UoM’s. To silence the alarm 

that might go off here, this chapter introduces no 

more than two physical properties and their 

respective UoM’s (Chapter 4 introduces a third). 

 

Consider Einstein’s equation:  

𝐸 = 𝑚. 𝑐2 

‘E’ is the energy in Joule 

‘c’ is the light velocity in vacuum in m/s  

‘m’ is the mass in kg 

The parameter ‘m’ has a story behind it. We will 

address that later. For now, we will evaluate the 

equation as is. 

The equation can be rewritten as: 

𝑐2 =⁡𝐸 𝑚⁄   

The UoM’s at each side of the equation must be of 

equal dimension. Consequently: 

1⁡(𝑐(𝑚 𝑠⁄ ))
2
= 1

𝐽

𝑘𝑔
⁡ 

Light velocity ‘c’ (in vacuum) then equals the 

square root of the above: 

𝑐 ≡ ⁡√
𝐽
𝑘𝑔⁄  

However, as shown in the above equation, in the 

S.I. light velocity ‘c’ is expressed in m/s:  

c = 299,792,458 𝑚 𝑠⁄  

Therefore: 

1⁡√
𝐽
𝑘𝑔⁄ ≡ 299,792,458⁡𝑚 𝑠⁄  

Einstein’s equation 𝐸 = 𝑚. 𝑐2 thus reveals an 

overlap in the UoM’s within the S.I. 

Overlap between UoM’s demands that these are 

related to each other in a way that is equal in all 

cases, and therefore related in a universal way. If, 

for example, one would redefine the UoM for mass 

(the kg), the above relationship shows that this 

cannot be done without impacting at least one of 

the other UoM’s. 

Ideally all UoM’s are independent relative to each 

other. They are normalized. If not, a full 

understanding of what we are measuring becomes 

more complex.  

Consider that the x, y, and z coordinates in a 

spatial Cartesian frame of reference are 

normalized. For a given point in space, a change 

in the ‘yardstick’ for the x-coordinate would act 

upon the numerical value of that x-coordinate, 

but it would not act upon the numerical values of 

the y or z coordinates.  

(1) In a normalized set of UoM’s, a change to 

any one parameter (or to its ‘yardstick’) has 

no impact on any of the other parameters 

(or yardstick thereof).  

This feature ensures an exclusive relationship 

between what we are measuring per parameter and 

what we are monitoring.  

 

A second complexity in the S.I. is the definition of 

yardsticks per UoM. Ideally these lead to 

universally equal results. If so, then when 

comparing data, we can be sure that everyone used 

the same frame of reference.  

This second ideal is ensured when all UoM’s are 

based on ‘universal natural constants’. As the name 

implies, these constants have equal value to 

anyone, anywhere, regardless of circumstances 

(relative, or not).  

(2) The universal equality of yardsticks 

qualifies a system of UoM’s as absolute. 

The acid test for a yardstick to be absolute is that, 

regardless of relative circumstances, instructions 

can be remotely provided to reproduce it.  

Apart from universal natural constants, within our 

system of UoM’s we will also allow mathematical 

constants like π, e and the bit, as well as 
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mathematical operations such as multiplication or 

taking the square root.  

(3) Mathematical rules are presumed to be 

universally valid, and mathematical 

constants (such as ‘π’) are presumed to be 

universally equal. 

 

Historical efforts to streamline UoM’s have been 

incorrectly referred to as normalization. The reality 

is that these efforts searched for a set of absolute 

yardsticks for existing UoM’s. Mutual 

dependencies were not fully evaluated simply 

because some of the dependencies (as discussed in 

Einstein’s equation, for example) were not yet 

known. We will therefore redo it.  

Our objective is to come up with a system of 

UoM’s that is both normalized and absolute. 

 

From a mathematical perspective, setting several 

universal natural constants equal to the 

dimensionless ‘1’ is a valid option. It reduces the 

number of dimensions and thereby reduces overlap 

between UoM’s. Stoney followed this approach. 

Planck did something likewise about 30 years later, 

eliminating natural constants from physical 

equations. This led to the well-known ‘Planck 

Units’.  

Paul S. Wesson wrote: 

"Mathematically it is an acceptable trick which 

saves labour. Physically it represents a loss of 

information and can lead to confusion." 

(see reference [4]) 

Note: some of the aforementioned ‘Planck units’ 

will be derived in the following via an alternate 

method.  

In the extreme case, all universal natural constants 

could be set to dimensionless ‘1’. This would then 

leave us with a completely dimensionless physics. 

Such physics could not possibly describe anything 

at all and therefore couldn’t be wrong either. 

In fact, the differentiating UoM’s between the 

various universal natural constants define the true 

variety in physical properties. Given this we must 

insist that each universal natural constant indeed 

has a unique and thus distinguishing UoM. Should 

two of these constants share a UoM, one of them 

would be superfluous in that it can be expressed as 

a fraction of the other and therefore it would not 

distinguish itself from a physical perspective.  

To avoid any potential loss of physical information, 

we will restrict ourselves to no more than one 

universal natural constant set to dimensionless ‘1’. 

The respective UoM’s will thus positively 

distinguish all universal natural constants relative 

to each other. We will allow ourselves no more than 

‘one single candy’ from the collection in the box. 

There is no guarantee that the list of universal 

natural constants, as currently provided by science, 

is complete. We will have to live with that. 

Obviously, the relevancy of any newly discovered 

universal natural constant can hardly be 

overestimated. This is illustrated by the impact of 

Einstein’s finding that light velocity ‘c’ is 

universally equal. 

 

For clarity, we will refer to our intended 

streamlined system of UoM’s as Crenel Physics 

(CP) as opposed to Metric Physics (based on the 

S.I.). 

 

As said, Einstein found that light velocity ‘c’ is 

universally equal. Therefore, Einstein’s equation 

𝐸 = 𝑚. 𝑐2 describes a universal (non-relativistic) 

relationship between mass ‘m’ and energy ‘E’. It 

does not matter where you are within our universe 

or how fast you are traveling: if you hold a mass of 

1 kg of matter in your hands, that mass represents a 

fixed amount (equal to c2) of energy in Joule. 

Consequently, you can express the amount in your 

hands in kg or in Joule alike. This universal 

exchangeability is a decisive argument for both 

properties to share a common basis. That shared 

basis we will refer to as Content. All physical 

objects embed Content which per Einstein can be 

expressed in the mass UoM as well as in the energy 

UoM. 

Consequently, we can do with one (and no more 

than one) measure or yardstick for Content. Within 

the Crenel Physics model, we will refer to it as a 

‘Package’: 

(4) The physical property Content will be 

expressed in Packages (‘P’). 

https://en.wikipedia.org/wiki/Paul_S._Wesson
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In doing so we still recognize that mass and energy 

indeed exist as two different physical concepts, but 

these will be viewed as two different Appearances 

of the physical property Content. 

 

In Metric Physics the afore mentioned mass and 

energy are referred to as dimensions to be 

expressed in kg and J respectively.  

When a physical equation is verified, the 

verification for ‘dimensional integrity’ is one of the 

acid tests. For example, the Joule is equal to the 

force of 1 Newton acting through a distance of 1 

meter (J = N.m). Due to such overlaps in UoM’s 

within the S.I., there is an extensive pallet of 

equalities between various combinations of various 

dimensions. Together these shape the tools used for 

‘dimensional analyses’. 

To better differentiate between Crenel Physics and 

Metric Physics we will use the term ‘Appearance’ 

rather than ‘Dimension’. The term Appearance 

rightfully suggests that by swapping between 

various Appearances of Content one is still looking 

at the same physical property. This will hold even 

though such swapping will typically require a 

completely different kind of sensor to monitor the 

Appearance.  

Thereby, based on the conservation principle: 

(5) A swap between Appearances of Content 

does not result in a change of the numerical 

value in Packages. 

In the next chapter we will demonstrate that this 

indeed holds true within the Crenel Physics model, 

whereas it does not apply when swapping between 

S.I. dimensions (e. g. 1⁡𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚⁡ ≠ 1⁡𝐽𝑜𝑢𝑙𝑒). This 

differentiating feature justifies the introduction of 

Appearances.  

The introduction of the physical property Content, 

being represented by the Appearances mass and 

energy (other Appearances of Content will follow), 

embeds Einstein’s ‘Principle of Equivalence’ into 

the Crenel Physics model.  

This principle is the basis for the afore mentioned 

story behind the meaning of parameter ‘m’ in 

Einstein’s equation 𝐸 = 𝑚. 𝑐2. 

 

 

 

To Einstein this principle was no more than an 

assumption. Nevertheless, it is a basis for the 

Theory of Relativity. By accepting the validity of 

Einstein’s equation 𝐸 = 𝑚. 𝑐2 (and we do!) we 

thereby implicitly accepted this principle. 

The symbol ‘m’ in Metric Physics (and in 

Einstein’s equation) is potentially misleading in 

that it suggests that the total mass of two objects m1 

and m2 add up to m1+m2. Typically, it doesn’t. This 

is addressed by the ‘principle of equivalence’.  

Consider an iron atom. Its mass is about 1% less 

than the sum of masses of its constituents 

(protons, neutrons, and electrons). 

So, what may impact the mass of an object? What 

may disturb that the total mass of two objects m1 

and m2 add up to m1+m2? Let’s review some 

potential impacts. 

First, an individual object in deep space has no 

fixed value for mass ‘m’. For example, if we heat 

up a brick, it will then have a higher heat Content 

and as such more mass.  

Second, an individual object may have a velocity 

relative to the observer. Thus, relative to the 

observer it embeds kinetic energy. This kinetic 

energy (relative to us) contributes to the mass that 

we will observe. 

Third, when seen from deep space, a brick on Earth 

appears to embed more mass relative to that same 

brick in deep space. In Chapter 9 we will discuss 

this impact in detail.  

These are but three potential impacts on mass ‘m’. 

In fact, we do not know how many thereof nature 

may impose. 

We therefore need to reconsider the definition of a 

‘resting mass’ m0 as used within the Theory of 

Relativity. It is not enough that such mass is at rest 

relative to the observer. For an unambiguous 

definition one must (amongst others) also presume 

this mass to reside at infinite distance from fields 

(gravitational, electrical, magnetic, or whatever 

other fields that may pursue force), and that the 

mass containing object has some pre-defined base 

value for temperature.  

Only when we incorporate all impacts on ‘m’ in 

Einstein’s equation (where Einstein assumed these), 

can we then accept that the equation,  

𝐸 = 𝑚. 𝑐2, is entirely correct. 
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In many cases the various impacts on ‘m’ will be 

extremely small. However, as we saw in iron 

atoms, these can be relevant and clearly 

measurable. 

In Crenel Physics we abandon the usage of mass 

‘m’ in Einstein’s equation and remodel this to 

Content. Thereby, we will express energy 

(gravitational, kinetic, electrostatic, potential, 

thermal, etc.) in Packages, as we will express mass 

in Packages. And we will introduce additional 

Appearances of Content, all to be expressed in 

Packages.  

Thus, when it comes to Newton’s equations for 

Gravity and Acceleration:  

(6) Per the Crenel Physics model, the laws of 

Gravity and acceleration are not based on 

mass (gravitational or inert alike), but on 

Content.  

Relevant experimental verification exists 

considering that iron atoms indeed behave as iron 

atoms (in terms of Gravity and inertia) and not as 

mass aggregations of their individual constituents. 

So let us continue our efforts with the above 

context in mind. 

 

By expressing both mass and energy in Packages, 

we implicitly normalized the conversion factor ‘𝑐2’ 

in Einstein’s equation 𝐸 = 𝑚. 𝑐2 to unity (the 

dimensionless ‘1’). Within the Crenel Physics 

model light velocity ‘c’ then is also equal to unity: 

𝒄𝑪𝑷 ≡ 𝟏      (CP 1.1) 

(Where ‘CP’ subscript indicates that a given 

property is the Crenel Physics version and ‘CP’ 

preface indicates a Crenel Physics equation). 

Any other velocity will be expressed as a fraction of 

light velocity ‘cCP’. Within Crenel Physics, velocity 

thus ranges from 0 to 1. 

In essence, we now have eaten our ‘single candy’. 

From here onwards no additional universal natural 

constant may or will be normalized through our 

upfront considerations. We will however find 

additional universal natural constants to also equal 

dimensionless ‘1’. This is a consequence of our 

choice to normalize ‘c’. Such will then be an un-

blurring fact: such findings contribute to our insight 

into physics. 

At this point our picking of ‘c’ appears arbitrary 

since we started our considerations with Einstein’s 

equation. In Chapter 8, we will argue that nature 

offers no alternative; the ‘single candy’ is indeed 

light velocity ‘c’. 

 

Metric Physics expresses velocity in m/s. In Crenel 

Physics, to arrive at the now required 

dimensionless measure for velocity, the UoM for 

distance must be equal to the UoM for time. We 

will name it ‘Crenel’ (‘C’).  

With both distance and time being expressed in 

Crenel, these are of equal physical property. We 

will name it ‘Whereabouts’: 

(7) The physical property Whereabouts will be 

expressed in Crenel (‘C’) 

Memory aid: the name Crenel is associated with 

crenels as found on top of castle walls. That shape 

has a pattern that can be associated with both 

distance as well as frequency (and thereby time). 

 

Fig. 1.1: Crenels on Top of a Castle Wall 

Within the Crenel Physics model, distance and time 

are two different Appearances of the physical 

property Whereabouts. 

In doing so, a hypothetical change to the yardstick 

for Whereabouts (the Crenel) inherently has equal 

impact to both the distance and time Appearance.  

 

We thereby ‘de facto’ enhanced Einstein’s assumed 

‘Principle of Equivalence’ by revealing its 

forthcoming consequence to all Appearances that 

can be found within the Whereabouts arena.  

We will refer to this enhancement as the ‘Enhanced 

Principle of Equivalence’. 
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In Metric Physics, Acceleration is expressed in 

m/s2. Therefore, in Crenel Physics, Acceleration is 

to be expressed in C/C2. Simplified: 

(8) Acceleration ‘a’ is expressed in C-1. 

Based on Newton’s laws, force is equal to mass 

times acceleration (F = m.a). In Metric Physics, 

force F is measured in 𝑘𝑔.𝑚/𝑠2. In Crenel Physics 

this converts to P.C/C2 and thus: 

(9) Force ‘F’ is expressed in P/C. 

From Newton’s gravitational equation: 

𝐹 = 𝐺.
𝑀1.𝑀2

𝑑2
  

We extract G: 

𝐺 = ⁡
𝐹.𝑑2

𝑀1.𝑀2
  

In the above we substitute the Crenel Physics 

UoM’s for ‘F’, ‘d’ and ‘M’: 

𝐺 = ⁡
𝑃

𝐶
.𝐶2

𝑃.𝑃
=⁡𝐶 𝑃⁄   

Thus, we find the value of the gravitational 

constant within the Crenel Physics model: 

𝑮𝑪𝑷 ≡ 𝟏⁡
𝑪

𝑷
          (CP 1.2) 

Note that within our model the gravitational 

constant GCP is found to equal the reciprocal (or 

‘multiplicative inverse’) of the UoM for force 

(P/C).  

 

From Planck’s equation… 

𝐸 = ℎ. 𝜐  

…we extract h: 

h⁡=⁡E/v 

In Crenel Physics, energy ‘E’ is expressed in 

Packages.  

In Metric Physics, frequency ‘υ’ is expressed in 

seconds-1. The counterpart for seconds-1 is 

Crenel-1.  

Substituting… 

ℎ =
𝑃

𝐶−1
 

…we find the value of Planck’s universal natural 

constant ‘h’ within the Crenel Physics model: 

𝒉𝑪𝑷 ≡ 𝟏⁡𝑪. 𝑷         (CP 1.3) 

 

With three natural constants cCP, GCP and hCP now 

defined, let’s explore three forthcoming equations: 

For light velocity c: 

1⁡(dimensionless)⁡=⁡c⁡(m.s-1)⁡   (1.4) 

For Planck’s constant h: 

1⁡P.C⁡=⁡𝒉⁡(N.m.s)     (1.5) 

For the gravitational constant G: 

1⁡C.P-1⁡=⁡G⁡(N.m2.kg-2)       (1.6) 

The left sides in each of these three equations 

express the universal natural constants (cCP, hCP and 

GCP respectively) in Crenel Physics UoM’s, 

whereas the right sides express these in Metric 

Physics UoM’s. 

Using 3 preparation steps, we can extract P and C, 

and express these in S.I. units as follows: 

Preparation step 1: 

Equation (1.4) can be rewritten as: 1⁡(𝑠) = 𝑐⁡(𝑚).  

In doing so we follow the aforementioned 

‘Enhanced Principle of Equivalence’.  

Note that in Metric Physics the second and the 

meter are different physical dimensions, and 

therefore the above equality does not hold (even 

though, for example, galactic distances might in 

practice be expressed in ‘light years’). However, 

within the Crenel Physics model time and distance 

are separate Appearances of one single physical 

property: Whereabouts. One Appearance can 

indeed be replaced by the other. 

Preparation step 2: 

For the same reason, in equation (1.5) the time 

Appearance (‘s’) in the UoM for ‘h’ can be 

replaced by c meter.  

This results in: 

1.P.C⁡=⁡𝒉.c⁡(N.m2)          (1.7) 

Preparation step 3: 

Based on Einstein’s 𝐸 = 𝑚. 𝑐2, 1 kg is equivalent 

to c2 Joule or c2 (N.m). In equation (1.6) the kg-2 in 

the UoM can therefore be replaced by 

c-4 (N-2.m-2): 

1⁡C.P-1⁡=⁡G.c-4⁡(N.m2.N-2m-2)⁡=⁡G.c-4⁡(N-1) (1.8) 
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With these 3 preparation steps completed we can 

divide equation (1.7) by equation (1.8): 

𝑃2 =⁡
ℎ. 𝑐5⁡

𝐺
⁡(𝑁2. 𝑚2) = ⁡

ℎ. 𝑐5⁡

𝐺
⁡(𝐽𝑜𝑢𝑙𝑒2) 

Or: 

𝟏⁡𝑷𝒂𝒄𝒌𝒂𝒈𝒆 = ⁡√
𝒉.𝒄𝟓

𝑮
⁡(𝑱𝒐𝒖𝒍𝒆𝒔)  (1.9) 

   =4.9033x109 J 

From here onwards some other conversion factors 

can be derived: 

Because 1 Joule equals c-2 kg: 

𝟏⁡𝑷𝒂𝒄𝒌𝒂𝒈𝒆 = ⁡√
𝒉.𝒄

𝑮
⁡(𝒌𝒊𝒍𝒐𝒈𝒓𝒂𝒎𝒔)  (1.10) 

   =5.4557x10-8 kg 

Based on Planck’s 𝐸 = ⁡ℎ. 𝜐, equation (1.9) can 

likewise be converted to frequency (in seconds-1): 

1⁡𝑃𝑎𝑐𝑘𝑎𝑔𝑒 = ⁡√
ℎ. 𝑐5

𝐺
⁡×⁡

1

ℎ
⁡(𝑠−1) = ⁡√

𝑐5

ℎ. 𝐺
⁡(𝑠−1⁡) 

Or: 

𝟏⁡𝑷𝒂𝒄𝒌𝒂𝒈𝒆 = ⁡√
𝒄𝟓

𝒉.𝑮
⁡(𝑯𝒆𝒓𝒕𝒛)    (1.11) 

    =7.4001x1042 Hz 

Note: as we’ll see in Chapter 4, the above 

equation only applies to Photons.  

Equation (1.11) delivers frequency as the third 

Appearance (alongside mass and energy) in the 

Content arena. 

The step from the Content arena to the 

Whereabouts arena is found by multiplying 

equation (1.7) with equation (1.8): 

𝐶2 =
ℎ. 𝐺

𝑐3
⁡(𝑚𝑒𝑡𝑒𝑟2) 

or: 

𝟏⁡𝑪𝒓𝒆𝒏𝒆𝒍 = ⁡√
𝒉.𝑮

𝒄𝟑
⁡(𝒎𝒆𝒕𝒆𝒓)   (1.12) 

   =4.0512x10-35m 

And because one meter corresponds to c-1 seconds: 

𝟏⁡𝑪𝒓𝒆𝒏𝒆𝒍 = ⁡√
𝒉.𝑮

𝒄𝟓
⁡(𝒔𝒆𝒄𝒐𝒏𝒅𝒔)   (1.13) 

   =1.3513x10-43s 

For further enhancement we will preliminarily 

define a scale for temperature. In Chapter 4 we’ll 

discuss temperature in more detail, thereby finding 

that it is a fourth Appearance of Content.  

In Metric Physics one UoM for temperature is 

defined as follows: 

1⁡𝑈𝑜𝑀⁡𝑓𝑜𝑟⁡𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = ⁡
𝑈𝑜𝑀⁡𝑓𝑜𝑟⁡𝐸𝑛𝑒𝑟𝑔𝑦

𝑘𝐵⁡
   

There are various versions of kB (Boltzmann’s 

constant) which will also be addressed in Chapter 

4. But to ensure dimensional integrity in the above 

equation, in Metric Physics the J/K version for kB 

must be used. Since energy is expressed in Joule, 

the above equation then results in the Kelvin (‘K’) 

as the UoM for temperature.  

In the above definition for a temperature UoM, 

equation (1.9) can be substituted as the UoM for 

energy (in Joule). To ensure dimensional integrity 

we then also must use the J/K version for kB. These 

substitutions deliver the conversion factor between 

the UoM for temperature within the Crenel Physics 

model (TCP) to the Kelvin: 

𝟏𝟎𝑻𝑪𝑷 =⁡√
𝒉.𝒄𝟓

𝑮.(𝒌
𝑩(𝑱 𝑲⁄ )

)𝟐
⁡(𝑲𝒆𝒍𝒗𝒊𝒏)   (1.14) 

=3.5515x1032 K 

Equations (1.9) through (1.14) show resemblance 

with the well-known ‘Planck units’, albeit that the 

above equations hold Planck’s constant ‘h’, 

whereas the ‘Planck units’ hold the reduced Planck 

constant ‘h/2.’ (symbol: ‘ℏ’). Had for Planck’s 

equation E = ℎ. 𝜐 the alternate and equally valid 

version E = ℏ𝜔 been used in the above, the result 

would have been fully consistent with Planck’s 

UoM’s.  

(10) Crenel Physics is frequency based, whereas 

Planck units in Metric Physics are based on 

angular frequency.  

In Chapter 4 we will argue our choice. 

The above demonstrates how our limited system of 

physical properties -Content in Packages and 

Whereabouts in Crenel- nevertheless delivers a set 

of yardsticks for mass, energy, frequency, and 

temperature in the Content arena, and time, 

distance in the Whereabouts arena. All are 

exclusively based on universal natural constants 

and mathematical procedures, and thus these 

yardsticks are absolute.  
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The fact that we found all conversion factors 

consistent with the historically known ‘Planck 

units’ underlines that the Crenel Physics model, 

despite its simplicity, leads to credible results.  

With c normalized to the dimensionless ‘1’, within 

the Crenel Physics model we can simplify the 

conversion factors and focus on: 

𝟏⁡𝑷 = ⁡√
𝒉𝒄𝒑

𝑮𝒄𝒑
     Energy   (CP 1.15) 

𝟏⁡𝑷 = ⁡√
𝒉𝒄𝒑

𝑮𝒄𝒑
⁡    Mass   (CP 1.16) 

𝟏⁡𝑷 = ⁡√
𝟏

𝒉𝒄𝒑.𝑮𝒄𝒑
    Frequency  (CP 1.17) 

𝟏⁡𝑪 = ⁡√𝒉𝒄𝒑. 𝑮𝒄𝒑 Distance  (CP 1.18) 

𝟏⁡𝑪 = ⁡√𝒉𝒄𝒑. 𝑮𝒄𝒑 Time   (CP 1.19) 

These yardsticks generally apply to any system in 

which light velocity ‘c’ has been normalized to the 

dimensionless ‘1’.  
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(2) Testing the Streamlining 

Prior to enhancing the Crenel Physics model, let us 

test what we have thus far by exploring the four 

Appearances (mass, energy, frequency, and 

temperature) in which we can express Content.  

 

The mass of an electron is found to equal  

9.1094x10-31 kg.  

Because one mass UoM in Crenel Physics equals 

5.4557x10-8 kg (see equation (1.10)), an electron 

therefore contains… 

9.1094x10⁡−31𝑘𝑔⁡

5.4557x10−8⁡𝑘𝑔
= 1.6697x10−23 Packages  

…when measured in the mass Appearance. 

 

Per Einstein’s equation 𝐸 = 𝑚. 𝑐2, we find the 

electron to contain 8.1871x10-14 J of energy.  

Because one energy UoM in Crenel Physics equals 

4.9033x109 J (see equation (1.9)), an electron 

therefore contains… 

8.1871x14−14⁡𝐽⁡

4.9033x109⁡𝐽
= 1.6697x10−23 Packages  

…when measured in the energy Appearance.  

 

Per Planck’s equation 𝐸 = ℎ. 𝜐, the electron’s 

Content can also be represented by a frequency of 

1.2356x1020 Hz.  

Because one frequency UoM in Crenel Physics 

equals 7.4001x1042 Hz (see equation (1.11)), an 

electron therefore contains… 

1.2356x1020⁡𝐻𝑧

7.4001x1042⁡𝐻𝑧
= 1.6697x10−23 Packages  

…when measured in the frequency Appearance.  

 

Perhaps less obvious is the embedding of a 

temperature UoM.  

By using the general equation… 

𝑇 =
ℎ

𝑘
𝐵(𝐽 𝐾⁄ )

× 𝜐      

…we can convert an electron’s frequency into a 

temperature. This gives a value of 5.9299x109 K.  

Note: we will later explain the background of the 

above equation (Chapter 4, equation (4.17)). 

Because one temperature UoM in Crenel Physics is 

equal to 3.5515x1032 K (see equation (1.14), an 

electron therefore contains… 

5.9299x109⁡K

3.5515x1032⁡𝐾
= 1.6697x10−23 Packages  

…when measured in the temperature Appearance. 

 

Thus, for each of these Appearances of Content we 

found the electron’s numerical value: 

1⁡𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = 1.6697x10−23⁡ Packages 

(11) Within the Crenel Physics model, we can 

freely swap between the various 

Appearances of Content without impacting 

the numerical value thereof. 
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(3) An Ultimate View on the 

Conservation Principle 

Equation (CP 1.17), 

1⁡𝑃 = ⁡√
1

ℎ𝑐𝑝.𝐺𝑐𝑝
  (Frequency)  

expresses the Package in the frequency 

Appearance, thus in Crenel-1. It is based on 

universal natural constants only. The Crenel 

Physics model thus reveals a universal relationship 

between its two physical properties: Content and 

Whereabouts. 

 

To explore the mechanism of swapping between 

Content and Whereabouts, we start with reviewing 

the sequential mathematical steps to convert 

Content into Whereabouts: 

1. INVERT the conversion factor for Content 

per equation (CP 1.15) or (CP 1.16).  

This results in: 

 √
𝐺𝑐𝑝

ℎ𝑐𝑝
 

2. MULTIPLY WITH PLANCK’S CONSTANT 

‘hcp’: 

 √ℎ𝑐𝑝. 𝐺𝑐𝑝 

This result matches equations (CP 1.18) and 

(CP 1.19). 

The exact same steps can be used to reconvert 

Whereabouts back into Content:  

1. INVERT the conversion factor for 

Whereabouts per equation (CP 1.18) or 

(CP 1.19).  

This results in: 

 √
1

ℎ𝑐𝑝𝐺𝑐𝑝
 

2. MULTIPLY WITH PLANCK’S CONSTANT 

‘hCP’: 

 √
ℎ𝑐𝑝

𝐺𝑐𝑝
  

This result matches equations (CP 1.15) and 

(CP 1.16). 

The equality between the conversion and 

reconversion procedure is remarkable. The failsafe 

approach to reconvert to the original is to undo 

each conversion step in reverse order. In this case 

however, each of the following statements hold 

true: 

✓ Applying the conversion procedure twice 

results in the original value, regardless of 

whether one starts with the Package or with 

the Crenel.  

✓ Applying the conversion procedure twice has 

the same impact as a multiplication with 

dimensionless ‘1’.  

From a mathematical perspective it is exclusively 

the ‘multiplicative inverse’ operation which has this 

feature. 

Example: the ‘multiplicative inverse’ of ‘x’ equals 

‘1/x’. And the ‘multiplicative inverse’ of ‘1/x’ 

equals the original ‘x’ again. Furthermore, the 

product of some ‘x’ with its inverted value ‘1/x’ 

always yields dimensionless ‘1’. This holds true 

regardless of the value (numeric or otherwise) of 

‘x’, with of course, the exception of ‘0’. 

We apply this mathematical insight to the above 

two equal conversion procedures. Mathematics 

says that: 

(12) Content (in Packages) is equal to  

inverted Whereabouts (in Crenel) 

And vice versa: 

(13) Whereabouts (in Crenel) is equal to  

inverted Content (in Packages) 

The conversion/reconversion procedure that we 

found consists of two steps rather than one single 

step. This does not contradict the above 

mathematical conclusion. To verify this, we take a 

closer look at the second step of the procedure. 

Given the above mathematical perspective, that the 

Package and Crenel are found reciprocal, their 

product C.P must be equal to dimensionless ‘1’. 

This implies that per equation (CP 1.3) Planck’s 

constant: 

ℎ𝐶𝑃 = 1⁡𝐶. 𝑃 ≡ 1  

Within the Crenel Physics model, it mathematically 

therefore equals the dimensionless ‘1’. Also, a 

multiplication with Planck’s constant (step 2 of the 

procedure) has no mathematical impact on the 

outcome. It does however result in a physical 

property swap between Crenel and Package.  

This gives a deeper insight into the conversion 

procedure. The first step (the inversion step) is the 
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swap between Crenel and Package. The second 

step (i.e., multiplication with Planck’s constant 

‘hCP’) only ensures that this swap is processed 

dimensionally (whereby both Crenel and Package 

are categorized as ‘dimensions’ rather than 

‘physical properties’). 

Should we therefore conclude that Planck’s 

constant hCP equals dimensionless ‘1’and thus is 

equal to light velocity ‘cCP’? Is Planck’s constant 

over dimensioned when we say it is equal to P.C 

(instead of 1)? There is a physical argument to not 

follow this mathematical logic. When we refer to 

the product ‘P.C’, we refer to Planck’s constant 

which is in fact the ‘inner product’ (also referred to 

as ‘scalar product’) ‘P.C’ of two physical properties 

‘P’ and ‘C’ respectively. This inner product ‘P.C’ 

must equal 1. If not, the sequential applying of the 

conversion and reconversion procedures would not 

result in the original as was demonstrated by our 

conversion procedure. From a physical perspective, 

we would violate the conservation principle should 

the original result not materialize.  

The inner product of the two dimensions ‘P’ and 

‘C’ being equal to 1 implies that these two 

dimensions are orthonormal (i.e., both orthogonal 

and normalized) relative to one another. 

Our conclusion therefore is that within our model 

light velocity cCP is equal to dimensionless ‘1’, 

whereas Planck’s constant hCP represents the inner 

product (or scalar product) of the Crenel and the 

Package.  

Recall Paul S. Wesson’s statement (Chapter 1). 

Planck’s constant is an example of a universal 

natural constant that indeed embeds ‘physical 

information’, even though mathematically it 

‘happens to have’ a value equal to dimensionless 

‘1’. 

Chapter 12 addresses what an ‘inversion’ of either a 

Package or a Crenel involves from a physical 

perspective. 

At this point we conclude: 

(14) To complete an inversion of either the 

Crenel or the Package, we must multiply the 

outcome with Planck’s constant hCP. 

 

By revealing that Content (in Packages) is equal to 

inverted Whereabouts (in Crenel) and vice versa, 

the Crenel Physics model gives an ultimate view on 

the conservation principle. 

The exchange rate can be found by rewriting 

equation (1.2) GCP=1 C/P as: 

𝑪 = 𝑮𝑪𝑷 × 𝑷     (CP 3.1) 

As we will see, this insight is at the root of 

explaining and quantifying the gravitational force. 
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(4) How Boltzmann Enhances Planck 

and Explains Heisenberg 

Let’s start by reviewing Boltzmann’s theory. 

In his equation: 

𝑺 = ⁡𝒌𝑩. 𝒍𝒏⁡(𝒘)      (4.1) 

S =  Entropy 

(We will detail the meaning of Entropy later.)  

kB =  Boltzmann’s universal natural constant  

w =  Number of states in which a system can 

possibly be found, where the following 

thereby applies: 

✓ w is a natural number (also referred to as 

counting number). Intermediate states or a 

simultaneous mixture of states (as found in 

quantum physics) is not foreseen. 

✓ 𝑤 > 0 

If at any moment we take a snapshot of a 

system, we will find it in one of its potential 

states. Thus, there is at least one state. 

✓ Each potential state must have equal 

probability. In many cases this holds true; and 

where not, the equation needs correction. 

With ‘w’ having potential values 1, 2, 3, 4, etc., the 

term 𝑙𝑛⁡(𝑤) in the equation has a ‘non-negative 

real’ numerical value, so that Boltzmann’s constant 

kB and Entropy ‘S’ have equal sign and UoM. 

 

In Metric Physics, Boltzmann’s constant kB (and 

thus Entropy ‘S’) can be expressed in various 

UoM’s, from microscopic such as nat and bit to 

macroscopic such as Hz/K and J/K, with values for 

these examples as follows: 

kB(nat)  =1       nat  

kB(bit)  =1.442695…       bit 

kB(Hz/K) =2.0836618…× 1010 Hz/K 

kB(J/K) =1.3806488…× 10-23J/K 

The nat is the natural UoM for Information. We 

will later address what qualifies it as ‘natural’. Of 

note here is that Boltzmann’s constant is equal to 

this UoM. 

The bit is an alternate UoM for Information:  

(15) The bit is the amount of Information that 

informs us which one of two possible states 

(usually labelled ‘0’ and ‘1’) applies. 

The UoM’s nat and bit are mathematical entities (as 

is π, for example). The associated numerical values 

for kB can therefore be shared between Metric 

Physics and Crenel Physics, as well as with any 

other system of UoM’s. This portability makes 

Boltzmann’s constant unique within the arena of 

universal natural constants.  

With Boltzmann’s constant in nat or bit being 

UoM’s for Information, all alternatives are also 

UoM’s thereof. The size of a computer’s memory, 

for example, is commonly expressed in bits. It may 

alternatively be expressed in nat, Hz/K or J/K.  

The number of states ‘w’ in which a system can be 

found is equal to all observers thus is not subject to 

the Theory of Relativity. We therefore classify it as 

a ‘hardware’ property. We will later address this in 

detail. Per equation (4.1), Entropy ‘S’ then also 

qualifies as a hardware property.  

There is a difference between Information Storage 

Capacity and Information, though both can be 

expressed in the same UoM (e.g., bits). Information 

Storage Capacity is a hardware property, while 

Information itself qualifies as a ‘software’ property. 

Herein we are mindful to use these terms 

appropriately. 

From the above considerations we conclude: 

(16) Entropy is an absolute universal measure 

for Information Storage Capacity. 

Boltzmann’s equation introduced Information into 

the Crenel Physics model. It impacts physics at its 

core, yet its role is often ‘hidden behind a curtain’. 

For example, Boltzmann’s constant is frequently 

presented as if it equals dimensionless ‘1’ rather 

than 1 nat. 

 

The following further illustrates this commonplace 

issue: 

✓ We may specify the mass of an object to equal 

‘15 kg’. 

✓ This suggests that the UoM of this 

specification is the kg and no more than that.  
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✓ We may wrongly conclude that the ‘15’ has 

no UoM. However, the here applied UoM is 

the digit. 

Besides the already introduced nat, bit, J/K, and 

Hz/K, the digit is yet another UoM for Information. 

(17) The digit is the amount of Information that 

informs us which one of 10 possible states 

(typically labelled 0 through 9) applies.  

To unambiguously quantify the aforementioned ‘15 

kg’, we should specify it as ‘15 (digital) kg’.  

But who would in daily practice? Yet such would 

be relevant to ‘aliens’ who might not have 10 

fingers and are not familiar with the digit.  

Unfortunately, the S.I. does not consistently use the 

digit. For example, one minute is 60 seconds (not 

10), one hour is 60 minutes (not 10), one day is 24 

hours (not 10), and one full turn is 360 degrees (not 

10).  

Where nowadays the digit is the commonly used 

default UoM in human communication, binary 

computers internally and exclusively use the bit as 

the UoM for Information. 

By using the bit instead of the digit, on our ten 

fingers we can count to as much as 210=1024, 

rather than to 10. When seen from this 

perspective, the digit is not the optimal choice.   

Here we conclude that the ‘15’ (in 15 kg) qualifies 

as Information because it is expressed in the UoM 

digit.  

Information is a very broad concept. It has some 

general and distinguishing features that neither fit 

into the Content arena nor into the Whereabouts 

arena. A family picture for example, surely holds 

Information. It can be copied or multiplied without 

costs to the source. The conservation principles 

obviously do not apply to Information, whereas 

they do apply to the Information Storage Capacity 

(here: the paper that holds the picture). These 

distinguishing features justify that we define: 

(18) Information is the third physical property 

within the Crenel Physics model.  

For further analysis of its features, we will use the 

following definition (reference [5]): 

(19) Information is a ‘resolution of uncertainty’.  

This definition has flaws. It may suggest that 

‘resolve’ is equal to ‘reduce’. Information may 

add to uncertainty. 

The statement ‘we found a bullet near the 

victim’, for example, qualifies as Information. Yet 

it raises new questions and thereby adds to 

uncertainty. 

In the following we will nevertheless stick to the 

above definition. We have the liberty to do so, 

with the disclaimer that this definition does not 

cover general purposes. It does cover ours. 

We thereby differentiate between two types of 

uncertainty: 

1. ‘State Uncertainty’. 

This type of uncertainty links to Boltzmann’s 

equation (4.1) since the latter embeds the 

number of potential states ‘w’. Examples are: 

a. The cat in the box is either dead, or alive 

(with a wink to ‘Schrödinger’s cat’ 

experiment). 

Here, in Boltzmann’s equation:  

w=2 (digital).  

b. The dice shows 1, 2, 3, 4, 5, or 6. 

Here, in Boltzmann’s equation:  

w=6 (digital). 

 

2. ‘Quantitative Uncertainty’. 

This type of uncertainty is straight forward. 

For example, the mass of an object equals ‘x’ 

kg. Parameter ‘x’ expresses uncertainty: it may 

have any quantitative value.  

The differences between both types of uncertainty 

demand different types of Information. We will use 

the following terminology:  

✓ To resolve ‘State Uncertainty’ we will need 

‘State Information’. 

✓ To resolve ‘Quantitative Uncertainty’ we will 

need ‘Quantitative Information’. 

Let’s begin by exploring ‘State Uncertainty’. Recall 

that per Boltzmann’s theory the number of possible 

states ‘w’ is a counting number > 0. 

In the case of a single state situation (w=1) there is 

no uncertainty to resolve when it comes to the 

actual state.  

A 2-state situation (w=2) is the leanest option for 

creating ‘State Uncertainty’. Thereby, given its 

definition, the bit is the exact amount of 

Information that we would need to resolve it. 
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(20) The bit is the leanest amount, thus 

‘quantum’ of Information, for resolving 

state uncertainty.  

Some experimentation is justified to further draw 

back the curtain that typically hides Information 

and its features. Let’s continue to focus on ‘State 

Information’ and its potentials as well as 

limitations. 

For such experiments the binary computer is a 

perfect tool as: 

1. Binary computers store Information 

exclusively in bits, thus in universally equal 

quanta of State Information. 

2. A binary computer’s memory is an Information 

Storage Capacity constructed of hardware bits. 

It is universally equal.  

3. Binary computers do nothing but execute 

sequences of pre-defined logical instructions 

between bits of Information or groups thereof. 

These instructions are universally equal. 

 

The logical Shift Left, Shift Right, AND, OR, or 

NOR instructions, for example, are generally 

referred to as ‘instructions at machine level’. 

More complex operations must first be 

compiled into a set of these instructions before 

they can be executed. 

Although this set is limited and truly basic, the 

instructions can be executed fast. The pace is 

dictated by a high internal clock frequency. 

Therefore, the binary computer is rightfully 

nicknamed ‘fast idiot’. 

The above features ensure that: 

(21) Binary computers produce universally 

equal results, regardless of relative 

circumstances.  

Such cannot be taken for granted where alternative 

computing mechanisms are used. 

The amount of time it will take to complete 

operations may appear different between 

observers. A computer’s internal clock frequency 

will not appear universally equal pending 

relative circumstances and based on the Theory 

of Relativity. 

The three features listed above ensure that binary 

computers exclusively handle ‘State Information’. 

Despite this, a very wide range of applications and 

a broad spectrum of Information can be handled. 

We will address a few concepts.  

Each individual state of any binary memory (or 

section thereof) represents a unique sequence of 

bits, which in turn represents a unique counting 

number (here in the binary format). Counting 

numbers therefore represent an overlap between 

Quantitative Information and State Information.  

(22) ‘State Information’ also supports ‘counting 

numbers’ (in digit: 0, 1, 2, 3, etc.), thus is 

equivalent to a special case of ‘Quantitative 

Information’.  

The existence of this overlap ensures that both 

types can share the same UoM. Therefore, in 

Crenel Physics terminology, we conclude that:   

(23) ‘State Information’ and ‘Quantitative 

Information’ are two different Appearances 

of Information. 

Binary computers can also handle ’real numbers’ 

and therefore the full range of ‘Quantitative 

Information’. Unlike the counting number itself, 

‘Quantitative Information’ embedding sign and/or a 

decimal point cannot be captured ‘as is’. Rather, 

these attributes are stored as ‘formatted State 

Information’ based on some pre-defined ‘format’. 

Various formats can be defined and agreed upon as 

nature has no preference. 

A ‘real number’, for example, might be stored in 

a pre-defined (formatted) 32-bit memory section. 

Pending the selected format options within these 

32 bits, the position of the decimal point may be 

thought fixed between two adjacent bit numbers. 

Alternately, it may be ‘floating’, that is its 

position is stored separately as a ‘counting 

number’. Besides the ‘0’ and ‘1’ state, no third 

memory state is available for storing the decimal 

point character itself. 

As is the case for the decimal point, the storage 

of the positive or negative sign of a number is 

based on some pre-defined format. Somewhere 

within the binary memory, one assigned bit must 

store it. Again, there is no mandatory rule for a 

location. 

In addition, binary computers handle Information 

such as pictures, newspapers, colours, and plain 

text. Stored as formatted binary files, each file 

resides in one single state that uniquely represents 

the embedded Information. Thereafter, this binary 
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Information is processed and presented via a 

universally equal procedure or algorithm. 

Dynamic Information, such as a movie, likewise 

qualifies as static state Information. A binary 

computer stores this as a formatted static binary 

file. Through a given universally equal algorithm, 

its static state content is processed and presented as 

a sequence of static frames. 

 

Consistent with Boltzmann’s theory, binary 

computers do not handle intermediate states or a 

mixture of simultaneous states of Information as 

found in quantum physics. Where two sequential 

states differ, the difference must at least involve 

one single bit (i.e., one quantum of state resolving 

Information).  

Despite not covering all features of ‘mainstream’ 

quantum physics, Boltzmann’s theory nevertheless 

is a beginning. The differences in observable states 

are subject to quanta, equal to 1 bit. 

This then implies that a binary computer can 

neither process nor present (but rather only 

simulate) a truly smooth unfolding of events.  

Specifically, processing true smoothness in the 

unfolding of time would not only demand an 

infinite number of frames per time UoM, but it 

would also demand an infinite precision of events 

and their describing data, and thereby an infinite 

amount of ‘Quantitative’ as well as ‘State 

Information’. 

But while true smoothness cannot be realized 

within the constraints of a binary computer, this is 

not an argument to deny its existence in nature. 

Doing so would then imply that the existence of 

Information is based on the ability (or lack thereof) 

to store it; that it must reside somewhere.  

As we will see, storage is not always required. In a 

broader perspective, it is sufficient to demand that: 

(24) ‘Information’ is ‘available’. 

The term ‘available’ expresses that Information 

does not necessarily need to be stored.  

Consider that the exact values of ‘1/3’ and ‘π’ are 

universally ‘available’, yet these values cannot 

be stored within a finite memory. Nevertheless, a 

binary computer can, in some cases, produce 

exact results and thus use the exact values 

without these being stored. For example, 1/3 of 6 

apples equals exactly 2 apples. And sin(π) equals 

exactly 0.  

General examples of universally available 

Information are:  

✓ Universal physical constants  

✓ Mathematics  

✓ Physical laws  

The impossibility to store an infinite amount of 

Information thus can neither be a showstopper for 

producing exact results, nor for allowing true 

smoothness in the unfolding of nature. In 

demanding that any observation is a discrete ‘state’ 

observation, Boltzmann’s theory is however a 

showstopper for allowing a truly smooth 

observation. We will get back to the issue of true 

smoothness after further elaboration and 

experimentation. 

Consider that stored ‘Information’ resides within 

(or is held by) a carrier if you will.  

Relocating our family picture does not change the 

picture itself. That is, relocating the carrier (paper), 

does not change the Information (picture). 

In terms of Crenel Physics: 

(25) There is no Content difference between the 

optional states of an Information carrier.  

Note: the term ‘Content’ may lead to some 

confusion in relation to the term ‘Information’. 

Within Crenel Physics ‘Content’ is measured in 

Packages whereas ‘Information’ is measured in 

bits (or nat, or J/K, to name a few). 

To summarize our findings: 

(26) Conservation principles do not apply to 

Information (‘software’) whereas they may 

apply to Information Storage Capacity 

(‘hardware’). 

(27) Information has neither Content nor 

inertia. 

(28) Whereabouts does not impact Information. 

Let us now focus on Quantitative Information. 

When we specify ‘15 kg’, mathematically this 

represents the inner product of ‘15’ (Quantitative 

Information in the digital format) and ‘kg’ (a 

Content Appearance). 

Should we now change the Quantitative 

Information part of the specification, say from ‘15’ 
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to ‘16’, this has no impact whatsoever on the 

Content Appearance ‘kg’.  

In mathematical terms this demonstrates that: 

(29) Information is orthogonal to (or 

independent from) both Content as well as 

Whereabouts.  

Then how does the Theory of Relativity impact 

such specifications?  

Per this theory, for example, an object will appear 

to gain mass as it gains velocity relative to the 

observer. In this case it is the Content Appearance 

that is gaining, not the Quantitative Information. 

This may raise eyebrows since it is not common 

practice to deal with the effects of relativity in this 

way. Therefore, let’s go into some more detail here. 

As said per Crenel Physics, when we specify, for 

example, that an object has a mass of ‘15 kg’, the 

Information part ’15’ (digit) of this specification is 

universally equal. It is the Content Appearance ‘kg’ 

that is subject to relativity and that gains relative to 

the observer.  

In retrospect: equation (1.10)…⁡ 

1⁡𝑃𝑎𝑐𝑘𝑎𝑔𝑒 = ⁡√
ℎ.𝑐

𝐺
⁡(𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠)=5.4557x10-8 kg 

…defined the absolute value of a mass UoM 

locally, to the observer. 

While per our model, the UoM for the moving mass 

(in the example expressed in kg) appears heavier, 

any local UoM (here the kg) remains as is. Based 

on equation (1.10), the local kg is universally equal. 

To then quantify a moving mass, a higher quantity 

of these local kg will be required to express the 

higher mass of the moving object. It is however 

common practice to specify properties based on 

local standards, here on the local kg. Based on the 

Theory of Relativity, one consequently needs a 

higher quantity thereof. This common practice only 

suggests that the quantification part (the 

Information part) of the specification increased. It 

did not: it is the moving kg that is heavier than the 

local kg.  

The astronaut in his fastmoving spaceship can 

confirm this. He will not measure or experience a 

gain in his body mass (expressed in his local kg) 

due to his velocity relative to whatsoever. Per 

equation (1.10), his local kg (being his mass 

UoM) remains unchanged (and is universally 

equal). The quantity thereof, that is, the 

Information part of the specification of his body 

mass, was found universally equal in the first 

place. Therefore, should his body mass be 75 kg 

while his spaceship stood still on Earth, he will 

locally still find his mass to be 75 kg after he is 

launched and his acceleration has stopped. 

Likewise, on Earth our velocity relative to Mars 

changes continuously. This has no impact at all 

on our local weight expressed in kg. This again is 

explained by the Information part being 

universally equal to all, while our local UoM is 

based on equation (1.10). 

As for Quantitative Information, we found that 

State Information also is universally equal and thus 

not impacted by the Theory of Relativity. 

We summarize that: 

(30) Information is universally equal. 

To further support this finding, let’s perform two 

additional experiments that look at ‘Quantitative’ 

and ‘State Information’.  

‘Quantitative Information’: 

If I hold one helium atom in my hand, no one in the 

entire universe will see me hold more than one 

atom, nor would anyone see me holding a different 

type of atom since the number of constituents (i.e., 

protons, neutrons, and electrons) is Information and 

thus universally equal. However, some might not 

see me holding anything at all since the associated 

Photons/light from my location did not yet arrive. 

This demonstrates that ‘Quantitative Information’ 

is instantaneously universally valid: without 

dispute. It is ‘available’. Thus, the Information 

itself did not travel. However, at large distances 

from the source it may not yet be ‘accessible’. 

‘State Information’: 

Today I may observe the implosion of a star as it 

reached the end of its life. It happened in deep 

space, say 50 lightyears away. From that 

observation I conclude, that based on my clock, the 

star imploded 50 years ago.  

Yesterday, that ‘State Information’, though existing, 

was not accessible to me. But today, with the 

arrival of the associated light, the Information 

became accessible. If I had been asked yesterday 

whether the star had imploded, the answer could 

only have been: ‘I don’t know’. But today, based on 

observation, I know the answer to yesterday’s 

question: it imploded.  
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The point here is that, since the local moment of 

implosion, the State Information instantaneously 

was universally available. However, ‘available’ is 

not synonymous with ‘accessible’. I was in the 

blind for the single reason that the trigger that made 

it accessible (carried by light/Photons) had not yet 

arrived.  

For both the Quantitative as well as the State 

Information, the Photons did not truly carry the 

Information itself, but carried the trigger that made 

the Information accessible. Photons do so 

individually and thereby refer to the location of 

their origin.  

Relative to mainstream physics, this gives a 

different viewpoint on what Information is 

embedded and carried/transported by Photons. Per 

the Crenel Physics model, Photons carry a trigger 

that reveals already available Information. Per 

mainstream physics however, Photons carry (and 

thus transport) the Information itself. In Chapters 5 

and 6, we will explore this further.  

The Crenel Physics modelling, that Information is 

universally ‘available’ without always being 

‘accessible’, embeds a scientific challenge. Are 

there ways to break through that barrier?  

Scientists have found ways. Based on Newton’s 

laws, for example, we can reveal Information with 

regards to past and future positions of planets. Per 

the Crenel Physics model, such Information 

(regarding both past and future) is universally 

available, and per Newton it describes a true 

smoothness of unfolding. The smoothly unfolding 

future is already determined, as the past has been 

written. All this Information is available anywhere 

and now. 

This viewpoint is controversial between scientists. 

Einstein took a confirming position by 

summarizing it as: ‘God does not gamble’. We can 

tone this viewpoint down based on Boltzmann’s 

theory. Per this theory, all our observations are state 

observations and the difference between two states 

is quantified in bits. Thus, for any state observation 

there is a minimum uncertainty of ½ bit. A larger 

state uncertainty would make our observation jump 

to another state version. Consequently, even with 

the greatest (theoretically possible) precision, it is 

impossible to remove all uncertainty from any 

observation. 

Later in this chapter we use this finding to 

explain ‘Heisenberg’s uncertainty principle’.  

This uncertainty in our observations leaves an input 

error in any modelling of physical outcome.  

Presuming an underlying truly smooth and precise 

unfolding of events, there indeed is only one single 

future scenario.  

The inability to extrapolate future (or past) data 

without uncertainty is not equivalent to suggesting 

a ‘gambling’ component, rather: 

(31) Per the Crenel Physics model, nature 

unfolds truly smoothly, whereas our 

observations unavoidably are subject to 

uncertainty.   

Finally, the idea that we might not have to wait for 

arriving light or radio signals to reveal Information 

from remote areas is intriguing. Conceptually per 

the Crenel Physics model, we may find triggers that 

make it accessible. 

 

We classified ‘Information Storage Capacity’ as a 

‘hardware’ property and found Entropy its 

universally equal measure. 

To learn more about this hardware, we define the 

‘Information Building Block’. 

(32) An ‘Information Building Block’ is an 

entity that can reside in a predefined, finite 

natural number of states (‘wibb’). 

In the case of a single State Information Building 

Block, within equation (4.1) the term:  

ln(w)=ln(wibb)= ln(1)=0. Per this equation, the 

Entropy value ‘S’ then also equals 0. Single State 

Information Building Blocks therefore cannot be 

used to construct an entity with some non-zero 

value for embedded Entropy ‘S’.  

To construct Entropy, we must use blocks that can 

reside in at least two potential states (i.e., the bit).  

There are no options to construct out of smaller 

pieces, an Information Building Block that could 

reside in 3 states as: 

1. It could not be composed of three Blocks that 

each reside in one single state as the 

combination could still only reside in one state. 

2. It could not be constructed of a combination of 

one binary Block plus one single state Block as 
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the addition of the latter does not impact the 

number of potential states. 

3. A combination of 2 binary Blocks overshoots 

as it can reside in 4 states. 

The only solution would be a single 3-state Block. 

This likewise holds for Blocks with 5, 6, 7, or 9 

states, for example, where no combination of 

smaller Blocks can be used. (Eight states can be 

composed of 3 binary Blocks).  

In Chapter 12, we will argue why 2-state Blocks 

(bits) are natures default, whereas the shaping of 

other sized Blocks is unlikely. 

The ‘hardware’ of some large entity then can be 

described as one single Information Building Block. 

Alternatively, it can be described as an aggregation 

of the smallest usable blocks, that is, bits. 

(33) Any Entropy can be described as an 

aggregate of individual bits. 

Per added bit the potential number of states 

doubles, so that the options for parameter w in 

Boltzmann’s equation are confined to values of the 

exponential function 2n, whereby n is a counting 

number ≥1. 

 

We established the nat as the natural UoM for 

Information. But what makes the nat natural?  

To find the answer we review Boltzmann’s 

equation 𝑆 = ⁡𝑘𝐵 . 𝑙𝑛⁡(𝑤), thereby seeking 

normalization.  

Mathematically, this goal must be achievable 

because the logarithmic function is the inverse of 

the exponential function. With parameter w 

having the shape of an exponential function 

(w = wibb
n), the logarithm, as found in 

Boltzmann’s equation, produces a result that is 

proportional to n: 

(ln(w)=ln(wibb
n)=n.ln(wibb)). Normalization thus 

demands a constant multiplier. Boltzmann’s 

constant kB is such a multiplier.  

For finding normalization, let us use a quantity of 

‘n’ bits to construct an Entropy ‘S’. We meet the 

normalization goal if the Entropy (in bits) equals 

the number of bits that we used: 

S(bit)=n (bits) (the goal)    (4.2) 

To calculate the Entropy thereof in bits, we 

substitute the above specification of n bits into 

equation (4.1): 

𝑺(𝒃𝒊𝒕) =⁡𝒌𝑩(𝒃𝒊𝒕). 𝒏. 𝒍𝒏⁡(𝟐)    (4.3) 

Recall that Entropy ‘S’ and Boltzmann’s constant 

‘kB’ must have the same UoM, so that we must use 

the bit version of ‘kB’ as shown. 

In comparing our goal per equation (4.2), with the 

calculated value per equation (4.3), our 

normalization goal demands that the term 

‘𝑘𝐵(𝑏𝑖𝑡). ln(2)’ in equation (4.3) matches the 

numerical value ‘1’. The term ‘𝑘𝐵(𝑏𝑖𝑡). ln(2)’ is 

expressed in ‘bit’.  For dimensional integrity, the 

numerical value of the afore mentioned ‘1’ then 

likewise must be expressed in an Information UoM. 

Because the latter UoM stands for the normalized 

version, we refer to it as the ‘nat’: the natural UoM 

for Information. 

(34) The nat is the normalized UoM (unity) for 

expressing Information.  

1 nat = 𝒌𝑩(𝒃𝒊𝒕). 𝒍 𝒏(𝟐) 

As discussed, Boltzmann’s constant kB is equal to 1 

nat as well as 1.442695 bit. Per the above, if we 

multiply the latter value with ln(2) = 0.693147 we 

indeed get value 1: 

1.442695 × 𝑙𝑛(2) = 1.442695 × 0.693147 = 1 

When expressed in bits, the exact numerical value 

of Boltzmann’s constant is equal to 1/ln(2). 

Note that we ‘reverse engineered’ the nat by basing 

its value on the bit and demanding normalization. 

By alternatively using the digit rather than the 

bit, we would have the same outcome: 

1 nat = 𝑘𝐵(𝑑𝑖𝑔𝑖𝑡). 𝑙 𝑛(10).  

When expressed in digits, the exact numerical 

value of Boltzmann’s constant is equal to 

1/ln(10). 

 

In Chapter 1 equation (CP 1.3), we defined 

Planck’s constant hCP as the inner product of 

Content and Whereabouts: 

 𝒉𝑪𝑷 ≡ 𝟏⁡𝑪. 𝑷 

We addressed the orthogonality between Content 

and Whereabouts in Chapter 3 and found that we 

can exchange Whereabouts for Content (and vice 

versa) without violating the conservation principle. 
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Given this, based on Information being the third 

independent physical property as well as the nat 

being its natural UoM, we can now define both the 

inner product of Content and Information and the 

inner product of Whereabouts and Information. 

This leads to two additional Planck-like universal 

natural constants. Using symbol ‘I’ for Information 

(in nat) we define these as: 

𝒉𝑷𝑰 ≡ 𝟏⁡𝑷. 𝑰      (CP 4.4) 

And: 

𝒉𝑪𝑰 ≡ 𝟏⁡𝑪. 𝑰       (CP 4.5) 

The above likewise implies that we can exchange 

Whereabouts for Information (and vice versa) as 

well as Content for Information (and vice versa). 

These are consistent enhancements to the 

previously described ‘ultimate view on the 

conservation principle’ (Chapter 3).  

The following illustrations of exchangeability 

demonstrate that the implications are simple and 

indeed hold true: 

1. One kg is equal to 2 half-kg. In the latter we 

doubled the Quantitative Information while 

taking half the Content without making a 

difference, thus without violating the 

conservation principle. 

2. One meter is equal to 2 half-meters. In the 

latter we doubled the Quantitative Information 

while taking half the Whereabouts without 

making a difference, thus without violating the 

conservation principle. 

 

Our four options of kB address the same physical 

fact. The equalities… 

kB(nat) ≡ kB(bit) ≡ kB(Hz/K) ≡ kB(J/K)   (4.6) 

…demand unambiguous universal relationships 

between them.  

We already addressed the conversion factor (ln(2)) 

between the two given microscopic versions kB(nat) 

and kB(bit). Let’s now focus on the two macroscopic 

versions. 

Prior to further analysis, let’s first highlight the 

following general requirement: 

(35) The UoM of a universal natural constant is 

universally equal.  

Consider for example, light velocity ‘c’ is a 

universal natural constant. To all observers it has 

been set equal to 299,792,458 m/s. Therefore, 

unlike the ‘meter’ and the ‘second’ themselves, 

the ratio ‘m/s’ is presumed to be universally 

equal.  

One could argue that it is a feature of Photons 

that causes this equal appearance of m/s. From 

an objective perspective, this leaves room for a 

theoretical possibility that in fact such universal 

equality is not valid. Lacking arguments for or 

against this scenario, we will ignore it.  

Within any system of UoM’s, the ratio between any 

two UoM’s of universal natural constants then must 

also appear universally equal. For example, within 

Metric Physics the ratio between the two 

macroscopic options for kB: 

𝐽

𝐾
𝐻𝑧

𝐾

(=
𝐽

𝐻𝑧
)⁡must appear 

universally equal. The 
𝐽

𝐻𝑧
 matches the UoM of 

Planck’s universal natural constant ‘h’, and for that 

reason must indeed be universally equal. We can 

alternatively express it as: 

𝐽

𝐻𝑧
=

𝐽

𝑠𝑒𝑐𝑜𝑛𝑑−1
= 𝐽. 𝑠.  

Metric Physics typically expresses Planck’s 

constant h as:  

h = 6.62607015… ×10-34 J.s. 

The consistency of this value can be verified within 

the Metric Physics system where ‘h’ then must 

equal kB(J/K)/kB(Hz/K): 

(6.62607015…⁡× 10−34⁡𝐽. 𝑠)

= (1.3806488…× 10−23 ⁡
𝐽
𝐾⁄ )

÷ (2.0836618…× 1010 ⁡𝐻𝑧 𝐾⁄ ) 

The above holds true as expected, so that we found 

Planck’s constant h to represent the conversion 

factor at hand: kB(J/K = h. kB(Hz/K).  

Crenel Physics normalizes this same ratio. Here, 

the afore mentioned 
𝐽

𝐻𝑧
 converts to 

𝑃

𝐶−1
= 𝑃. 𝐶, and 

Planck’s constant hCP indeed equals 1 P.C (see 

equation (CP 1.3)).  

To explore the relationship between the two 

macroscopic measures (J/K and Hz/K) and their 

microscopic counterparts (nat and bit), we must 

introduce the UoM for temperature.  

As mentioned in Chapter 1, Metric Physics defines 

the UoM for temperature as follows: 
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𝟏⁡𝑼𝒐𝑴⁡(𝑻𝒆𝒎𝒑. ) = ⁡
𝑼𝒐𝑴⁡(𝑬𝒏𝒆𝒓𝒈𝒚)

𝒌𝑩⁡
   (4.7) 

Here, energy is expressed in Joule. So, to ensure 

dimensional integrity in the above equation, we 

must use the kB(J/K) version for Boltzmann’s 

constant. The UoM for temperature in equation 

(4.7) then is the Kelvin (K).  

From the Crenel Physics perspective, Energy is one 

of the Appearances of Content. Equation (4.7) 

therefore expresses a circular reference between the 

UoM’s for Content, temperature, and the diverse 

options for Boltzmann’s constant. We generalize 

this circular reference as follows: 

(36) To any version of Boltzmann’s constant, we 

can associate an Appearance for Content 

which then must lead to the same measure 

for temperature.  

Consider that in Chapter 2 we found frequency to 

be an Appearance of Content. Based on the above 

generalization we can now alternatively define the 

UoM for temperature as: 

𝟏⁡𝑼𝒐𝑴⁡(𝑻𝒆𝒎𝒑. ) = ⁡
𝑼𝒐𝑴⁡(𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚)

𝒌𝑩⁡
  (4.8) 

Metric Physics expresses frequency in Hertz. Here 

again we must ensure dimensional integrity, in this 

instance by using the kB(Hz/K) version of 

Boltzmann’s constant. 

We do not know how many versions of 

Boltzmann’s constant can be provided by nature.  

Given the above, it certainly would help if we knew 

them all. 

Temperature is associated with a frequency of state 

swapping within an object. To discuss a measure 

for temperature and establish our basis, we must 

first differentiate between frequency and angular 

frequency. 

In Boltzmann’s equation (4.1) the number of states 

‘w’ is a natural number. Frequency then quantifies 

the rate of state changes per time UoM. With 

Boltzmann’s universal natural constant being based 

on full switches between discrete states, we have a 

decisive argument for consistently basing Crenel 

Physics on frequency rather than on angular 

frequency. 

(37) Crenel Physics is frequency based. 

For completeness, we now add the Metric Physics 

definitions for the temperature UoM based on the 

nat and bit versions of kB.  Thereby we ensure the 

required dimensional integrity. 

For kB= 1 nat: 

𝟏⁡𝑲 = ⁡
𝒏𝒂𝒕.𝑲

𝒌𝑩(𝒏𝒂𝒕)
      (4.9) 

And for kB= 1 bit: 

𝟏⁡𝑲 = ⁡
𝒃𝒊𝒕.𝑲

𝒌𝑩(𝒃𝒊𝒕)⁡
      (4.10) 

The added value of equations (4.9) and (4.10) is 

that the terms ‘nat.K’ and ‘bit.K’ within these 

equations are additional Appearances for Content.  

Per equation (4.9), for entities with an Entropy 

value of 1 nat, the Kelvin itself is a measure for 

Content (since kB(nat) = 1). 

Should we express that same Entropy in bit, per 

equation (4.10) we will find that same temperature 

in Kelvin.  

We will revisit the two Appearances ‘nat.K’ and 

‘bit.K’ later to discuss in greater detail. Here we 

found that ‘temperature as an Appearance of 

Content’ only holds true for objects with an 

Entropy value of 1 nat. (For example: 2-nat objects 

reach that same Content at half the temperature.) 

In Crenel Physics the Package is the one and only 

UoM for Content. Here, equation (4.7) translates to: 

𝟏𝟎⁡𝑻𝑪𝑷 =⁡
𝑷𝒂𝒄𝒌𝒂𝒈𝒆

𝒌𝑩⁡
         (CP 4.11) 

We can verify that this equation is consistent with 

Metric Physics by substituting equation (1.9), the 

conversion from Package to the Metric Physics 

energy UoM, into the equation and by using the 

Metric Physics J/K version kB(J/K). In doing so we 

find the conversion factor from the UoM of TCP to 

Kelvin: 

𝟏𝟎𝑻𝑪𝑷 =⁡√
𝒉.𝒄𝟓

𝑮.(𝒌
𝑩(𝑱 𝑲⁄ )

)𝟐
 (Kelvin)  (CP 4.12) 

      = 3.5515x1032 K 

Again, this UoM resembles a ‘Planck Unit’ (here: 

for temperature). As before, we see ‘h’ instead of 

′ℏ′ in the equation (see also equation (1.14)). Recall 

that Crenel Physics is frequency based while Planck 

units are based on angular frequency.  

Using the above we can now convert kB(nat) to 

kB(Hz/K). To find the conversion factor we divide the 
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Crenel Physics conversion factor from Package to 

Hz per equation (1.11)…  

⁡1⁡𝑃𝑎𝑐𝑘𝑎𝑔𝑒 = ⁡√
𝑐5

ℎ.𝐺
⁡(𝐻𝑒𝑟𝑡𝑧) 

…by the Crenel Physics conversion factor from TCP 

to Kelvin per equation (CP 4.12). 

The result indeed equals the macroscopic value for 

kB(Hz/K) as found in Metric Physics: 

𝟏(𝒏𝒂𝒕) ≡
√ 𝒄𝟓

𝒉.𝑮

√

𝒉.𝒄𝟓

𝑮.(𝒌
𝑩(𝑱 𝑲⁄ )

)

𝟐

  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
𝟕.𝟒𝟎𝟎𝟏𝐱𝟏𝟎𝟒𝟐⁡𝑯𝒛

𝟑.𝟓𝟓𝟏𝟓𝐱𝟏𝟎𝟑𝟐⁡𝑲
  

    = 2.08366 × 1010 (Hz/K) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝒌𝑩(𝑯𝒛 𝑲⁄ )    (4.13) 

Similarly, the J/K version kB(J/K) is found by 

dividing the Crenel Physics conversion factor from 

Content to the energy Appearance per equation 

(1.9)… 

1⁡𝑃𝑎𝑐𝑘𝑎𝑔𝑒 = ⁡√
ℎ.𝑐5

𝐺
⁡(𝐽𝑜𝑢𝑙𝑒𝑠)  

                    = 4.9033x109 J 

…by the Crenel Physics conversion factor from TCP 

to Kelvin per equation (CP 4.12): 

𝟏(𝒏𝒂𝒕) ≡
√𝒉.𝒄

𝟓

𝑮

⁡
√

𝒉.𝒄𝟓

𝑮.(𝒌
𝑩(𝑱 𝑲⁄ )

)

𝟐

  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
𝟒.𝟗𝟎𝟑𝟑×𝟏𝟎𝟗⁡𝑱

𝟑.𝟓𝟓𝟏𝟓×𝟏𝟎𝟑𝟐⁡𝑲
  

             = 1.3806 × 10-23⁡(J⁄K) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡𝒌
𝑩(
𝑱
𝑲⁄ )

     (4.14) 

Again, our result is consistent with Metric Physics. 

This completes our search for universal equality 

between microscopic Entropy UoM’s (nat and bit) 

and macroscopic Entropy UoM’s as found within 

Metric Physics (J/K and Hz/K respectively). 

 

Based on the four listed UoM-options for kB at the 

beginning of this chapter and thereby for Entropy 

‘S’, within the Metric Physics system, we now have 

as many Entropy-based routes to Content:  

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝑱) ⁡⁡⁡⁡⁡⁡⁡= ⁡𝑻(𝑲) ⁡× 𝑺 (
𝑱
𝑲⁄ )  (4.15a) 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝑯𝒛) ⁡⁡⁡⁡⁡= ⁡𝑻(𝑲) ⁡× 𝑺(𝑯𝒛 𝑲⁄ ) (4.15b) 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝒃𝒊𝒕. 𝑲) ⁡⁡⁡= ⁡𝑻(𝑲) ⁡× 𝑺(𝒃𝒊𝒕) (4.15c) 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝒏𝒂𝒕. 𝑲) ⁡⁡= ⁡𝑻(𝑲)⁡× 𝑺(𝒏𝒂𝒕) (4.15d) 

To construct Content in the above equations, we 

multiply an objects ‘hardware’ property Entropy 

(universally equal) with the ‘software’ parameter 

temperature which is subject to the Theory of 

Relativity. 

We can universally convert temperature T(K) to Hz 

by reviewing the respective universal UoM for 

temperature. Equations (CP4.12) and (1.11) show 

that if one multiplies the UoM for temperature with 

a universal conversion factor equal to…  

𝒌
𝑩(𝑱 𝑲⁄ )

𝒉
       (4.16) 

… the outcome is Hz (= the frequency UoM).  

Using this conversion factor, we can assign a 

temperature to an object based on its frequency: 

𝒌
𝑩(𝑱 𝑲⁄ )

𝒉
× 𝑻 = 𝝊 or 𝑻 =

𝒉

𝒌
𝑩(𝑱 𝑲⁄ )

× 𝝊  (4.17) 

Equation (4.17) was applied in Chapter 2. It 

provides a universal method to determine an 

objects temperature T(K) by measuring its 

frequency.  

 

Using the conversion factor from temperature to 

frequency given by equation (4.16)… 

𝑘
𝐵(𝐽 𝐾⁄ )

ℎ
 

…we can ‘reverse engineer’ equation (4.15d)… 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝒏𝒂𝒕. 𝑲) ⁡⁡= ⁡𝑻(𝑲)⁡× 𝑺(𝒏𝒂𝒕) (4.18) 

…from Content (nat.K) to Content (nat.Hz): 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝒏𝒂𝒕.𝑯𝒛) =
𝒌
𝑩(𝑱 𝑲⁄ )

𝒉
× ⁡𝑻(𝑲) ⁡× 𝑺(𝒏𝒂𝒕)  

        (4.19) 

Here per equation (4.17), the term… 

𝑘
𝐵(𝐽 𝐾⁄ )

ℎ
× ⁡𝑇(𝐾)  

…equals frequency ‘𝜐’. We thus find: 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝒏𝒂𝒕.𝑯𝒛) = 𝝊⁡ × 𝑺(𝒏𝒂𝒕)  (4.20) 
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This equation shows that Content is not only 

proportional to frequency, but also proportional to 

an objects Entropy in nat. 

Based on Planck’s equation 𝐸 = ℎ. 𝜐, the above 

Content (in nat.Hz) can be converted to Content (in 

J) by multiplying it with Planck’s constant. 

Equation (4.20) then converts to: 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐽) = ℎ × 𝜐⁡ × 𝑆(𝑛𝑎𝑡)   

Or: 

𝑬 = 𝒉. 𝝊. 𝑺(𝒏𝒂𝒕)      (4.21) 

Equation (4.21) is an enhancement to Planck’s 

equation 𝐸 = ℎ. 𝜈 (which applies to Photons only) 

and is applicable to particles with any Entropy 

value. In Chapter 5 we will explore this further.  

We will refer to equation (4.21) as the ‘enhanced 

Planck equation’. 

 

We saw that, per Boltzmann’s theory, when 

observing an object, we will find it in one of its 

potential states. Between different states (or 

frames) the observed difference must be at least a 

quantum of one single bit of ‘State Difference’.  

We also saw that for storing a counting number, 

being a special case of Quantitative Information, 

we can set the state of a series of bits. We must then 

order these from most significant to least 

significant. The quantitative impact of a jump in a 

bit state therefore depends on which bit is involved. 

However, in the case of State Information there is 

no hierarchy. Here, each bit of Information has 

equal weight. 

The minimum jump of 1 bit between two sequential 

states inherently introduces a ‘State Uncertainty’ 

equal to ½-bit as, should the uncertainty exceed ½ 

bit, the observed state would then jump to another 

(closer) state option. This state uncertainty applies 

to each individual state and is universally equal. 

Boltzmann’s theory not only introduces a 1-bit 

quantum into state differences, but it inherently 

also introduces an ‘absolute ½-bit State 

Uncertainty principle’ into our observations.  

The question then is how one bit of ‘State 

Uncertainty’ relates to one bit of ‘Quantitative 

Uncertainty’.  

The following experiments demonstrate a one-to-

one equivalency: 

1. Consider 3 bits of State Information, each 

residing somewhere within a computer 

memory as ‘101’. This Information represents 

three counting numbers (1, 0 and 1 

respectively) in the binary format. These 

inform us (or an algorithm) whether the 

Information of each associated bit applies. In 

turn, we express Counting numbers in nat. 

Thus, we have 3 times one nat of Quantitative 

Information in the binary format. To store it as 

State Information, we need 3 bits of State 

Information. 

Consider now, instead of 3 bits, we have 3 

digits (for example, 351). To represent 351 

digitally, we would need 3 memory blocks that 

can each reside in 10 different states. Thus, we 

have 3 digits of Quantitative Information (that 

can be stored as State Information) in the 

decimal format. 

2.  Consider a black and white picture, presented 

on a binary computer screen composed of 

1000 pixels. It is based on the unique state of a 

group of 1000 bits in memory. Then imagine 

that a subsequent picture is shown, and the 

corresponding second binary storage file 

happens to differ at 4 positions relative to the 

first. Thus, the ‘state difference’ between both 

memory states equals 4 bits. Now we ask an 

observer about the differences between both 

pictures. They will find 4. Hence, the state 

difference of 4 bits between both memories is 

equivalent to a quantity of 4 differences 

between both pictures. The latter is expressed 

in nat. The 4 bits of state difference between 

both memory states therefore corresponds to a 

quantitative count of 4 nat of differences.  

From the above experiments we conclude: 

(38) One bit of State Information corresponds 

(or is equivalent) to one nat of quantitative 

Information.  

This finding might appear to conflict with our 

earlier finding that 1 nat is equivalent to 

1/ln(2)=1.442695… bit, so that intuitively the nat 

represents ‘more’ Information relative to the bit. 

So how could nat and bit be equivalent? This 

intuition is based on the incorrect application of 

the conservation principles to Information. In 

fact, there are neither costs nor benefits to 

increasing or decreasing an ‘amount’ of 
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Information, and consequently there is nothing to 

‘conserve’.  

The aforementioned ‘absolute ½-bit state 

uncertainty principle’ can therefore be set 

equivalent to an ‘absolute ½-nat quantitative 

uncertainty principle’. 

To fully specify a state, we must specify all its 

parameters; that is, quantify all Appearances. Each 

specification is an inner product of Information (for 

quantification) and the respective Appearance. 

Per the Crenel Physics model, within both the 

Content and the Whereabouts arena, we can freely 

swap between the associated Appearances without 

impacting the numerical value (Information) of the 

specification (Chapter 2).  

Note that this is consistent with our finding that 

the Information part of any specification (thus 

the quantification of any physical property) is 

universally equal. 

For this reason, the aforementioned ‘absolute ½-nat 

quantitative uncertainty principle’ in our 

observations introduces an unavoidable uncertainty 

(or error) in the Package and the Crenel UoM’s 

themselves. This absolute error is superimposed 

onto any other potential errors and has relativistic 

impacts on either the Crenel or the Package as 

these appear to an observer. It is an absolute state 

error indeed and it will apply to any observation. 

There is yet another consideration. Per the Crenel 

Physics model, we found that Content equals 

inverted Whereabouts. Mathematically for any 

value of either Content or Whereabouts, the product 

P.C must remain constant (i.e., equal to the Crenel 

Physics version of Planck’s constant hCP). 

Consequently, the uncertainty in the Content of an 

object automatically defines the uncertainty in the 

Whereabouts (and vice versa): 

(39) The errors in Content and Whereabouts are 

symmetrical because the product of 

Content (including error) and Whereabouts 

(including error) is constant. 

We define the absolute error ∆P (Packages) in the 

Content arena and a corresponding inverse error ∆C 

(Crenel) in the Whereabouts arena. Based on the 

above, the product ∆P.∆C, which represents the 

combined state error, is a constant. 

Per the Crenel Physics model the uncertainty 

principle can now be formulated: 

(40) The observed product of a Content 

Appearance and a Whereabouts Appearance 

embeds a minimum state uncertainty equal 

to ½ bit, which corresponds to a minimum 

quantitative uncertainty equal to ½ nat. 

The uncertainty principle per the Crenel Physics 

model thus can be written as: 

∆𝑷. ∆𝑪 =
𝒉𝑪𝑷

𝟐
     (CP 4.22)  

This equation is the Crenel Physics version of 

Heisenberg’s uncertainty principle.  

According to this principle, one cannot 

simultaneously measure impulse ‘p’ and location 

‘x’ at full precision. In Metric Physics the product 

of their minimal errors (∆p and ∆x respectively) 

equals:  

∆p.∆x=h/4π=⁡ℏ/𝟐      (4.23) 

The Crenel Physics model expresses impulse ‘p’ 

(the product of mass and velocity) in Packages, 

whereas location ‘x’ is in Crenel. Therefore, it 

expresses the product ∆p.∆x in ∆P. ∆C.  

Per Heisenberg’s principle there are other pairs of 

properties that meet the same restriction. For 

example, time ‘t’ of an event and energy ‘E’:  

∆t.∆E=h/4π=⁡ℏ/𝟐     (4.24) 

Where Metric Physics applies the Heisenberg 

uncertainty principle to pairs of specific 

dimensions, the Crenel Physics model applies the 

uncertainty principle to the product of any 

combination of one Content Appearance with one 

Whereabouts Appearance. ( ∆t.∆E is expressed in 

∆P. ∆C.) Thus, this principle has a more 

generalized range of options. 

Also note that the Crenel Physics version of the 

uncertainty principle (equation (CP 4.22), relative 

to Planck’s constant hCP, does not embed a factor 

1/2π. Within Metric Physics the amount of 

uncertainty equals ℏ/2, not ℎ/2.  

The model explains the absence of the factor 1/2π 

by being frequency based. The result is that in 

Crenel Physics all ‘Planck units’ embed h rather 

than ℏ. Equation (CP 4.22) therefore is numerically 

consistent with Heisenberg’s uncertainty principle 

as found in Metric Physics. 
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(5) Photons 

Photons meet Planck’s equation 𝐸 = ℎ. 𝜈.  

As with any particle they must also meet the 

‘enhanced Planck equation’ (4.21): 

𝐸 = ℎ. 𝜐. 𝑆(𝑛𝑎𝑡)  

For the latter, the intrinsic Entropy value 𝑆(𝑛𝑎𝑡) of a 

single Photon must be equal to 1 nat; that is, equal 

to Boltzmann’s constant. The term ‘intrinsic’ 

expresses that this value is not dependant on any 

other potential property or circumstance. This is 

consistent with our categorization of Entropy as a 

‘hardware’ property. 

(41) Photons have an intrinsic Entropy equal to 

1 nat (= Boltzmann’s constant) 

In Metric Physics, individual Photons are generally 

not described as Entropy embedding entities. But 

the idea is not new. Reference [1] presents an 

alternate viewpoint for ‘Intrinsic Photon Entropy’ 

in which an Entropy value for Photons is argued 

though not quantified.  

For consistency let’s verify the 1 nat Entropy value. 

Consider first this general thermodynamic 

principle: the heat embedded within an object 

equals its absolute temperature multiplied with its 

specific heat value. 

Experiments show that when a ‘blackbody’ absorbs 

Photons it will warm up. The absorbed Photons 

completely vanish. The heat influx and associated 

temperature rise of the blackbody match the energy 

as embedded by the absorbed Photons. This energy 

then fully takes the shape of heat.  

To verify, we use equation (4.15d) which came 

forth from Boltzmann’s theory… 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑛𝑎𝑡. 𝐾) ⁡⁡= ⁡𝑇(𝐾) ⁡× 𝑆(𝑛𝑎𝑡) 

… and substitute (consistent with our findings) 1 

for nat, and 1 for S(nat): 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝑲) = 𝑻(𝑲)     (5.1) 

(1 nat objects) 

In Metric Physics a Photon’s frequency (and 

thereby energy) can be expressed as, or converted 

to a temperature by using equation (4.17): 

⁡𝑇 =
ℎ

𝑘
𝐵(𝐽 𝐾⁄ )

× 𝜐  

However, Metric Physics is not normalized, and a 

numerical verification requires a calculator (for 

most of us).  

Within the Crenel Physics model equation (5.1) is 

normalized (Chapter 2): 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝑷𝒂𝒄𝒌𝒂𝒈𝒆𝒔) =⁡𝑻(𝑪𝑷)   (CP 5.2)  

  (1 nat objects) 

Thus, we can without impact to the numerical value 

(expressed in Packages), swap with any other 

Appearance of Content. By using equation (CP 

5.2), we will swap from the temperature 

Appearance ‘TCP’ to the frequency Appearance.  

Per equation (4.17) we then must multiply ‘TCP’ 

with the Crenel Physics version of Planck’s 

constant ‘hCP’, which as we saw has a value 

equal to 1 (recall that hCP = 1 P.C ≡ 1), to divide 

the result by Boltzmann’s constant, which also 

has a value of 1.  

Dimensionally, this multiplication results in a swap 

from frequency (expressed in Crenel-1) to Content:  

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑠) =⁡𝑇(𝐶𝑃) = ℎ𝐶𝑃 . 𝜈𝐶𝑃  

The above matches Planck’s equation 𝐸 = ℎ. 𝜈, 

which indeed applies to Photons. We can thus 

conclude that the Photon’s Entropy value of 1 nat 

consistently bridges equation (4.15d) (from 

Boltzmann’s theory) with Planck’s equation 

𝐸 = ℎ. 𝜈.  

Finding that each Photon embeds a fixed 1 nat of 

Entropy impacts views on known experiments:  

(42) Where Photons flow, Content flows and 

Entropy flows.  

 

“The sum of the Entropies of initially isolated 

systems is less than or equal to the total Entropy 

of the final combination.” 

Because Photons embed Entropy, they therefore 

become part of the game.  

For each Photon absorbed, we will lose 1 nat of 

Entropy. Yet, per the second law of 

thermodynamics, such Entropy loss must in the 

final combination be restored and possibly 

exceeded. 

Let’s explore further by examining two potential 

scenarios created when we shine a light on (and 

thus radiate Photons to) an object: 
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1. The object acts as a perfect mirror. The number 

of incoming Photons exactly matches the 

number of outgoing Photons so that there is no 

net impact on the Entropy. The minimum 

requirement of the second law of 

thermodynamics is met. 

2. The object acts as a perfect ‘blackbody’. All 

incoming Photons are absorbed and thereby 

their embedded Entropy disappears. At first 

glance, this appears to contradict the second 

law of thermodynamics, given that the Entropy 

of the blackbody (being a ‘hardware property’) 

will not change. But the law applies to a ‘final 

combination’. 

Due to the absorption of the Photon’s embedded 

heat, the blackbody will warm up. Consequently, it 

will increase its radiation (i.e., increase the number 

of emitted Photons). At some point this will result 

in an equilibrium and the temperature rise will 

stop. Based on the energy conservation law, from 

then onwards heat in = heat out.  

We could now conclude our analysis by supposing 

that ‘that’s all’. But there is more to learn. 

Metric Physics says that the blackbody will give off 

its own emission spectrum regardless of the heat 

source. This suggests that there is no relationship 

whatsoever between absorbed Photons and emitted 

Photons. However, finding that Photons embed 

Entropy means that the second law of 

thermodynamics comes into play. Let’s explore 

this. 

  

Fig. 5.1: Photon Emission Spectrum of a 

Blackbody 
(based exclusively on the temperature) 

Credit: Wikipedia. 

Experimental data shows that the emission 

spectrum of a blackbody is continuous, with a peak 

at a specific wavelength. As figure (5.1) illustrates, 

as the blackbody’s temperature rises, this peak 

moves to shorter wavelengths and the spectrum’s 

intensity increases. 

If then Photons embed Entropy, this imposes a 

constraint to the absorption/emission balance. Here 

we see the second law of thermodynamics come 

into play. To meet it: 

𝒏𝒆𝒎𝒊𝒕𝒕𝒆𝒅 ≥ 𝒏𝒂𝒃𝒔𝒐𝒓𝒃𝒆𝒅    (CP 5.3) 

Note: equation (CP 5.3) is based the Crenel 

Physics model finding that Photons embed 

Entropy. 

We use symbols Eavg-emitted and Eavg-absorbed for the 

average energy of the emitted and absorbed 

Photons respectively. At thermal equilibrium and in 

the absence of any other energy source, the energy 

conservation law demands: 

𝒏𝒆𝒎𝒊𝒕𝒕𝒆𝒅. 𝑬𝒂𝒗𝒈−𝒆𝒎𝒊𝒕𝒕𝒆𝒅 = 𝒏𝒂𝒃𝒔𝒐𝒓𝒃𝒆𝒅. 𝑬𝒂𝒗𝒈−𝒂𝒃𝒔𝒐𝒓𝒃𝒆𝒅 

(5.4) 

To meet the requirements of both equations  

(CP 5.3) and (5.4): 

𝑬𝒂𝒗𝒈−𝒆𝒎𝒊𝒕𝒕𝒆𝒅⁡ ≤ 𝑬𝒂𝒗𝒈−𝒂𝒃𝒔𝒐𝒓𝒃𝒆𝒅⁡   (CP 5.5) 

Equation (CP 5.5) must apply in all Photon 

absorption/emission cases at equilibrium. Let’s 

zoom in on some scenarios. 

Scenario #1: 

We direct monochromatic light (where all Photons 

have equal Eavg-absorbed) toward an object. At thermal 

equilibrium, per equation (CP 5.5), the average 

Photon energy as found within the emission 

spectrum Eavg-emitted, must be equal to or less than 

the fraction absorbed. This requirement puts a cap 

on the ultimate temperature of the blackbody. 

Scenario #2: 

Consider a blackbody residing in empty space. 

Heat transfer is by radiation only. Being an ideal 

blackbody, it should absorb all arriving Photons. 

We use a monochromatic light source with two 

variables:  

1. The light intensity which sets the maximum 

value of nabsorbed for the blackbody.  

http://en.wikipedia.org/wiki/File:Wiens_law.svg
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2. The light frequency υ which sets the value of 

Eabsorbed for the Photons to be absorbed by the 

blackbody.   

The blackbody thus is subject to a heat influx: 

𝒉𝒆𝒂𝒕𝒊𝒏 = 𝒏𝒂𝒃𝒔𝒐𝒓𝒃𝒆𝒅 × 𝑬𝒂𝒃𝒔𝒐𝒓𝒃𝒆𝒅  (5.6) 

It makes no difference to the influx of heat should 

we reduce the frequency of our light source while 

simultaneously and proportionally increasing the 

intensity.  

Per the Metric Physics model (whereby Photons are 

not presumed to embed Entropy), this exchange 

should have no impact whatsoever on the ultimate 

temperature and therefore emission spectrum of the 

blackbody. However, the Crenel Physics model 

imposes a constraint per equation (CP 5.5).  

Presume that we reduce the light source’s frequency 

(and thereby Eabsorbed) while proportionally 

increasing the intensity (and thereby nabsorbed). 

Although this exchange does not impact the total 

incoming heat flow, it must ultimately throttle back 

the average frequency (and thereby Eavg-emitted) of 

the emission spectrum. 

Figure (5.1) shows a one-to-one exclusive 

relationship between a blackbody’s radiation 

spectrum (and thereby the value of 

Eavg-emitted) and its temperature. To maintain that 

temperature requires a heat input that matches the 

emission thereof. Should we now increase the 

intensity of our light source beyond the emission, 

the Crenel Physics model demands that this cannot 

result in a further temperature rise of the 

blackbody. The extra Photons will be mirrored. 

(43) The temperature of a Photon 

absorbing/emitting object can reach but 

not exceed the temperature of the incoming 

Photons.  

The inescapable consequence of this equation is 

that net heat/energy flow between two objects, 

when carried by Photons, can only flow from the 

higher temperature object to the lower 

temperature object.  

It is the Entropy embedded within Photons, in 

combination with the second law of 

thermodynamics, that jointly explain this. 

Then what drives the blackbody to start radiating? 

Surely this cannot be a temperature gradient. Our 

experiment is performed in an otherwise empty 

space, so there is no temperature gradient.   

The Crenel Physics answer to this question is based 

on the finding that Photons indeed have Entropy. 

The subsequent hypothesis is that the second law of 

thermodynamics is providing the driving force: it 

drives toward recovering (or even creating 

additional) Entropy.  

When seen from this perspective, if then a Photon 

would not embed Entropy, there would be no drive 

for the black body to start radiating.  

(44) Black body radiation is driven by the 

second law of thermodynamics. 

This model also explains why, for example, two 

Photons cannot ‘team up’ to boost potential beyond 

their individual capabilities. This is consistent with 

experimental findings. For exciting an electron 

within an atom, for example, a certain amount of 

energy is required. That energy must come from 

one single Photon only. A group of Photons 

teaming up to deliver that energy is not seen. Per 

our model, it is not a valid option: relative to the 

single Photon case this would result in extra loss of 

Entropy. In terms of Entropy recovery such extra 

loss would have no beneficial consequences to 

subsequent events.  
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(6) Observing 

Per Boltzmann’s theory, in any snapshot 

observation of an object we will find it residing in 

one of its potential states.  

Should there be one single potential state option 

(w=1 in Boltzmann’s equation (4.1)), the 

conservation laws would not have relevancy, since 

in all cases the object would be found in the same 

state. Without the potential for responding to an 

event, such object could not ‘conserve’ anything at 

all. 

Hypothetically, it may reveal its existence when 

physically colliding with a sensor. However, per 

Boltzmann’s equation (4.1) such a single state 

object would have an Entropy value S = 0. 

Consequently, per equations (4.15a thru 4.15d) it 

would embed no Content. As such, it seems 

unlikely that even a physical collision would have 

an impact. 

To allow interaction, an object must have a 

minimum of two potential states. This demands that 

the minimum Entropy thereof is equal to 1 bit. 

For this we define the Mono-Bit: 

(45) A Mono-Bit is the leanest option for 

interaction. It has an Entropy value of 1 bit. 

When placed in an empty space and in lack of 

internal interaction options, it would be frozen in 

one of its two potential states.  

 

Should we now introduce a sensor into the scenery, 

due to some remote mechanism it may start 

interacting with a Mono-Bit. Such interaction then 

would represent the sensing. Thereby the process 

that we are monitoring is the sensing. As soon as 

we would stop the sensing (by removing the 

sensor) the Mono-Bit freezes and whatever we were 

observing vanishes. 

Given the above we define observability: 

(46) An object is observable when it can 

remotely interact with a sensor, changing 

the state of the sensor.  

For verification we must demand more. Whatever 

we observe was already ongoing (one way or the 

other) before we started our observation, and it will 

continue (one way or the other) thereafter. This 

feature ensures that we can reconcile past 

parameters that describe the observed, and that we 

can predict/verify the future thereof.  

 

Verification demands that an object, when left alone 

in an otherwise empty space, can embed Content. 

This then requires that it can reside in more than 

one state without violating the conservation 

principles. And if indeed state changing at some 

frequency, per enhanced Planck’s equation (4.21), it 

will indeed embed Content. 

(47) An object is verifiable when it can embed 

Content in an otherwise empty space.  

To meet this requirement a verifiable object must 

embed an Entropy value of at least two bits. Thus, 

if one of the bits changes its state, the other can 

compensate so that they jointly can uphold a 

durable frequency, thus Content. 

We will name this leanest verifiable object an 

Entropy-Atom.  

(48) The Entropy-Atom is the leanest object that 

can be verified. It has an Entropy value of 2 

bits.  

Note that the term ‘atom’ reflects that anything of 

lower Entropy value cannot possibly be verified.  

 

In Chapter 5 we found that a Photon’s Entropy 

value equals 1 nat. Furthermore, recall (Chapter 4) 

that the nat resolves quantitative uncertainty 

whereas the bit resolves state uncertainty. As time 

and distance were found as two different 

Appearances of Whereabouts, so were Quantitative 

Information and State Information found as two 

different Appearances of Information. Its Entropy 

value of 1 nat does not allow a Photon to remotely 

interact, nor to be found in some state during its 

lifetime, despite this Entropy, in the numerical 

sense, being ‘larger’ than 1 bit.  

As we cannot see what time it is by reading some 

distance measuring device (a yardstick), we 

likewise cannot determine a state by analysing a 

Photon’s Entrophy.  

In the absence of a state in which a Photon could 

potentially be found remotely: 

(49) Photons are not remotely observable during 

their lifetime.  
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However, we can detect a Photon’s moment of 

creation at some verifiable source. The creation 

unavoidably changes that source’s state. We also 

can observe its moment of disappearance when it 

physically hits some (verifiable) object, 

unavoidably changing the state thereof. But 

between its creation and its destruction, that is 

during its lifetime, our instruments are in the blind. 

Any effort to interact with the Photon itself (while 

the Photon is on its way) would destroy it.  

Being in the blind during a Photon’s lifetime 

conflicts with mainstream physics. We will address 

this finding in detail later, pinpointing that 

experimental data is consistent. 

 

The demand for remote verification is justified. 

Without this option we can neither predict 

anything, nor reconcile anything. The requirements 

for verification make evident that our observations 

are restricted. As it stands, we are not able to verify 

all that may happen. Furthermore, we must 

recalibrate our equations so that they cover both the 

verifiable as well as the unverifiable.  

The need for recalibration becomes obvious when 

we evaluate Planck’s equation 𝐸 = ℎ. 𝜐, which 

applies to Photons but does not apply to the 

verifiable world of Entropy-Atoms. In the latter 

case we can use the enhanced version of Planck’s 

equation (4.21): 

𝐸 = ℎ. 𝜐. 𝑆(𝑛𝑎𝑡)  

The Entropy-Atom’s Entropy value of 2-bits is 

equal to: 

2 bits = 2.ln(2) nat = ln(4) nat = ln(4).  

The Content of a minimally verifiable object (the 

Entropy-Atom) then equals: 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝑱) = 𝒉 × 𝝊⁡ × 𝒍𝒏⁡(𝟒)   (6.1) 

Thus, when applying the enhanced Planck equation 

to whatever we can verify (i.e., anything we may 

sense in the world around us), the value of Planck’s 

constant does not need to be modified. It will then 

apply to both Photons as well as objects with 

higher Entropy values, such as the verifiable 

Entropy-Atom.  

 

Equation (4.15d)… 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑛𝑎𝑡. 𝐾) ⁡⁡= ⁡𝑇(𝐾) ⁡× 𝑆(𝑛𝑎𝑡)  

… gives an alternate Boltzmann-based route to 

finding Content. 

Substituting for S(nat) the Entropy value of an 

Entropy-Atom gives: 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝒏𝒂𝒕. 𝑲) ⁡⁡= ⁡𝑻(𝑲)⁡× 𝐥𝐧⁡(𝟒)  (6.2)

 (for Entropy-Atoms) 

For Entropy Atoms we can simplify equation (6.2): 

𝑪𝒐𝒏𝒕𝒆𝒏𝒕(𝑲) = 𝑻(𝑲) × 𝐥𝐧⁡(𝟒)   (6.3)

 (for Entropy-Atoms)  

In this equation we can substitute the UoM for 

temperature per equation (CP 4.12): 

10𝑇𝐶𝑃 =⁡√
ℎ.𝑐5

𝐺.(𝑘
𝐵(𝐽 𝐾⁄ )

)2
  

Thus, the associated Content UoM for Entropy-

Atoms, expressed in Packages equals: 

𝟏⁡𝑪𝒐𝒏𝒕𝒆𝒏𝒕⁡𝑼𝒐𝑴⁡ = ⁡√
𝒉.𝒄𝟓

𝑮.(𝒌
𝑩(𝑱 𝑲⁄ )

)𝟐
⁡× 𝐥𝐧(𝟒)⁡⁡  

(6.4) 

     = 4.9234x1032 

Equation (6.4) delivers an additional Boltzmann-

based Content Appearance yardstick. 

The Crenel Physics version of equation (6.4) is: 

𝟏⁡𝑷 = ⁡√
𝒉𝑪𝑷

𝑮𝑪𝑷
⁡×

𝐥𝐧⁡(𝟒)

𝒌
𝑩(

𝒆𝒏𝒆𝒓𝒈𝒚
𝒕𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆)

  (CP 6.5) 

(Entropy-Atoms) 

In this newly introduced Appearance of Content, 

applicable to the verifiable version thereof, we can 

continue to use Planck’s constant h as is rather than 

correcting it for the Entropy value of Entropy-

Atoms (which are the elementary building blocks 

for all verifiable matter). 

In equation (CP 6.5) we continued using the 

energy/temperature version of kB. It is worth noting 

that in Crenel Physics there would be no difference 

between using, for example, the alternative UoM’s 

mass/temperature or frequency/temperature for kB. 

This will not be the case in other systems of UoM 

such as Metric Physics. The kB version used here 

provides a basis for later verification of equation 

(CP 6.5) within Metric Physics. 
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(7) Various Options for the 

Gravitational Constant G 

We found that Photons, Mono-Bits and Entropy-

Atoms have different properties when it comes to 

remote observing and verifying: 

✓ Photons cannot be remotely observed. 

✓ Mono-Bits can be remotely observed but 

cannot be verified. 

✓ Entropy-Atoms are the elementary building 

blocks for the verifiable. 

 

We found that Photons cannot remotely interact 

with anything and consequently they cannot be 

subject to Gravity. To elaborate, a gravitational 

force on a Photon would demand a compensating 

reactive force at the source which then could be 

measured. However, per the Crenel Physics model, 

during a Photon’s lifetime there cannot be anything 

that one could sense (or measure). Thus, it cannot 

be subject to a gravitational force. 

This finding deviates from mainstream physics 

viewpoints and rightfully raises questions. Yet it fits 

the experimental data. In the next chapter we will 

explore this in detail. 

 

In Chapter 1 (equations (CP 1.15) and (CP 1.16)), 

we found the Package yardstick for both the energy 

and mass Appearances to equal:  

1⁡𝑃 = ⁡√
ℎ𝑐𝑝

𝐺𝑐𝑝
⁡ 

This equation came forth from applying Planck’s 

equation 𝐸 = ℎ. 𝜐. Later we found that Planck’s 

equation is restricted to objects with an Entropy 

value of 1 nat, that is Photons. Though neither 

observable nor verifiable, per Planck’s equation, 

Photons can embed Content. The issue at hand is 

that this Content can only be observed or verified at 

the Photon’s creation or destruction. 

Later, when integrating Boltzmann’s equation 

𝑆 = ⁡𝑘𝐵. 𝑙𝑛⁡(𝑤) into the Crenel Physics model, we 

derived the ‘enhanced Planck equation’ (4.21): 

𝐸 = ℎ. 𝜐. 𝑆(𝑛𝑎𝑡) 

This equation can be applied to objects with an 

Entropy value greater than or equal to 1 nat.  

Chapter 6 defined Entropy-Atoms as the elementary 

building blocks for verifiable objects. Per equation 

(CP 6.5), we found the associated yardstick for 

their Content Appearance to equal: 

1⁡𝑃 = ⁡√
ℎ𝐶𝑃
𝐺𝐶𝑃

⁡×
ln⁡(4)

𝑘
𝐵(

𝑒𝑛𝑒𝑟𝑔𝑦
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

)

 

Thus, the Crenel Physics model produced two 

apparently different yardsticks for Content: one for 

the unobservable/unverifiable (Photons) and one 

for the verifiable (Entropy-Atoms). The root cause 

was our objective to use one single Planck constant 

for both scenarios. So how do we deal with having 

two apparently different yardsticks?  

We must demand that between a Photon and an 

Entropy-Atom the Content yardstick is equal. If not, 

Packages could appear or disappear when Photons 

are generated or absorbed which would conflict 

with the conservation principles. 

The factor⁡
ln⁡(4)

𝑘
𝐵(

𝑒𝑛𝑒𝑟𝑔𝑦
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

 in equation (CP 6.5) is 

however not equal to dimensionless ‘1’. Therefore, 

at first sight we seem to have an inconsistency. 

Such is not the case if a universal relationship 

exists between the embedded natural constants hCP, 

GCP and kB. In fact, based on the validity of these 

equations (CP 1.15/CP 1.16) and (CP 6.5) we must 

insist on this relationship.  

It can be found by multiplying the two Content 

yardsticks. Each yardstick must equal 1 P(ackage). 

The multiplication of these two Content yardsticks 

then equals 1 P(ackage)2:  

{√
𝒉𝒄𝒑

𝑮𝒄𝒑
⁡×

𝐥𝐧⁡(𝟒)

𝒌𝑩(
𝑱
𝑲⁄ )
}⁡× {√

𝒉𝒄𝒑

𝑮𝒄𝒑
} ⁡≡ 𝟏⁡(𝑷𝒂𝒄𝒌𝒂𝒈𝒆𝟐)⁡ 

        (CP 7.1) 

This requirement can be rewritten as: 

𝐺𝐶𝑃 =
ℎ𝐶𝑃

𝑘𝐵(
𝐽
𝐾⁄ )

⁡× 𝑙𝑛⁡(4) ×⁡𝑃𝑎𝑐𝑘𝑎𝑔𝑒−2 

Note that the UoM Package-2 is equal to 

Crenel/Package, so that the UoM for GCP is 

consistent with equation (CP 1.2): 

𝑮𝑪𝑷 =
𝒉𝑪𝑷

𝒌𝑩(
𝑱
𝑲⁄ )
⁡× 𝒍𝒏⁡(𝟒) ×⁡

𝑪𝒓𝒆𝒏𝒆𝒍

𝑷𝒂𝒄𝒌𝒂𝒈𝒆
  (CP 7.2) 

(between Entropy-Atoms) 
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Equation (CP 7.2) is fundamental. It shows that the 

gravitational constant GCP is not an independent 

universal natural constant because its value can be 

universally calculated.  

As discussed in Chapter 3, the gravitational 

constant GCP was found to be the exchange factor 

between Content and Whereabouts. It was via 

mathematical considerations that we found Content 

to equal inverted Whereabouts, whereby the 

exchange factor within the Crenel Physics model 

was found to have a numerical value of 1. We 

needed no more than a mathematical operation: 

inversion. This, in addition to equation (CP 7.2), 

implicitly confirms that in concept we do not need 

the gravitational constant to be a ‘universal natural 

constant’.  

Because all verifiable objects are constructed of 

Entropy-Atoms, equation (CP 7.2) must hold for the 

verifiable. Furthermore, it must hold within any 

verifiable system of UoM’s. We will confirm this 

within Metric Physics later in this chapter. 

 

There are no focussed experiments that 

demonstrate the existence of Mono-Bits. 

The hypothetical possibility that Mono-Bits exist 

leaves room for some remote interaction 

mechanism. Such an interaction would induce 

Content and thereby induce Gravity.  

Between two remote Mono-Bits the gravitational 

constant would equal: 

𝑮𝑪𝑷 =
𝒉𝑪𝑷

𝒌𝑩
⁡× 𝒍 𝒏(𝟐) ×⁡𝑷𝒂𝒄𝒌𝒂𝒈𝒆−𝟐  (CP 7.3)

 (between 1-bit objects) 

The term ln(2) in this equation represents the 

Mono-Bit’s Entropy value of 1 bit, expressed in nat. 

Because ln(2)/ln(4) = 0.5, the value of the 

gravitational constant between two Mono-Bits thus 

equals half the gravitational constant as found 

between Entropy-Atoms (CP 7.2). 

Mono-Bits may explain ‘dark matter’, causing 

gravitational forces within the universe to exceed 

the value that can be explained by the verifiable.  

Per the Crenel Physics model, Mono-Bits are 

observable if by remote interaction they generate a 

gravitational force. But they are not verifiable as 

individual particles. We can neither reconcile where 

they were in the past, nor predict where they will be 

in the future. Yet their Gravity would reveal where 

they are now. 

Mono-Bits might replace the hypothetical WIMPS 

(Weakly Interacting Massive Particles), with the 

difference that these (when left alone in empty 

space) are not massive. 

 

Per the Crenel Physics model, 3-bit objects would 

be observable and verifiable as isolated objects.  

In Chapter 12, we will argue why 2-bit objects are 

nature’s inescapable default. Chances for the 

existence of isolated 3-bit or higher bit objects are 

highly unlikely.  

 

The most basic verifiable particle in the Crenel 

Physics model, the Entropy-Atom, is the universal 

elementary building block of any verifiable object 

to which we can apply the laws of physics. 

This is reflected by re-writing Newton’s 

gravitational equation as: 

𝐹𝑔𝐶𝑃(𝑖𝑛
𝑃
𝐶⁄ ) ⁡= 𝐺𝐶𝑃

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(1) × 𝐶𝑜𝑛𝑡𝑒𝑛𝑡(2)

𝑑2
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
𝐶𝑟𝑒𝑛𝑒𝑙

𝑃𝑎𝑐𝑘𝑎𝑔𝑒

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(1) × 𝐶𝑜𝑛𝑡𝑒𝑛𝑡(2)

𝑑2
⁡ 

Based on the principle of equivalence, in this 

equation, the Content of an object consisting of an 

ensemble of ‘n’ Entropy-Atoms needs enhancement: 

𝒄𝒐𝒏𝒕𝒆𝒏𝒕 = ∑ [𝑻𝒆𝒎𝒃𝒆𝒅𝒅𝒆𝒅 × 𝐥𝐧(𝟒)]𝒏
𝟏    (CP 7.4) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−(𝒃𝒊𝒏𝒅𝒊𝒏𝒈⁡𝒆𝒏𝒆𝒓𝒈𝒚)⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+⁡(𝒉𝒆𝒂𝒕) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+⁡(𝒇𝒊𝒆𝒍𝒅⁡𝒆𝒏𝒆𝒓𝒈𝒚) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+⁡(𝒌𝒊𝒏𝒆𝒕𝒊𝒄⁡𝒆𝒏𝒆𝒓𝒈𝒚) 

The correction factors ‘binding energy’ and ‘heat’ 

as introduced in equation (CP 7.4), were addressed 

when discussing Einstein’s principle of equivalence 

(Chapter 1).  

We saw that an iron atom weighs 1% less than the 

summation of its constituents. The difference is 

explained by the ‘binding energy’ that was released 

when the constituents of the atom joined the atom’s 

structure. 

The term ‘heat’ in equation (CP 7.4) expresses that 

an aggregation of particles can be found in more 

states than presumed by Boltzmann’s model. This 

model presumes that when we combine two objects 

A and B, the Entropy (in nat) equals the summation 
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of both respective entropies. However, if for 

example A and B are two atoms found within a 

brick, those atoms may vibrate at some frequency 

relative to one another, causing additional (Planck 

based) Content in the macroscopic shape of heat. 

The term ‘heat’ represents such potential impacts 

on Content. 

Finally, the terms ‘field energy’ and ‘kinetic energy’ 

were added to this equation. The term ‘field energy’ 

addresses, for example that potential gravitational 

energy (largest at infinite distance from Content 

embedding objects such as the Earth) is (per the 

Crenel Physics model) converted into Content as it 

diminishes. That is, a brick on Earth appears to 

embed more Content than that same brick in deep 

space. When falling, such absorbed ‘field energy’ 

will initially appear as kinetic energy (both equally 

added to the Earth as well as to the brick). This 

Appearance can be converted into Content by 

slowing the object down. This is consistent with the 

earlier remark that Acceleration, being expressed in 

Crenel-1, thus in P(ackages), is an Appearance of 

Content. Initially that Content gain might have the 

Appearance of Acceleration. Per the Crenel 

Physics model, this can be converted into the mass 

Appearance at a 1:1 ratio. 

Within mainstream physics, the most elementary 

particles we are currently aware of are defined by 

the ‘standard model’. Based on their distinguishing 

individual properties these elementary particles can 

be differentiated relative to one another (e.g., 

quarks versus electrons). Consequently, these 

particles are more complex than Entropy-Atoms 

which have only two properties: their Entropy (of 2 

bits) and frequency.  

The Crenel Physics model suggests that low level 

ensembles of Entropy-Atoms can jointly produce a 

variety of properties that show some level of 

stability. We thus envision quarks and other 

elementary particles within the ‘standard model’ as 

various types of ensembles of Entropy-Atoms.  

It is at this elementary level where we must expect 

Einstein’s ‘principle of equivalence’ to start kicking 

in. We must expect some binding mechanism that 

prevents a particle like a quark or an electron from 

falling apart. A source of binding energy between 

Entropy-Atoms may be found in natures drive 

towards symmetry. Future computer simulations 

might reveal a pallet of potential Entropy-Atom 

ensemble structures at various levels of stability. 

The Entropy-Atom model, as presented in Chapter 

12, may serve as a starting point. 

A higher level comes into play when elementary 

particles within the ‘standard model’ aggregate 

into, for example protons or neutrons.  

Through Nuclear binding energy we get atoms. 

Atoms in turn shape molecules and so on. All these 

levels contribute to the correction factor ‘binding 

energy’. 

 

Let us evaluate how well the gravitational constant 

‘G’, as calculated per equation (CP 7.2)… 

𝐺𝐶𝑃 =
ℎ𝐶𝑃

𝑘𝐵(
𝐽
𝐾⁄ )
⁡× 𝑙𝑛⁡(4) ×⁡

𝐶𝑟𝑒𝑛𝑒𝑙

𝑃𝑎𝑐𝑘𝑎𝑔𝑒
  

… fits the value for ‘G’ as found in Metric Physics. 

As discussed, this value only holds at the lowest 

level within the Crenel Physics model (i.e., 

between individual Entropy-Atoms). 

For numerical verification in Metric Physics 

UoM’s, we rewrite the equation as: 

𝑮 =
𝒉

𝒌𝑩(
𝑱
𝑲⁄ )
⁡× 𝒍𝒏⁡(𝟒)     (7.5) 

Note: The Crenel Physics model demonstrates 

that the apparent dimensional incorrectness 

indeed only is apparent. At the bottom line, the 

equation comes forth from the finding that 

Content equals inverted Whereabouts. This 

dimensional relationship is not reflected within 

Metric Physics. 

When we substitute the Metric Physics values for h 

and kB (in J/K), we find for the gravitational 

constant: 

𝐺 =
6.62606957⁡×10−34

1.3806488×10−23
× 1.38629436111989  

or: 

𝐺 = ⁡6.65316399⁡ × 10−11 

This numerical value is approximately 0.3% below 

the literature value of G=6.67384 x 10-11. 

Actual measurements of the gravitational constant 

are not only difficult to execute, but also prove to 

be mutually exclusive.  

In Reference [2], An ‘Improved Cold Atom’ 

Measurement by Rosi et al. (published in 2014), G 

is reported to equal 6.67191(99) x 10-11 Nm2kg-2. 

This is approximately 0.03% below the commonly 

accepted value of 6.67384 x 10-11.  
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Per the Crenel Physics model, a measurement of 

Gravity at low temperatures between relatively 

basic objects such as atoms should indeed result in 

a lower value of G, relative to a measurement 

between macroscopic objects (ensembles of atoms). 

The result found by Rosi et al. is therefore 

directionally consistent with the Crenel Physics 

model, even though Rosi et al. found only 10% of 

the difference that we are looking for (0.03% 

versus 0.3%). This suggests that about 90% of the 

impact of the principle of equivalence is to be 

found at the sub-atomic level. 
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(8) The Cause of Gravity 

We found that Planck objects such as Photons 

cannot interact and therefore cannot be subject to 

Gravity. How does this match actual observations? 

Let’s first review some experimental data and 

explain how these fit within the Crenel Physics 

model. This will reveal the cause of Gravity. 

 

Imagine an experiment in which we shoot a Photon 

from the Earth’s surface straight up into space. 

Upon the generation of the Photon, the Earth will 

be subject to some small impulse and loss of 

energy. Crenel Physics and Metric Physics are 

consistent here. However, per the Crenel Physics 

model, it is incorrect to presume that thereafter the 

Photon will start losing energy because it must 

climb and ultimately escape from the Earth’s 

gravitational pull. During their lifetime, Photons 

cannot interact and therefore cannot be subject to a 

gravitational pull.  

How then does the Crenel Physics model explain 

these observations? 

The explanation starts with considering that 

Whereabouts and Content are related to each other: 

Content equals inverted Whereabouts.  

The Earth is Content. We interpret it as inverted 

Whereabouts. Thus, Content can only be created at 

the cost of Whereabouts. Where Content is around, 

the conservation principle demands some 

compensating Whereabouts deficit (relative to the 

Whereabouts in empty outer space).  

We can envision this deficit by imagining 

Whereabouts gridlines widening near Content. 

When we are observing from deep space, near 

Content all distances then appear stretched and 

clocks (i.e.: time) appear to run slower relative to 

ours. 

This is another way of envisioning Einstein’s 

curving of space. 

(50) We will refer to the regional widening of 

gridlines (time and distances alike) as a 

‘depression’ in Whereabouts, or a 

Whereabouts Depression. 

Let us now return to the Photon that we shot up 

from the Earth’s surface.  

With our clock at the Earth surface, we measure the 

initial frequency of the Photon. Upon arrival in 

deep space, we measure that frequency again. For 

the second measurement we will find a lower 

number (i.e., a drop in frequency). Metric Physics 

and Crenel Physics are consistent here.  

Metric Physics says that the reason for the drop in 

frequency is that the Photon’s internal properties 

are impacted such that it loses energy. However, the 

frequency drop (and thereby energy drop) is the 

outcome of our adjacent clock now running faster 

than it did on Earth. What we are actual dealing 

with is a tightening of Whereabouts gridlines as we 

are climbing a gravitational field. Therefore: 

(51) Whereabouts is not only a frame in which 

we can specify coordinates (defining the 

where and the when), but it also embeds a 

local Whereabouts ‘pressure’ value that 

depends on the vicinity of Content.  

Rather than assigning an energy value to a Photon, 

one must assign a potential energy to a Photon. 

This potential energy depends on the local 

Whereabouts pressure. The lower the local pressure 

(or the further the Whereabouts gridlines are apart), 

the higher the locally found potential energy of the 

Photon. 

Given this viewpoint, the Crenel Physics model 

indeed deviates from mainstream physics. In 

general, this does not lead to experimental 

differences between both viewpoints. For example, 

the amount of energy that a Photon produces upon 

impact is found equal between both models. There 

is obviously a fundamental  difference in viewpoint 

as to the cause thereof.  

The Crenel Physics model thereby inherently 

explains why Photons will not lose velocity while 

climbing a gravitational field: nothing can be 

pushing or pulling a Photon (Chapter 7).  

 

Gravitational Lensing is an exception whereby the 

Crenel Physics model results deviate from classical 

Metric Physics. 

In Metric Physics, it, is explained by the ‘curving 

of space’ by masses. The actual deflection of 

Photons/light is measured about 2 times more than 

predicted by the initial modelling.  

Crenel Physics explains this higher deflection. Due 

to their quantitative Entropy value of 1 nat, during 
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their lifetime Photons cannot interact with 

anything. This also implies that they cannot embed 

observable inertia during their lifetime since this 

would cause an observable interactive reactionary 

force. Therefore: 

(52) Photons will exactly follow the ‘curving of 

space’, they do not spin out. 

Per classical Metric Physics, Photons spin out 

based on their presumed observable inertia during 

their lifetime. Now per Crenel Physics, envision 

that Photons instead follow the curving of space 

(i.e., the Whereabouts Depression). We would now 

expect a higher deflection of light. This fits the 

actual observations of gravitational lensing. 

 

We can now model the cause of the gravitational 

force by envisioning that Content tends to move 

from ‘high pressure’ Whereabouts regions towards 

depression regions. And as air moves from high 

pressure regions to low pressure regions, wherein 

the gradient in air pressure is the driving force, 

Content is likewise subject to a pulling force which 

is proportional to the (local) gradient in 

Whereabouts pressure. 

Whereabouts pressure is highest in empty outer 

space. We can normalize the ‘pressure’ value in 

outer space by envisioning that there the 

Whereabouts gridlines are 1 Crenel apart. And as 

seen from a remote position, these gridlines then 

appear to widen near Content. Thereby, at the 

location of the Content, 1 Package equals 1 

inverted Whereabouts (= 1/Crenel = Crenel-1).  

Recall that the Crenel is the measure for both 

distance and time, and the Crenel-1 is a 

representative for Content because, as found in 

Chapter 3, Content equals inverted Whereabouts. 

The gradient of Crenel-1 (the alternative measure 

for Content) equals –Crenel-2. This explains that: 

(53) The gravitational force is proportional to 

-Crenel-2, thus is proportional to -distance-2. 

Within the Whereabouts arena, the Whereabouts 

pressure is a scalar. Its gradient is a vector, which 

gives direction to the gravitational force. 

To quantify the gravitational pull, we must explore 

the gradient in Whereabouts gridlines near Content. 

How does Content widen these gridlines?  

In the next chapter we will analyse orbiting. As we 

will see, orbiting comes with both Content as well 

as a remotely observable widening of Whereabouts 

gridlines. This widening defines a directional 

gradient in the Whereabouts pressure.  

As it turns out, orbiting fully fits and explains the 

Crenel Physics modelling of Gravity.   
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(9) Orbiting 

Orbiting is associated with a frequency which in 

turn, per enhanced Planck’s equation… 

𝐸 = ℎ. 𝜐. 𝑆(𝑛𝑎𝑡)  

…is associated with Content.  

 

Consider an object ‘A’ that is moving forward in an 

otherwise empty space. At some point the object is 

suddenly attached to the end of a straight rope. The 

other end of the rope is tightly connected to some 

fixed point ‘X’ in space. This forces ‘A’ into a 

circular orbit: 

 

Fig. 9.1: Object ‘A’ is forced into a Circular Orbit 

As this happens, the forward velocity of ‘A’ will 

remain unchanged because there is no force in the 

forward or backward direction relative to the 

direction of the velocity. However, the imposed 

orbiting causes an orbiting frequency ‘𝜐’ which did 

not exist before. Per enhanced Planck’s equation 

𝐸 = ℎ. 𝜐. 𝑆(𝑛𝑎𝑡), this is to be associated with a gain 

in Content. We will refer to this gain as ‘Planck 

based Content’: 

(54) ‘Planck based Content’ is Content that 

comes forth from the enhanced Planck 

equation 𝑬 = 𝒉. 𝝂. 𝑺(𝒏𝒂𝒕). 

Where did that extra Content come from? How 

does it reveal itself? How is the conservation 

principle obeyed?  

To answer these questions let us further analyse 

orbiting and its impact on Whereabouts gridlines. 

 

Consider two equal point objects ‘A’ and ‘B’, 

keeping each other in a gravitational orbit around 

their centre of Gravity ‘X’. We position ourselves 

at some remote point on the axis of the orbit path. 

This is what we see: 

  

Fig. 9.2: Two equal Objects ‘A’ and ‘B’ orbiting 

around their Centre of Gravity ‘X’ 

It takes light some time to travel from the objects 

towards us. Therefore, our observations are delayed 

in time. Since we reside on the orbit axis, the 

distance from objects ‘A’ and ‘B’ towards us is 

equal and constant. This causes our visual 

observations of objects ‘A’ and ‘B’ to be equally 

delayed, so that we can ignore this time delay while 

reviewing the dynamics of the system.  

As figure (9.2) shows, at any moment in time we 

see objects ‘A’ and ‘B’ at opposite positions on 

their shared orbiting path. At first sight, this might 

sound like a simple Newtonian observation. But 

there is a deeper fundamental insight underneath. 

To surface it, we will measure the distance between 

object ‘A’ and object ‘B’.  

Prior to doing that, let us discuss a universal 

procedure for distance measurements. For that we 

use a local clock (a clock we hold in our hand) and 

the velocity of Photons (velocity c) which as we 

saw cannot be impacted by anything and therefore 

is universally equal. The time 𝛥𝑡𝑙𝑜𝑐𝑎𝑙  needed for 

light to travel a distance, when multiplied with the 

velocity c, unambiguously delivers the length of 

that distance: 

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝑳𝒐𝒄𝒂𝒍 = 𝜟𝒕𝒍𝒐𝒄𝒂𝒍. 𝒄   (9.1) 

With regards to our time measurement (𝛥𝑡𝑙𝑜𝑐𝑎𝑙), 

if we hold a clock in our hands, we will never see 

that clock run faster or slower, regardless of our 

circumstances. The reason being that we and our 

clock share the same circumstances; there are no 

relative differences between us and our clock. The 

Theory of Relativity says that only remote clocks 

may run faster or slower relative to our local clock. 

Hence, we used the subscript ‘local’ in 𝛥𝑡𝑙𝑜𝑐𝑎𝑙.  

A

Rope

BA
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For example, should we cut a stick of a certain 

length, we will never find its length change for as 

long as we keep the stick with us. because: 

✓ our local clock will not change its pace  

✓ light velocity c is a constant  

Therefore, the stick length as we see it, is 

regardless of our circumstances relative to others, 

and regardless of the orientation of our stick within, 

for example a gravitational field (horizontally or 

vertically oriented).  

With the above in mind, we ask a helper residing 

on object ‘A’ to measure the distance to object ‘B’. 

We will name their result ‘LOD’ (the Locally 

Observed Distance). At first sight this should be an 

easy task since that helper sees that their distance 

towards object ‘B’ is constant in time. They aim a 

laser apparatus towards object ‘B’ and send a flash 

of light. They use their local clock to measure how 

long it takes before they receive the reflected flash. 

Because this light flash made a round trip, they will 

cut that time in half, name the result 𝛥𝑡𝑙𝑜𝑐𝑎𝑙 , and 

multiply that with light velocity c to find the 

distance. Thus: 

𝑳𝑶𝑫 = 𝜟𝒕𝒍𝒐𝒄𝒂𝒍. 𝒄     (9.2) 

However, the aiming of the laser to hit ‘B’ is 

somewhat complicated. Should they aim toward the 

location where they see it? In doing so, they would 

overlook two issues: 

1. Due to its orbiting, object ‘B’ is not anymore 

where they see it. 

For example, the Moon is not where we see it. 

We see the Moon where it resided about 1.3 

seconds ago (since the distance between Earth 

and Moon is about 400,000 km, and the 

velocity of light is about 300,000 km/s). During 

those 1.3 seconds the Moon has progressed in 

its orbit. 

2. Although they could calculate the actual 

position of object ‘B’, aiming their laser at that 

point would not work either. 

By the time the laser flash reaches that point, 

object ‘B’ will again have moved forward on 

its orbit path. 

We can review the challenge from the perspective 

of our remote observation location on the orbit’s 

axis. To avoid any potential confusion, we define 

the ‘ROD’ as the Remotely Observed Distance 

between objects ‘A’ and ‘B’. The ROD is the 

distance as we see it; that is, the diameter of the 

orbit as shown in figure (9.2). 

The following figure illustrates the challenge: 

   

   

Fig. 9.3: The Remotely Observed Distance ‘ROD’ 

and the Locally Observed Distance ‘LOD’ 

It shows a location ‘C’. This is the anticipated 

location where object ‘B’ (from our remote 

perspective) will reside by the time a light flash 

from location ‘A’ will arrive at object ‘B’.  

The line ‘LOD’ therefore represents the direction as 

well as the path that the Photons in the laser flash 

will physically follow from the perspective of our 

remote observation point. 

Our helper on object ‘A’ needs no understanding of 

the afore mentioned complications. After 

wondering why their laser misses the target all the 

time, they replace it with a light bulb, simply 

sending a light flash into all directions. Hitting 

object ‘B’ is then guaranteed. So now they can 

measure the LOD per equation (9.2).  

As the figure (9.3) shows, location ‘C’ is closer to 

location ‘A’, or: 

𝑳𝑶𝑫 < 𝑹𝑶𝑫       (9.3) 

We therefore conclude that: 

(55) When seen from a remote position, the 

distance between two orbiting objects (the 

ROD) appears stretched relative to the 

local distance (the LOD).  

To quantify this stretching, we must pinpoint ‘C’ in 

figure (9.3). For that we will forward-track object 

‘B’ on its orbiting path. Thus, ‘C’ is the location 

where we will see ‘B’ after 𝛥𝑡𝑟𝑒𝑚𝑜𝑡𝑒  seconds. To 

ensure a hit with a narrow laser beam, we calculate 

the value of 𝛥𝑡𝑟𝑒𝑚𝑜𝑡𝑒  as the time it takes light (on 

our clock) to travel the distance between ‘A’ and 

BA

C

ROD
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‘B’ as we see this distance (i.e.: the diameter of the 

orbit per figure (9.3)): 

𝜟𝒕𝒓𝒆𝒎𝒐𝒕𝒆 = 𝑹𝑶𝑫/𝒄       (9.4) 

Given some yet unknown orbit velocity ‘vorbit’, we 

can now reckon the length of the forward-track 

orbit section ‘BC’: 

𝐁𝐂 = 𝐯𝒐𝒓𝒃𝒊𝒕. 𝜟𝒕𝒓𝒆𝒎𝒐𝒕𝒆 = 𝐯𝒐𝒓𝒃𝒊𝒕. 𝑹𝑶𝑫/𝒄 (9.5)  

The higher the orbit velocity ‘vorbit’, the further we 

must forward-track point ‘C’, and as figure (9.3) 

illustrates, the shorter the resulting LOD. 

There is a hard constraint, as ‘vorbit’ cannot exceed 

light velocity ‘c’. Ultimately, the length of the 

forward-track path ‘v𝑜𝑟𝑏𝑖𝑡 . 𝑅𝑂𝐷/𝑐’ would be at its 

maximum: 

𝒄.
𝑹𝑶𝑫

𝒄
= 𝑹𝑶𝑫      (9.6)  

The following figure shows this scenario: 

 

Fig. 9.4: The Location of ‘C’ at the maximum Orbit 

velocity, whereby vorbit = c 

This gives a fixed and well-defined minimum value 

for the ratio LOD/ROD. It is found as follows: 

The angle marked ‘α’ equals: 

(
𝑅𝑂𝐷

𝜋.𝑅𝑂𝐷
) × 2. 𝜋 = 2⁡𝑟𝑎𝑑𝑖𝑎𝑙𝑠  

Note that this is a maximum value for ‘α’ which 

applies to any orbit diameter, for as long as the 

orbit velocity equals c.  

The angle marked ‘β’ in figure (9.4) then equals 

(𝜋 − 2) radials.  

The sinus of half the angle β= (
𝜋−2

2
) radials is 

equal to half of the ‘LOD’, divided by half the 

‘ROD’. The minimum ratio LOD/ROD is then 

calculated as: 

𝐿𝑂𝐷/2

𝑅𝑂𝐷/2
=

𝐿𝑂𝐷

𝑅𝑂𝐷
= sin (

𝜋−2

2
) = cos(1) = 0.5403. . .  

Thus, should both objects orbit at light velocity ‘c’, 

we find for any orbit diameter: 

𝑳𝑶𝑫 = 𝑹𝑶𝑫 × 𝒄𝒐𝒔⁡(𝟏)    (9.7) 

Figure (9.5) is used to find this ratio for any lower 

vorbit : 

  

Fig. 9.5: LOD/ROD for lower Orbit Velocities 

Within this figure there are two goniometric 

properties that are helpful: 

1. For any point ‘C’ on the circular orbit path, and 

thus for any orbit velocity vorbit, the angle ACB 

equals 900 as indicated. 

2. All three angles marked ‘α’ are equal.  

Angle BXC (2.α) equals: 

2. 𝛼 = ⁡
vorbit. 𝑅𝑂𝐷/𝑐

𝜋. 𝑅𝑂𝐷
⁡× 2. 𝜋⁡(𝑟𝑎𝑑𝑖𝑎𝑙𝑠)

= ⁡
2. vorbit

𝑐
⁡(𝑟𝑎𝑑𝑖𝑎𝑙𝑠) 

Angle BAC is half of that and thus equals: 
vorbit

𝑐
 

radials.  

From figure (9.5) it can be seen that  

cos(α) = LOD/ROD. Therefore: 

𝑳𝑶𝑫

𝑹𝑶𝑫
=⁡𝐜𝐨𝐬 (

𝐯𝐨𝐫𝐛𝐢𝐭

𝒄
)⁡ = ⁡√𝟏 −⁡(𝐬𝐢𝐧 (

𝐯𝐨𝐫𝐛𝐢𝐭

𝒄
))

𝟐

⁡⁡ 

        (9.8) 

Or: 

𝑹𝑶𝑫 = 𝑳𝑶𝑫 ×
𝟏

√𝟏−⁡(𝐬𝐢𝐧(
𝐯𝐨𝐫𝐛𝐢𝐭

𝒄
))
𝟐
⁡

  (9.9) 

Equation (9.9) quantifies how, when seen from a 

remote observation point, an orbiting system 

appears spatially stretched.  

Equation (9.9) thus defines the magnification factor 

of some imaginary magnification glass through 
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which we remotely ‘see’ the orbiting system. 

Thereby we implicitly ‘see’ the widening of 

Whereabouts gridlines at the orbiting system. 

Having to deal with different values for ROD and 

LOD, the question arises: what is the ‘real’ distance 

between objects ‘A’ and ‘B’? 

To find the answer, our helper at object ‘A’ picks up 

their phone to tell us that they measured the LOD to 

equal say, 20 meters. They ask us to deliver a 

measuring tape of exactly this length, so that they 

can verify this. At our remote location we therefore 

cut a 20-meter length of tape while residing within 

our frame of reference. For that, we use our own 

(remote) clock and our own light source to ensure 

that the tape is exactly 20 meters long. We now 

send it to our helper on ‘A’. As we already found, 

the person who transports it will, while underway, 

never see a change of length of carried objects. To 

them the tape always remains 20 meters in length. 

Therefore, when they deliver it on ‘A’ it will still be 

found to have a length of 20 meters, which matches 

the LOD as specified. The 20-meter tape that we 

cut and sent, meets the demanded length and 

therefore will be found to exactly match the 

distance between ‘A’ and ‘B’. This is the same 

distance is as we remotely see it: we see the ROD. 

Therefore, when asked what the ‘real’ distance 

between objects ‘A’ and ‘B’ is, both local and 

remote observer will come up with the same 

answer: 20 meters. It is the local Whereabouts 

Depression that makes this distance only to appear 

stretched to us at our remote position. In fact, it is 

not. The underlying reason is that, when seen from 

our remote perspective, not only distances appear 

stretched, but time measurements at the local site 

will appear proportionally stretched (thus clocks 

will run proportionally slower) when compared to 

our remote position. 

In terms of Crenel Physics, from a remote 

perspective there only appears to be an orbiting 

induced Whereabouts Depression. As both local 

and remote observer found, the Information part of 

the specification (the 20) matches. It is the meter 

(the applied Whereabouts UoM for distance) that 

appears differently. This is consistent with our 

earlier finding (Chapter 4) that the Information of 

the specification is ‘available’ and equal between 

all observers. 

 

 

For orbit velocities that are low relative to light 

velocity ‘c’, equation (9.8) can be approximated by: 

𝑹𝑶𝑫 ≈ 𝑳𝑶𝑫 ×
𝟏

√𝟏−⁡
𝐯𝐨𝐫𝐛𝐢𝐭

𝟐

𝒄𝟐
⁡

⁡   (9.10) 

(𝒇𝒐𝒓⁡𝐯𝐨𝐫𝐛𝐢𝐭 ≪ 𝒄)  

Equation (9.10) approximates (for example) the 

space/time magnification/stretching factor for 

remotely observed planetary orbiting systems. 

Here, orbit velocities are low relative to light 

velocity. In this equation we recognize the equation 

for Lorentz contraction which applies to objects 

that move relative to the observer. However, in the 

case of orbiting systems where the centre of 

Gravity does not move relative to us, we remotely 

see an orbiting induced expansion, not a 

contraction.  

 

Per equation (9.9), from our remote position we 

reckon a shorter meter, thus shorter local orbit path 

length (= π.LOD) relative to the longer meter and 

longer associated orbit path that we remotely 

observe (= π.ROD).  

In the above modelling, we embedded that the 

centre of Gravity ‘X’ of the orbiting system is not 

moving relative to us. Therefore, per enhanced 

Planck’s equation 𝐸 = ℎ. 𝜐. 𝑆(𝑛𝑎𝑡) we must demand 

that the Content that is associated with the orbiting 

is found equal between the local and the remote 

observer.  

If then (as found) the orbit path length appears 

stretched from a remote perspective, we must insist 

on an equal remotely observed stretching of the 

time measurement applicable to the orbiting 

system. This ensures that both observers indeed 

come up with the same orbiting frequency and thus 

will come up with the same Planck induced 

Content. As said, we must insist on equal results 

because the centre of the orbiting system is not 

moving relative to us. In short, when seen from a 

remote perspective, time measurements at the 

orbiting system must appear proportionally 

stretched; proportional to distance.  

In Chapter 1 we found this proportional 

relationship between the Whereabouts Appearances 

distance and time to be a consequence of our choice 

to normalize light velocity c to the dimensionless 
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numerical value 1. This choice came forth from 

(arbitrarily) starting our considerations with 

Einstein’s equation 𝐸 = 𝑚. 𝑐2 . 

But based on the above we can now ‘reverse 

engineer’ this initial choice. The above analyses of 

orbiting systems are a decisive physical argument 

to insist on this proportional relationship between 

distance stretching and time stretching.  

Earlier we referred to this proportionality as ‘the 

Enhanced Principle of Equivalence’ that applies to 

all Appearances in the Whereabouts arena.  

Because distance and time are found to stretch 

proportionally, their respective UoM’s stretch 

proportionally, not the numerical values (thus 

Information part) thereof.  

Thus, we demonstrated that the ratio distance over 

time UoM must be a universal physical constant. 

This ratio defines the universally constant velocity 

of light ‘c’. 

Any velocity can be specified as a fraction thereof. 

Thus: 

(56) Velocity is universally equal.  

Consequently, velocity is not subject to the Theory 

of Relativity, whereas its numerator distance and 

denominator time are.  

To complete the ‘reverse engineering’ (relative to 

Chapter 1), with our finding that ‘c’ is 

dimensionless, it then is a consequence (and not an 

option) that mass and energy per Einstein’s 

equation 𝐸 = 𝑚. 𝑐2 must be of equal dimension. In 

essence, nature gave us no choice in ‘what candy to 

pick’. In Chapter 1 we picked the right one indeed. 

 

Per our remote observation, we found that Photons 

traveling from object ‘A’ to object ‘B’ physically 

followed the line LOD as shown in figure (9.3). Let 

us enhance the experiment by reflecting the 

incoming Photons that arrive at object ‘B’ back to 

object ‘A’. 

Upon return, object ‘A’ will have progressed to 

location ‘D’ as indicated in the following figure:  

 

Fig. 9.6: ‘C’ mirrors Light back to ‘D’ 

Thereby, the length of orbit path section ‘AED’ is 

exactly twice ‘BC’. Again, we reckon that the path 

of the reflected light was of the length LOD. This 

confirms that the procedure to measure the 

distance, as followed by our helper on ‘A’, was 

correct by dividing the roundtrip time of their light 

flash by 2. The light to and from object ‘B’ 

followed equal pathlengths. 

The symmetry in figure (9.6) also shows that the 

impulse force ‘Fimpulse’ caused by the reflected 

Photons at ‘C’ is directed away from point ‘E’. At 

all times, the Photon impulse force therefore is 

directed away from the exact opposite orbit 

location as we remotely see it.  

In comparison, the gravitational force (though 

attracting and not repelling) between both orbiting 

objects has likewise dynamics. The gravitational 

force points toward the exact opposite orbit 

location as we remotely see it. This explains why 

circular gravitational orbits can be stable, meeting 

Newtonian equations. 

D
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(10) The Gravitational Force 

The gradient in Whereabouts pressure is the cause 

of the gravitational force (Chapter 8).  

From a remote perspective, orbiting systems appear 

stretched per equation (9.8): 

𝑅𝑂𝐷

𝐿𝑂𝐷
=

1

cos(
v𝑜𝑟𝑏𝑖𝑡

𝑐
)
     

Based on the above, we have a second means 

(Chapter 7) to quantify the strength of the 

gravitational force. 

Prior to doing the math, we will review the Crenel 

Physics model for as far as it is relevant to the task 

at hand. Where the model deviates from 

mainstream physics, this will be stipulated once 

more.  

 

Besides the stretching of apparent distances within 

orbiting systems, equation (9.8) more generally 

quantifies the remotely observed stretching of all 

Appearances that define the imaginary 

Whereabouts grid (or frame of reference) relative to 

this same grid in empty deep space. We named this 

remotely seen stretching a Whereabouts 

Depression, comparable to a depression in the 

Earth’s atmosphere. 

When traveling from our remote position towards 

an orbiting system, according to some yet unknown 

curve, we expect the Whereabouts pressure around 

us to go down. The (local) steepness of this curve 

quantifies the (local) gradient in Whereabouts 

pressure, which in turn is proportional to the (local) 

strength of the gravitational force.  

We will start the math by exploring the (imaginary) 

Whereabouts gridline between us (residing at our 

remote location) and some chosen point on the path 

of an orbiting system. How is this gridline curving 

within a Cartesian frame of reference? With the 

answer to this question, we can find the gradient. 

Thereby, the path of Photons is our guide. Per the 

Crenel Physics model, Photons do not spin out and 

thus sharply follow Whereabouts gridlines where 

these curve within a Cartesian frame. It is here that 

the outcome of the Crenel Physics model deviates 

from mainstream physics. 

This fundamental finding (Photons do not spin out) 

simplifies our math.  

But first, let’s take a closer look at distance 

measurements. 

Physically, the shortest distance between two 

points is measured along the path that light 

(Photons) will follow between these points. 

Because Photons sharply follow Whereabouts 

gridlines, per the Crenel Physics model, these 

gridlines implicitly define the shortest distance.  

Thereby any system of gridlines is imaginary and 

can be rotated and shifted, so that two points of 

interest can always be found on one single gridline. 

Mathematically, the shortest distance between two 

points is measured along a straight line within a 

Cartesian frame of reference. A Photon’s path may 

be found curved within that Cartesian frame of 

reference. An actual Photon’s path, not being a 

straight line within the Cartesian frame, may 

therefore be wrongly presumed to be relatively 

longer. Let’s elaborate on that.  

Within our Cartesian frame of reference, we would 

indeed find an incoming Photon’s path being 

curved due to gravitational lensing, should there be 

Content along its path. Even though this effect is 

extremely small, it could be experimentally 

confirmed when huge Content such as a black hole 

is passed. Consequently, when calculating our 

distance towards the source of the Photon as a 

straight line within a Cartesian frame, this line will 

be found shorter relative to the followed path 

within that frame.  

In fact, within both frames of reference 

(Whereabouts and Cartesian) we will find an equal 

distance. The reason thereof is twofold: 

1. Distances are measured using a clock. We 

measure how much time it takes light (Photons) 

to travel between two points. To find the 

distance, we multiply it with the velocity of light 

(which is universally equal).  

2. Within a Cartesian frame of reference, where a 

Whereabouts line is found longer, time 

applicable to that Whereabouts frame is found 

to run proportionally slower. 

It therefore takes Photons an equal amount of time 

to cross the distance between the two points, 

regardless of whether we base our time 

measurement on a Cartesian, or Whereabouts frame 

of reference. Consequently, multiplying this time 

with light velocity produces the same result for 

distance.  
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We can evaluate this same finding from the 

perspective of a Whereabouts framework. Seen 

from within this framework, all its gridlines are 

straight (whereas the Cartesian gridlines would 

appear curved). This perspective is a more intuitive 

way for understanding why Photons indeed do not 

spin out. Within the Whereabouts frame, there are 

no curves to spin out from.  

Thus, when specifying a distance as travelled by a 

Photon, say 20 meters, the Information part of this 

specification (here ’20’) is universally equal. It is 

the Appearance (here ‘meter’) that pends the 

relative circumstances. This outcome is consistent 

with our earlier finding that Information is 

universally equal. 

So, let us start the math by analysing a Photon’s 

path as it is traveling from an orbiting system 

towards us. 

 

We use figure (9.2) as repeated below:  

  

Fig.10.1: Equal Objects ‘A’ and ‘B’ orbiting around 

their shared Centre of Gravity ‘X’ 

Consider the path of a single Photon that was 

emitted by object ‘A’, and thereafter travelled 

towards us while we reside at some remote location 

somewhere on the orbit axis. 

To us, the Photon appears to come from some point 

on the orbit path as we see it; that is, coming from 

some point on an orbit with the previously defined 

diameter ROD (the Remotely Observed Distance 

between ‘A’ and ‘B’). 

We found that from our remote perspective, we see 

orbiting systems enlarged per equation (9.8): 

𝑅𝑂𝐷

𝐿𝑂𝐷
=

1

cos(
v𝑜𝑟𝑏𝑖𝑡

𝑐
)
  

Although we see the Photon coming from an orbit 

with diameter ROD, we must reckon that (within 

our Cartesian frame of reference) locally it was 

emitted from an orbit with the shorter diameter 

LOD. 

The difference between ROD and LOD tells us how 

the Photon changed direction within our ‘Cartesian 

frame’ of reference. We will name the angle of the 

course change dα.  

Angle dα equals the total curving of the imaginary 

Whereabouts gridline within our ‘Cartesian frame’. 

 

The following figure shows the total course change 

dα: 

 

Fig.10.2: Photon Course Change dα 

In this figure: 

✓ α(ROD) is the angle at which we see the 

Photon incoming. 

✓ α(LOD) is the angle towards the reckoned 

emission point. 

✓ dα is the difference between both. 

We define RR as the Remotely observed orbit 

Radius: 

RR =ROD/2      (10.1) 

And we define RL as the reckoned Local orbit 

Radius: 

RL =LOD/2      (10.2) 

At distance x the tangent of α(ROD) then equals: 

𝐭𝐚𝐧(𝜶𝑹𝑶𝑫) = ⁡
𝑹𝑹

𝒙
      (10.3) 

And the tangent of α(LOD) equals: 

𝐭𝐚𝐧(𝜶𝑳𝑶𝑫) =⁡ ⁡
𝑹𝑳

𝒙
      (10.4) 

Per equation (9.8) we find: 

BA

dα
α(ROD)

α(LOD)

ROD

LOD

Distance 'x' 

X
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𝐿𝑂𝐷

2
⁡= ⁡cos (

v𝑜𝑟𝑏𝑖𝑡
𝑐

) .
𝑅𝑂𝐷

2
⁡⁡⁡⁡ 

Or: 

𝑅𝐿 ⁡= ⁡cos (
v𝑜𝑟𝑏𝑖𝑡
𝑐

) . 𝑅𝑅 ⁡⁡⁡⁡ 

We substitute this in equation (10.4): 

𝐭𝐚𝐧(𝜶𝑳𝑶𝑫) = ⁡
𝐜𝐨𝐬(

𝐯𝒐𝒓𝒃𝒊𝒕
𝒄

).𝑹𝑹

𝒙
    (10.5) 

The angle dα⁡then⁡equals: 

𝒅𝜶 = 𝒕𝒂𝒏−𝟏 {
𝑹𝑹

𝒙
} − 𝒕𝒂𝒏−𝟏⁡ {

𝐜𝐨𝐬(
𝐯𝒐𝒓𝒃𝒊𝒕

𝒄
).𝑹𝑹

𝒙
} (10.6) 

The above equation can be normalized by 

expressing distance x in the number of RR’s. For 

this purpose, we define a new distance UoM named 

xR, whereby xR=x/RR. Equation (10.6) then 

normalizes to: 

𝒅𝜶 = 𝒕𝒂𝒏−𝟏 {
𝟏

𝒙𝑹
} − 𝒕𝒂𝒏−𝟏⁡ {

𝐜𝐨𝐬(
𝐯𝒐𝒓𝒃𝒊𝒕

𝒄
)

𝒙𝑹
}  (10.7) 

 (xR expressed in orbit radiuses RR) 

The following figure shows dα (in radials) per the 

above equation, as a function of distance 𝑥𝑅 from 

the orbit centre. We thereby opted for the maximum 

possible orbit velocity vorbit=c. The reason is that 

this fits the modelling of an Entropy-Atom (to be 

detailed in Chapter 12). 

 

Fig.10.3: dα (in radials) as a Function of Distance 

𝑥𝑅  
(𝑥𝑅 expressed in number of RR’s from the orbit 

centre, whereby the orbit velocity vorbit=c) 

The gradient in Whereabouts pressure at any point 

on the orbit axis, is quantified by the local 

steepness in the above shown curve, thus by 
𝑑𝛼

𝑑𝑥𝑅
. 

Based on equation (10.7): 

 

𝒅𝜶

𝒅𝒙𝑹
=

𝒙𝑹
𝟐.(𝐜𝐨𝐬(

𝐯𝒐𝒓𝒃𝒊𝒕
𝒄

)−𝟏)+(𝒄𝒐𝒔(
𝐯𝒐𝒓𝒃𝒊𝒕

𝒄
)−𝒄𝒐𝒔𝟐(

𝐯𝒐𝒓𝒃𝒊𝒕
𝒄

))

𝒙𝑹
𝟐.(𝒄𝒐𝒔𝟐(

𝐯𝒐𝒓𝒃𝒊𝒕
𝒄

)+𝟏)+𝒙𝑹
𝟒+𝒄𝒐𝒔𝟐(

𝐯𝒐𝒓𝒃𝒊𝒕
𝒄

)
  

(𝑥𝑅 expressed in remotely observed orbit radiuses RR) 

        (10.8) 

The following figure embeds the value thereof: 

  

Fig.10.4: Gradient 
𝑑𝛼

𝑑𝑥𝑅
 

(as a function of distance xR expressed in RR’s, based 

on an orbit velocity vorbit=c) 

The gradient in the local Whereabouts pressure 

( 
𝑑𝛼

𝑑𝑥𝑅
) was identified as the cause of Gravity, not 

necessarily a one-to-one representation of the 

strength of the gravitational force. We will explore 

the actual strength later. At this point in our 

analyses, we expect nothing more than the 

gravitational force to be proportional to this 

gradient.  

Nevertheless, figure (10.4) already leads to the 

following two findings: 

1. The gradient changes sign at the point marked 

B, located at the distance of approximately 0.7 

times the remotely observed orbit radius RR (at 

either side of the orbiting centre).  

This implies that, at a shorter distance as 

marked by point B, the gravitational force 

changes sign from attracting to repelling. 

2. We find a finite maximum repelling force at 

the centre of the orbiting system, at the point 

marked C.   

The above two findings deviate from mainstream 

physics.  

Two case studies at the end of the chapter, address 

how, at least conceptually these findings fit actual 

observations. A third case study describes a 
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potential means of experimentally verifying the 

validity of the above. 

The exact distance at which the gravitational force 

changes sign (point B in figure (10.4)) is found 

where the numerator in equation (10.8) equals 0: 

𝒙𝑹𝟐. (𝐜𝐨𝐬 (
𝐯𝒐𝒓𝒃𝒊𝒕

𝒄
) − 𝟏) + (𝒄𝒐𝒔(

𝐯𝒐𝒓𝒃𝒊𝒕

𝒄
) − 𝒄𝒐𝒔𝟐(

𝐯𝒐𝒓𝒃𝒊𝒕

𝒄
)) = 𝟎

        (10.9) 

This gives the following two values for distance xR: 

𝒙𝑹 = ±
√−𝟒.(𝐜𝐨𝐬(

𝐯𝒐𝒓𝒃𝒊𝒕
𝒄

)−𝟏).(𝐜𝐨𝐬(
𝐯𝒐𝒓𝒃𝒊𝒕

𝒄
)−𝒄𝒐𝒔𝟐(

𝐯𝒐𝒓𝒃𝒊𝒕
𝒄

))

𝟐.(𝐜𝐨𝐬(
𝐯𝒐𝒓𝒃𝒊𝒕

𝒄
)−𝟏)

 

        (10.10) 

If we assume vorbit=c (as applicable to Entropy-

Atoms) the result is… 

𝒙𝑹 = ±
√−𝟒.(𝐜𝐨𝐬(𝟏)−𝟏).(𝒄𝒐𝒔(𝟏)−𝒄𝒐𝒔𝟐(𝟏))

𝟐.(𝐜𝐨𝐬(𝟏)−𝟏)
⁡  (10.11) 

⁡⁡⁡⁡⁡⁡= 𝟎. 𝟕𝟑𝟓𝟎𝟓𝟐𝟓𝟖𝟕…      

…or, because RR is the normalized UoM for 

distance: 

𝒙 = ±𝟎. 𝟕𝟑𝟓𝟎𝟓𝟐𝟓𝟖𝟕…⁡× 𝑹𝑹    (10.12) 

We conclude that for vorbit=c (as applicable to 

Entropy-Atoms) the gravitational force changes 

from attracting towards repelling at the distance of 

0.735052587… x RR from the orbit centre. 

For other orbit velocities we must apply equation 

(10.10). 

 

For large values of xR, thus at a large distance from 

the orbiting system relative to the orbit radius, 

equation (10.7)… 

𝑑𝛼 = 𝑡𝑎𝑛−1 {
1

𝑥𝑅
} − 𝑡𝑎𝑛−1⁡ {

cos(
v𝑜𝑟𝑏𝑖𝑡

𝑐
)

𝑥𝑅
}  

… is approximated by: 

𝒅𝜶𝒍𝒂𝒓𝒈𝒆⁡𝒙𝑹
≈

𝟏

𝒙𝑹
× (𝟏 − 𝐜𝐨𝐬 (

𝐯𝒐𝒓𝒃𝒊𝒕

𝒄
))  (10.13) 

The following figure shows both curves, again 

based on an orbit velocity vorbit=c: 

 

 

 

Fig.10.5: Estimated dα⁡⁡ 
(based on an orbit velocity vorbit=c, distance 𝑥𝑅 

expressed in RR) 

The figure shows that both curves indeed approach 

one another as the distance 𝑥𝑅 towards the orbiting 

system grows. At the distance of 500 RR’s, for 

example, the relative difference is reduced to 

0.0002 %. 

Per equation (10.13) the estimated gradient in dα⁡
equals: 

𝒅𝜶

𝒅𝒙𝑹
≈

𝟏−𝐜𝐨𝐬(
𝐯𝒐𝒓𝒃𝒊𝒕

𝒄
)

𝒙𝑹
𝟐  (estimate for large distances 𝒙𝑹) 

(𝒙𝑹 expressed in remotely observed orbit radiuses RR)  

        (10.14) 

The following figure shows the difference between 

the exact gradient per equation (10.8) and the 

estimated value per equation (10.14), again based 

on orbit velocity vorbit=c: 

 

Fig.10.6: Error in 
𝑑𝛼

𝑑𝑥
 per estimated Equation 

(10.14) 
 (based on an orbit velocity vorbit=c, distance x 

expressed in RR) 

Notice the rapidly decreasing error as the distance 

towards the orbiting system increases.  

 

We reasoned that the gradient 𝑑𝛼 𝑑𝑥⁄  is proportional 

to, but not necessarily equal to the gravitational 

force. There is still room for a constant scale factor 

which would have a value other than numerical 1.  
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Let us explore this for Entropy-Atoms.  

For Entropy-Atoms vorbit equals 1 and equation 

(10.6) can be written as: 

𝑑𝛼 = 𝑡𝑎𝑛−1 {
𝑅𝑅

𝑥
} − 𝑡𝑎𝑛−1⁡ {

cos(1).𝑅𝑅

𝑥
}  

The gradient 
𝑑𝛼

𝑑𝑥
 equals: 

𝒅𝜶

𝒅𝒙
=
𝑹𝑹. 𝒙

𝟐. (𝐜𝐨𝐬(𝟏) − 𝟏) + 𝑹𝑹
𝟑. (𝒄𝒐𝒔(𝟏) − 𝒄𝒐𝒔𝟐(𝟏))

𝑹𝑹
𝟐. 𝒙𝟐. (𝒄𝒐𝒔𝟐(𝟏) + 𝟏) + 𝒙𝟒 + 𝑹𝑹

𝟒. 𝒄𝒐𝒔𝟐(𝟏)
 

       (CP 10.15) 

For very large values of distance x, as well as for 

very small values of RR, equation (CP 10.15) is 

estimated by: 

𝒅𝜶

𝒅𝒙
≈ (𝟏 − 𝐜𝐨𝐬(𝟏)) ⁡×

𝑹𝑶𝑫

𝒙𝟐
⁡⁡⁡(EA’s, large x)  

       (CP 10.16) 

Per equation (9.8) the term ‘cos(1)’ can be 

replaced by LOD/ROD: 

𝑑𝛼

𝑑𝑥𝑙𝑎𝑟𝑔𝑒⁡𝑥⁡𝑜𝑟⁡𝑠𝑚𝑎𝑙𝑙⁡𝑅
≈ (1 −

𝐿𝑂𝐷

𝑅𝑂𝐷
) ×

𝑅𝑂𝐷

𝑥2
  

Or: 

𝒅𝜶

𝒅𝒙𝒍𝒂𝒓𝒈𝒆⁡𝒙⁡𝒐𝒓⁡𝒔𝒎𝒂𝒍𝒍⁡𝑹
≈ (𝑹𝑶𝑫 − 𝑳𝑶𝑫) ×

𝟏

𝒙𝟐
  

    (CP 10.17) 

In the above equation the term (ROD-LOD) reflects 

the quantity of ‘fake’ Whereabouts. Recall that 

from a remote location we see an orbit diameter 

equal to the ROD, but we know that we see it 

enlarged, as if looking through a magnifying glass. 

The difference (ROD-LOD), being ‘fake’ 

Whereabouts, is per the Crenel Physics model to be 

interpreted as an amount of dilution of 

Whereabouts. This quantity of Whereabouts does 

not truly exist.  

We see ‘fake’ Whereabouts that do not ‘truly’ exist 

as these appear as Content. The Crenel Physics 

model demands that one unit of Whereabouts 

converts one-to-one into one unit of Content. To 

reflect this requirement, we write equation (CP 

10.17) as… 

𝒅𝜶

𝒅𝒙𝒍𝒂𝒓𝒈𝒆⁡𝒙⁡𝒐𝒓⁡𝒔𝒎𝒂𝒍𝒍⁡𝑹
≈

𝑪𝒐𝒏𝒕𝒆𝒏𝒕𝟏

𝒙𝟐
  (CP 10.18) 

…so that Content1 represents the Content 

embedded within the orbiting system. 

We can now make a direct comparison with 

Newton’s gravitational equation: 

𝑭𝑮 = 𝑮 ×
𝑪𝒐𝒏𝒕𝒆𝒏𝒕𝟏×𝑪𝒐𝒏𝒕𝒆𝒏𝒕𝟐

𝒙𝟐
   (10.19) 

This is a fundamental equation that must hold 

within any system of UoM, even though the Crenel 

Physics model demonstrates that it is no more than 

a good approximation of the gravitational force at 

large (relative to the orbit diameter of orbiting 

induced Content) distances. 

We substitute equation (CP 10.18) in Newton’s 

equation (10.19): 

 𝑭𝑮 = 𝑮 ×
𝒅𝜶

𝒅𝒙𝒍𝒂𝒓𝒈𝒆⁡𝒙⁡𝒐𝒓⁡𝒔𝒎𝒂𝒍𝒍⁡𝑹
× 𝑪𝒐𝒏𝒕𝒆𝒏𝒕𝟐  

(CP 10.20) 

Prior to interpreting the physical meaning of this 

equation, let us check its dimensional integrity 

within the Crenel Physics model. 

The dimensions of the individual terms are: 

✓ 𝐹𝐺is to be expressed in P/C (Chapter 1). 

✓ 𝐺 equals 1 C/P (Chapter 1). 

✓ 
𝑑𝛼

𝑑𝑥𝑙𝑎𝑟𝑔𝑒⁡𝑥⁡𝑜𝑟⁡𝑠𝑚𝑎𝑙𝑙⁡𝑅
 is in 𝑃 𝐶2⁄   

per equation (CP 10.19). 

✓ 𝐶𝑜𝑛𝑡𝑒𝑛𝑡2 is in P. 

Substituting these dimensions into equation (CP 

10.20) gives: 

𝑷

𝑪
= ⁡

𝑪

𝑷
⁡× ⁡

𝑷

𝑪𝟐
⁡× 𝑷 = ⁡

𝑷

𝑪
   (CP 10.21) 

This confirms the dimensional integrity of equation 

(CP 10.20). 

Based on equation (CP 10.20) we can now 

‘upgrade’ the meaning of gradient 
𝑑𝛼

𝑑𝑥𝑙𝑎𝑟𝑔𝑒⁡𝑥⁡𝑜𝑟⁡𝑠𝑚𝑎𝑙𝑙⁡𝑅
.  

Per the Crenel Physics model, this gradient 

quantifies the strength of the gravitational field at 

large distances caused by Content1, whereby the 

scale factor is found to equal 1. 

(57) The gradient in Whereabouts pressure 

equals the gravitational force. 

Note that the above ‘upgrade’ is based on the 

presumed match between Newton’s gravitational 

equation and the long-distance estimated outcome 

of the gravitational force per the Crenel Physics 

model.  

(58)  Currently there is no experimental 

verification that, at shorter distances, the 

Crenel Physics model is correct. 
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Experimental data should confirm that equation 

(CP 10.15), as repeated below, indeed quantifies the 

exact gravitational force between an orbiting 

induced Content and some remote Content at any 

distance x: 

𝐹𝑔 =
𝑅𝑅. 𝑥

2. (cos(1) − 1) + 𝑅𝑅
3. (𝑐𝑜𝑠(1) − 𝑐𝑜𝑠2(1))

𝑅𝑅
2. 𝑥2. (𝑐𝑜𝑠2(1) + 1) + 𝑥4 + 𝑅𝑅

4. 𝑐𝑜𝑠2(1)
× 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 

 

Thus far our calculations were based on an 

observer who is remotely located somewhere on the 

axis of an orbiting system. With the orbit plane 

being perpendicular to this axis, the entire system is 

3-dimensional. Another location relative to the 

orbiting system, for example at some distance away 

from the axis, would complicate the math. It would 

also impact the outcome. 

Alternatively, we can position the observer 

somewhere on the plane of the orbiting system. 

This would lead to the same math. Thereby the 

observer would see both objects ‘A’ and ‘B’ 

oscillate relative to a centre point of Gravity along 

some remote line.  

 

The following case studies give some suggestions 

for further evaluations and verifications. 

Case Study #1: 

Consider an orbiting galactic system that consists 

of numerous masses. Per the Newtonian 

gravitational equation, the net gravitational force at 

the centre of such system would equal 0, as the 

gravitational forces induced by all surrounding 

masses would compensate each other.  

In the Newtonian model, ultimately the system 

would take the shape of a perfectly flat (2-

dimensional) disc. However, we never find galactic 

systems completely flattened, despite their age. 

Per the Crenel Physics model, an object which is 

located near the centre of such a galactic system 

would experience a finite gravitational repelling 

force, directed away from the centre. Such systems 

would therefore ultimately maintain some thickness 

that is largest at the centre. This not only fits the 

actual observations, but the Crenel Physics model 

explains (and might even quantify) the ultimate 3-

dimensional parameters of such systems.  

 

Case Study #2: 

Consider a proton and an electron in orbit around 

their centre of gravity. Per the Crenel Physics 

model, an approaching electrically neutral particle 

(such as a neutron) would not settle itself at that 

centre. Here, it would be subject to a finite 

repelling gravitational force. Note that a 

hypothetical orbiting velocity of an electron would 

be in the order of 1% of light velocity.  

Atoms are indeed 3-dimensional objects rather than 

flat discs. This fits the Crenel Physics model. 

Case Study #3: 

Consider a spaceship on its way from Earth to the 

Moon. It would thereby pass the centre of gravity 

of the Earth/Moon orbiting system at relatively 

close range. 

Per the Crenel Physics model, it would experience 

a (small) non-Newtonian gravitational force per 

equation (10.8), which is directed away from the 

centre of gravity and perpendicular to its course. 

Thus, the spaceship would experience a minor 

course deviation away from the targeted Moon, 

strongest when passing the centre of mass of the 

Earth-Moon orbiting system. 

It is not known if such (small) deviations can 

indeed be confirmed by actual data. If so, a 

(statistical) analyses thereof might be a method to 

verify the here presented model, perhaps only in 

concept. For example, on average course deviations 

should then be found largest near the centre of 

gravity of the Earth/Moon orbiting system.  

Note that such course deviations do not apply to 

Photons since these, during their lifetime, are not 

subject to forces. A laser beam pointed from some 

location on Earth towards a mirror located on the 

Moon will therefore sharply follow the 

Whereabouts gridline between both points, whereas 

a tangible object would curve away from that 

beam’s path.   
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(11) A Photon Colliding with a Mono-Bit 

Now to address the collision between a Photon and 

a Mono-Bit in an otherwise empty space. As we 

will discuss in Chapter 12, such a collision will 

evolve in the creation of an Entropy Atom. But 

prior to that we will focus on the collision itself. 

At first sight a ‘collision’ demands that two objects 

have equal Whereabouts coordinates. Within a 4-

dimensional time-space and at some instantaneous 

moment, they have equal spatial coordinates. 

Should nature surprise us with a 5th Whereabouts 

coordinate (or Appearance thereof), it too must 

have an equal value between both objects.  

We always see a collision when the afore 

mentioned 4 coordinates are equal. This suggests 

that nature offers no additional coordinates.  

Closer inspection reveals that it is impossible to 

meet the demand for ‘equal coordinates’. Questions 

like, ‘where exactly is the object?’ have ambiguous 

answers. Consider objects that have a spatial size. 

With billiard balls we still can do our estimations, 

but at sub-atomic scale things become more 

diffused. The Crenel Physics model adds to the 

ambiguity in that any Content is equal to an 

inversion of Whereabouts which reveals itself as a 

distortion in the Whereabouts frame of reference. 

So where in this distortion does the Content reside? 

At most we would be able to pinpoint the centre of 

gravity thereof. 

The two objects we picked for our collision have 

different properties. The Photon will embed 

Content originating from its source, whereas an 

isolated Mono-Bit cannot. As we saw in Chapter 6, 

the Mono-Bit holds one bit of Entropy in a static 

state. It is only hypothetically observable and is 

certainly not verifiable.  

These properties raise two questions with regards to 

such a collision: 

1. Can a Mono-Bit nevertheless absorb Content? 

2. If so, would it make a difference if the 

collision were ‘head on’ or at some other 

angle? 

As said, Chapter 12 will explain how such a 

collision causes a Mono-Bit to convert into an 

Entropy-Atom. The first question will therefore be 

positively answered since the newly formed 

Entropy-Atom is a 2-bit object that can indeed 

absorb Content. 

The second question is relevant upfront since the 

parameters prior to the collision dictate the 

outcome. We therefore need to identify these. 

 

Let’s begin by reviewing the collision between a 

Photon and an electron that is a part of an atom.  

For such a scenario, detailed experimental data is 

available. 

When a Photon collides with an atom’s electron, 

the electron may jump to a higher energy level 

within the atom, in which case the Photon 

disappears. Experimental data demonstrates that 

this energy transfer is ‘all or nothing’. A Photon 

with, for example twice the amount of demanded 

energy, does not invoke such a jump. 

This experimental finding is consistent with the 

Crenel Physics model of a Photon. A partial energy 

transfer would result in an observable electron’s 

energy jump, while the original Photon would not 

completely vanish. Per Crenel Physics, Photons can 

only cause observable events by their complete 

disappearance.  

As an example, figure (11.1) shows 6 electron 

energy levels numbered n=1 thru n=6, as found 

within a hydrogen atom. The electron’s ground 

level corresponds to n=1. 

 

Fig.11.1: Electron Energy Levels as found within a 

Hydrogen Atom 
Credit: Wikipedia 

Based on this example, we can experimentally 

verify the ‘all or nothing’ principle by analysing the 

Photon’s absorption and emission spectra. 

Absorption: 

When we shine a beam of white light through 

hydrogen gas (i.e., light with a continuous energy 
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spectrum), the outcoming light spectrum will show 

sharp interruptions known as absorption lines.  

The energy levels associated with these spectral 

absorption lines relate one-to-one to electron 

energy jumps within the atom. Partial energy 

transfers from Photons to electrons are not found. 

This would result in relatively brighter light at the 

lower energy side of the outcoming absorption 

spectrum. Such is not observed. 

In addition, we will not observe multiple Photons 

combining their Content to make an electron jump 

towards a higher energy level. Consistent with the 

Crenel Physics model, each Photon embeds 1 nat 

of Entropy, so that this scenario would result in an 

Entropy loss of multiple nat. Only one nat would 

be recovered during the subsequent emission: when 

the electron returns to its original energy level. The 

consequential net Entropy loss would conflict with 

the second law of thermodynamics (Chapter 5). 

Emission: 

At some later moment in time, the light emission 

spectra of atoms will be caused by an electron 

falling back to a lower energy level. In some 

random direction, the electron then emits one single 

Photon that embeds the exact energy difference 

between both levels, plus one nat of Entropy.  

So again, we see this one-to-one relationship. 

As figure (11.1) illustrates, both upward jumps as 

well as fall backs can be between any two energy 

levels. Where the absorption of a Photon will only 

cause one single jump up (e.g., from n=1 to n=5), 

the subsequent fall-back may be in multiple steps 

(e.g., from n=5 to n=4 to n=2 to n=1). Such would 

then produce 3 Photons so that 3 nat of Entropy is 

created while 1 nat was lost in the absorbed 

Photon. This scenario would result in a net Entropy 

gain of 2 nat in compliance with the second law of 

thermodynamics. 

Note that we can differentiate between the 

absorption spectrum and the emission spectrum by 

directing a beam of light through some hydrogen 

gas. The absorption spectrum will exclusively be 

found in the outcoming beam, whereas the 

emission spectrum will be found anywhere around 

the gas since the individual Photon emissions are in 

random directions.  

To our analyses, the most relevant observation is 

that the bandwidths of both the absorption as well 

as the emission spectral lines are found to be 

extremely narrow. 

Consider the sodium spectrum. It is dominated by a 

‘two lines doublet’ known as the Sodium D-lines 

with wavelengths of 588.9950 nm and 589.5924 nm 

respectively. As these values show, these spectral 

lines were measured with an accuracy of 7 digits so 

that their bandwidth is at most 0.00001% 

(corresponding to these 7 digits).  

Where larger bandwidths or shifts of bands are 

found, these are explained by the Doppler shift 

associated with the movement of the atom as a 

whole object relative to the observer.  

These very narrow bandwidths are remarkable, as 

(from a classical viewpoint) electrons within an 

atom are presumed to be dynamic particles. Should 

we assign a hypothetical velocity to their ‘position’, 

based upon the viewpoint that an electron orbits as 

a negatively charged particle around the positively 

charged atom’s nucleus, we would find it to have a 

value in the order of magnitude of 1% of the 

velocity of light. Should then the electron’s 

direction act upon the outcome of the collision with 

a Photon, due to a Doppler shift, this would result 

in a minimum bandwidth in the order of +/- 1%, 

pending the electron moving to or from the 

incoming Photon. This would then apply to both 

the absorption as well as the emission spectral 

lines. But in fact, these bandwidths are extremely 

narrow. This demonstrates that, within high 

measuring accuracy, there is directional 

indifference in energy transfer when it comes to a 

collision between a Photon and an electron 

embedded within an atom. 

This finding led to the development of atomic 

clocks which in concept are based on the stability 

and extremely narrow bandwidths of spectral 

absorption lines.   

The envisioning of electrons within an atom as 

orbiting objects then fails. Thus, electrons within an 

atom have neither a velocity nor a direction. 

Instead, we envision a higher or lower probability 

for ‘finding’ them at some location. The electron 

thereby appears ‘diluted’ over some ‘probability 

region’. The locations of highest probability are 

calculated as orbit-like shapes, with rapidly 

diminishing chances as the distance to these shapes 

increases. Within such a region, the concept of 

‘velocity’ (or some direction thereof) does not hold.  

From this we envision that a Photon collides with 

the entire probability region in which the electron 

can be found. Even the shape of this probability 
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region proves to be irrelevant to the collision’s 

outcome. We find narrow bandwidths in all cases. 

The following figure illustrates some potential 

shapes for such probability areas. 

 

Fig. 11.2: Examples of potential Probability 

Regions of an Electron’s Location within 

an Atom 
Credit: Wikipedia 

Based on these findings we postulate that this same 

directional indifference exists when it comes to a 

collision between a Photon and a Mono-Bit.  

 

Thus, per the above postulation the Mono-Bit 

resides in a probability region. In the absence of a 

binding nucleus, that region then covers the entire 

universe, with equal probability anywhere at any 

time. As found in the previously described case of 

an electron within an atom, within its probability 

region, the Mono-Bit likewise has neither a defined 

velocity nor direction. The Photon thus does not 

collide with a Mono-Bit ‘particle’ but instead with 

the entire probability region thereof.  

The above envisioning relates to Heisenberg’s 

uncertainty principle (Chapter 4). In this case, we 

know the impulse as well as the energy of an 

isolated Mono-Bit: both have the exact value of 0. 

Consequently, there is no certainty whatsoever as to 

the Mono-Bit’s location at any given time. We have 

no Information (i.e., ‘resolution to uncertainty’) as 

to their Whereabouts. We can thus think of 

Whereabouts as a homogeneous thick or thin ‘soup’ 

of Mono-Bits which provide the ‘hardware’ (or 

entropy) to potentially create Content.  

 

 

When a Photon collides with an atom’s electron 

probability region and thereby disappears, the atom 

will instantaneously absorb the momentum as 

carried by the incoming Photon.  

Consider then a Photon that collides with a Mono-

Bit. It likewise collides with the probability region 

thereof which encompasses the entire universe. 

Based on the conservation laws its momentum is 

absorbed instantaneously. It will however take 

some time before an Entropy-Atom will materialize. 

Thus, this momentum must be absorbed by 

whatever does exist; that is, the entire Whereabouts 

arena. That arena is weightless. We may therefore 

speculate that the collision results in the expanding 

of Whereabouts at maximum velocity (i.e.: light 

velocity) in the direction of the incoming Photon. 

Such would explain why the universe 

(Whereabouts arena) started expanding at light 

velocity when initial and elementary matter 

building blocks (Entropy Atoms) were shaped. Why 

else would the universe expand? 
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(12) Construction of the Entropy-Atom 

We defined an Entropy-Atom as a system of two 

Mono-Bits in orbit. The reason for selecting Mono-

Bits will be explained later.  

But how likely is the shaping of such an orbiting 

system? Let’s start by reviewing the passing by of a 

single Mono-Bit. 

 

Mono-Bits are containers of Entropy. They can 

store 1 bit thereof. When isolated in empty space, 

in lack of any interaction option, their frequency of 

state changing υ equals 0. Per the enhanced Planck 

equation, 𝐸 = ℎ. 𝜈. 𝑆(𝑛𝑎𝑡), their Content in the 

Appearance of energy thus is known without any 

uncertainty: it equals exactly 0.  

Per Heisenberg’s uncertainty principle (see 

equation (CP4.25): ∆𝑃. ∆𝐶 =
ℎ𝐶𝑃

2
), the value of the 

error in Content ∆𝑃 then equals 0 Packages. The 

error then in Whereabouts ∆𝐶 is infinite in Crenels. 

We therefore have no Information whatsoever with 

regards to a Mono-Bits Whereabouts. Any 

Whereabouts value (or coordinate) has validity with 

an equal non-zero probability. 

As we will see, any presumption with regards to 

some specific Whereabouts coordinates does not 

act upon the outcome of our analyses. 

Consider a 1-dimensional spatial universe. This 

presumes that an isolated Mono-Bit is residing 

within that space (that is, on some imaginary line). 

Given Heisenberg’s uncertainty principle, at any 

moment in time and with equal probability, it can 

be found anywhere on that line. At some moment in 

time, should we find it at some location ‘A’, this 

would inherently imply that within the next second 

it’s new location relative to ‘A’ is limited by its 

velocity which cannot exceed light velocity c. At 

first sight, this implication contradicts the 

requirement of equal probability along the entire 

line at any given time. This requirement can 

however be met if we assign an infinite physical 

length L0 to the Mono-Bit. We define: 

𝑳𝟎 = ∞       (12.1)  

This feature also ensures that one bit of 

Information, when stored within the Mono-Bit, is 

instantaneously available along the entire line. 

This is consistent with our findings in Chapter 4, 

that Information is universally ‘available’ and 

does not travel. When carried by Mono-Bits of 

infinite length, such is the case. 

Yet there is still the requirement that, at any given 

moment in time, there must be some non-zero 

probability to find the Mono-Bit at some specific 

location ‘A’ on that line. This demands that the 

length L, from our perspective, equals 0. If not, we 

would not be able to confirm that, for example, it 

resides at location ‘A’ and therefore not at any other 

location. 

𝑳 = 𝟎       (12.2) 

The solution for finding a different length between 

‘locally’ and ‘relative to an observer’ is found in the 

Lorentz contraction: 

𝑳 = 𝑳𝟎√𝟏 −
𝐯𝟐

𝒄𝟐
⁄       (12.3) 

The Lorentz contraction quantifies the (shorter) 

observed object length L relative to its local length 

L0, pending its velocity ‘v’ relative to the observer.  

Per equation (12.3) both demands per (12.1) and 

(12.2) are met if the Mono-Bit has a relative 

velocity ‘v’ equal to light velocity c.  

It is paramount that per the Crenel Physics model, 

velocity is found to be dimensionless. In being a 

dimensionless property, it cannot be subject to 

relativity and is thus universally equal. Not only 

does this explain why light velocity relative to any 

observer is universally equal, but it ensures that 

both requirements per (12.1) and (12.2) are indeed 

met for all observers regardless of their relative 

circumstances. Per our model: 

✓ The Mono-Bit is anywhere at the same time. 

✓ There is a non-zero probability that we can 

find the Mono-Bit at some specific location. 

To enhance our model from a 1-dimensional to a 3-

dimensional spatial universe, consider a Mono-Bit 

in its 1-dimensional space as described in the 

above. It has length L=0 and 𝐿0 = ∞, and travels 

along some straight line at light velocity c. With 

equal probability, that 1-dimensional line can be 

found anywhere within a 3-dimensional space and 

can be pointing in any direction. Again, we see that 

each option has equal probability. 

The following figure shows one instance thereof: 
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Fig.12.1: A Mono-Bit residing on an imaginary 

Line 

There is a non-zero chance that the Mono-Bit is at 

location ‘O’. At some remote location ‘X’ away 

from that line and by some hypothetical remote 

interaction mechanism, a sensor may sense the 

Mono-Bit at that location. Such hypothetical remote 

sensing would be retarded. The retardation time 

would equal OX/vinteraction, whereby the hypothetical 

interaction mechanism between Mono-Bit and 

sensor is presumed to travel at velocity ‘vinteraction’.  

Since we found that the Mono-Bit is traveling at 

light velocity c, during this retardation time the 

Mono-Bit would have progressed to point ‘R’.  

To facilitate further analysis, we imagine that the 

Mono-Bit is dragging a circular cone as shown in 

figure (12.1). The hypothetical sensing at point ‘O’ 

would then occur when the surface of this 

imaginary cone passes the observation location ‘X’.  

The Mono-Bit would not physically have to travel 

to point ‘R’ to invoke such hypothetical sensing. 

The single fact that it hypothetically may be sensed 

to reside at location ‘O’ is enough to explain the 

above. 

 

Assume that for some unknown reason, at location 

‘O’, the Mono-Bit changes course with some angle 

dα. This disqualifies substitution of a Photon for 

our Mono-Bit as Photons cannot interact during 

their lifetime. So, within a Whereabouts frame of 

reference, nothing could cause these to change 

course. 

 

Fig. 12.2: a Course change 𝑑α at ‘O’ 

Any course change will kick the Mono-Bit into an 

initial orbit. This has consequences. 

First, starting from location ‘O’, this kick will 

cause at least a spike in ‘Planck based Content’ per 

equation 𝐸 = ℎ. 𝜈. 𝑆(𝑛𝑎𝑡). This in turn invokes at 

least a spike in Gravity. The latter can be remotely 

sensed without a doubt. Of greater significance, no 

tangible object could possibly be exempted from 

being impacted by this spike. 

Gravity travels at light velocity. Both the afore 

mentioned hypothetical interaction mechanism 

between Mono-Bit and sensor, as well as the Mono-

Bit itself, are found to travel at light velocity. The 

aperture angle of the cone in figures (12.1) and 

(12.2) therefore is 900.  

Second, the course change 𝑑α causes the axis of the 

imaginary cone to change direction accordingly. 

Figure (12.2) shows that a point marked ‘X1’ on the 

now redirected cone is still heading towards the 

remote observation location ‘X’.  

In this figure we assumed that the course change 

𝑑𝛼 has a directional component towards the 

observation location and not away from it. We will 

address the latter scenario.  

Consequently, at our remote observation location, a 

second hypothetical observation of the Mono-Bit’s 

passing would be imminent, namely when point 

‘X1’ on the now redirected cone passes.  

From this we conclude: 

(59) Due to the course change, the original 

Mono-Bit receives an apparent trailing 

twin. 
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It is not relevant that the observation of a single 

passing is hypothetical. The gravitational spike is 

real. Where the first passing then marked the 

beginning of this spike, the second passing marks 

the end thereof.  

Per the Crenel Physics model, Content is equal 

to an inversion of Whereabouts. Here we 

received a first glimpse of what such an 

inversion, apart from being a mathematical 

operation, looks like from a physical perspective: 

a local curve in a Whereabouts gridline. 

These consequences may still raise questions with 

regards to the conservation principle.  

The first would relate to the apparent doubling of 

Entropy from 1 bit prior to the course change, to 2 

bits thereafter. As we saw in Chapter 4, Entropy can 

be copied without costs to its source. The doubling 

of Entropy therefore can be accepted without 

objection. In fact, this doubling from one bit to two 

bits is in line with the second law of 

thermodynamics. This law demands an ultimate 

equality or raise in Entropy after any event. 

The Planck based Content, being materialized by 

two Mono-Bits rather than one, also demands some 

further analyses. For these observations, the spatial 

parameters demand that the course change 𝑑α has a 

directional component towards the remote 

observation location. Such only applies to one half 

of the cone surface. At the other half, no 

observation at all will take place. At some random 

remote point on the imaginary cone surface, there is 

equal probability between two observations and no 

observation at all. On average then, the 

conservation principle is not violated by 

introducing the trailing twin.  

The following figure illustrates this 2-

dimensionally: 

 

Fig.12.3: Cone Zone in which two Passes are 

observed, and Zone in which no Passes 

are observed 

We conclude that: 

(60) From a remote perspective, a course 

change of a Mono-Bit results in the birth of 

a 2-bit object: the birth of an Entropy-

Atom.  

Presuming that the initiated orbiting will endure, 

we may compare the Entropy-Atom with a 

lighthouse. At any location, for each full orbit of 

the Mono-Bit pair (full rotation of our light), we 

will receive a spike in gravity (a single flash of 

light). Given a certain course change, the duration 

of that spike (flash) will be universally equal, 

regardless of the distance from the event 

(lighthouse). 

 

As discussed in Chapter 11, the collision of a 

Photon with any object causes a full transfer of the 

Photon’s energy. Based on the properties of a 

Photon, partial transfers are not allowed. 

The presumed course of a Mono-Bit, prior to the 

collision with a Photon, has no impact. For all 

potential courses, the collision will cause an 

instantaneous course change 𝑑α which will 

exclusively depend on the properties of the initial 

Photon.  

Course change 𝑑α in turn, defines the properties of 

the newly born Entropy-Atom. We apply the 

enhanced Planck equation (4.24)… 

𝐸 = ℎ. 𝜐. 𝑆(𝑛𝑎𝑡)  

…whereby for the Entropy-Atom, S(nat)= ln(4): 

Path: O

X

45
o

𝑑α

45
o

𝑑α

𝑑α

Zone in which 
2 passing 
observations

Zone in which 
NO passing 
observations
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𝑬𝑬𝑨 = 𝒉. 𝝊𝑬𝑨. 𝐥𝐧⁡(𝟒)     (12.4) 

The initial Photon’s energy equals:  

𝑬𝑷𝒉𝒐𝒕𝒐𝒏 = 𝒉. 𝝊𝑷𝒉𝒐𝒕𝒐𝒏     (12.5) 

Based on the energy conservation principle and the 

consideration that the initial Mono-Bit did not 

contain energy, we demand: 

𝐸𝑃ℎ𝑜𝑡𝑜𝑛 = 𝐸𝐸𝐴 

So that we find: 

𝝊𝑬𝑨 =⁡
𝝊𝒑𝒉𝒐𝒕𝒐𝒏

𝐥𝐧⁡(𝟒)
      (12.6) 

We thus assign a frequency to the newly born 

Entropy-Atom so that we can envision it as an 

initiated orbiting system.  

Prior to demonstrating that the orbit will persist, we 

explore the conservation of momentum. 

 

In the previous chapter we presumed some 

plausible similarity with a collision of a Photon 

with an electron’s probability region within an 

atom. In the latter case, the Photon collides with the 

entire electron’s probability region and its 

momentum is absorbed by the atom, of which the 

constituents indeed behave (within limits) as one 

single target. 

In the case at hand, the Photon’s momentum is 

likewise to be absorbed by the entire probability 

region (i.e., the entire universe) in which the Mono-

Bit can be found. Since the Mono-Bit is weightless, 

the creation of verifiable Content (i.e., the Entropy 

Atom) inherently comes with a kick towards a 

Whereabouts expansion at maximum (light) 

velocity. Based on this viewpoint, the universe 

started its expansion at the same moment in which 

the first Content was created. 

So, what will happen next? 

 

If the associated Planck based Content is physically 

held by the two Mono-Bits within the Entropy-

Atom at hand then, due to their inertia, the Mono-

Bits would spin out of their initial curve. However, 

the finding that there is indeed Content does not 

demand its attachment to the Entropy embedding 

entities themselves (in this case, the two Mono-Bits 

that jointly constitute the Entropy-Atom).  

In the following we will argue why the associated 

Content is not held by (or attached to) the orbiting 

Mono-Bits, but instead is represented by the 

curving of Whereabouts. The curving of 

Whereabouts is the Content, and Mono-Bits will 

sharply follow that curving without spin-out. 

First, we compare this viewpoint with the previous 

modelling of Photons (Chapter 5). We found that a 

Photon (i.e., weightless Entropy container) will 

sharply follow any Whereabouts path. That path 

must represent its frequency: have a spiral shape. 

One can thus define a probability area to a Photon. 

Within a 3-dimensional space this would have the 

shape of a straight tube, in (and on) which the 

Photon can be found. Within a 2-dimensional space 

it would have the shape of a ribbon. It would not be 

possible to fit a Photon into a 1-dimensional space, 

as such space does not provide the degree of 

freedom to oscillate at some frequency. 

Compare this to the previously described 1-

dimensional line that represented the probability 

area of a Mono-Bit, whereby 𝐿0 = ∞, 𝐿 = 0, and v 

= light velocity c. 

This comparison suggests that: 

(61) The Mono-Bit can be seen as the one-

dimensional version of a Photon.  

The actual usage of the available spatial degrees of 

freedom is then reflected in that a Photon embeds a 

larger Entropy value relative to the Mono-Bit (1 nat 

versus 1 bit). It allows a single Photon, within an 

otherwise empty space, to have a frequency. 

The wavelength, combined with the Photon’s 

velocity, dictate this frequency and thereby the 

Photon’s Content. If its probability area were a 

straight line, there could be no frequency. In  a 3-

dimensional space we give it a spiral shape (a 

sinusoidal wave). The effective length thereof, 

relative to adjacent gridlines, appears shortened. 

This shortening represents a local deficit in 

Whereabouts. It is equivalent to Content, in that we 

found P.C=1. The shorter the wavelength (i.e., 

narrower the tube), the higher the deficit in 

Whereabouts and the larger the embedded Content. 

This of course reflects Planck’s equation 𝐸 = ℎ. 𝜈. 

Within the newly born Entropy-Atom, we likewise 

have a weightless Entropy container  embedding 2 

bits of Entropy. It too will follow curved 

Whereabouts paths without spin-out. Here we 

likewise have an initial curving of a Whereabouts 
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gridline, and the weightless Mono-Bit will follow it 

sharply. In essence, the collision between a Photon 

and a Mono-Bit therefore did not truly cause the 

Mono-Bit to change course, as previously 

suggested. Instead, it caused the local Whereabouts 

gridline to curve.  

If then such gridline is locally curved by the 

collision event, there is no firm reason why such 

curving will be restricted to the region of the 

collision. Such initiated curving may endure. If so, 

the local Whereabouts gridline transforms into a 

closed loop or full circle. This closed loop then 

defines the orbit along which the initial Mono-Bit 

will start orbiting. When seen from a remote 

perspective, it will be followed by an apparent 

trailing twin. It is the curled-up orbit path that 

represents the Content. Its radius may be infinite, 

corresponding to no deficit in Whereabouts, and 

thereby to no Content. Or its radius may have some 

finite value which would shorten the orbit path 

proportionally and create a deficit in Whereabouts. 

This deficit is Content. 

Previously, we identified Content as inverted 

Whereabouts without having a perception as to 

what this ‘inversion’ operation would mean when 

seen from a physical perspective. Here we found 

that an originally straight and thus ‘open’ 

Whereabouts gridline is converted into a closed 

loop.  

Based on this: 

(62) The ‘inversion’ of Whereabouts, and thus 

the creation of Content, is equivalent to the 

transformation of a straight Whereabouts 

gridline into a closed loop.  

When seen from a remote perspective, it 

will be sharply followed by the two 

weightless Mono-Bits within an Entropy-

Atom. 

From this perspective:  

(63) We can envision the (remotely observed) 

leading Mono-Bit and its trailing twin as a 

‘string’. 

 

Let’s now review a local system in which two 

Mono-Bits jointly follow a gravitational orbit 

around their central point of Gravity (Chapter 9), as 

if the Mono-Bits themselves hold Content. In fact, 

this Content is represented by the orbit-shaped 

curving of a Whereabouts gridline. In general, we 

can indeed use physical equations (here, Newtonian 

equations) as if Content truly exists. In reality, we 

are dealing with Whereabouts grid distortions that 

represent a deficit.  

When two equal masses m keep each other in a 

stable gravitational orbit, at a mutual distance D, 

the gravitational attracting force FG matches the 

centripetal force FCP: 

𝑭𝑮 = 𝑮.
𝒎𝟐

𝑫𝟐
⁡≡ ⁡𝑭𝑪𝑷 =⁡

𝟐.𝒎.𝐯𝟐

𝑫
⁡   (12.7) 

Thus, for a stable gravitational orbit, the orbit 

velocity must equal: 

𝐯 = ⁡√
𝑮.𝒎

𝟐.𝑫
       (12.8) 

The mass m of an orbiting Mono-Bit (based on  

E = m.c2 = h.υ.S(nat)) equals: 

𝑚𝑏𝑖𝑡 =
ℎ.𝜐.𝑆(𝑛𝑎𝑡)

𝑐2
=⁡

ℎ

𝑐2
⁡× ⁡

𝑐

𝜋.𝐷
× 𝑆(𝑛𝑎𝑡)  

Or: 

𝒎𝒃𝒊𝒕 =⁡
𝒉.𝑺𝒏𝒂𝒕

𝝅.𝒄.𝑫
      (12.9) 

We can substitute (12.9) into (12.8): 

𝐯 = √
𝑮.𝒎𝒃𝒊𝒕

𝟐.𝑫
=⁡√

𝑮.𝒉.𝑺(𝒏𝒂𝒕)

𝟐.𝝅.𝑫𝟐.𝒄
    (12.10) 

The orbit velocity of Mono-Bits equals ‘c’. If we 

substitute that in (12.10) the result is: 

𝒄 = √
𝑮.𝒉.𝑺(𝒏𝒂𝒕)

𝟐.𝝅.𝑫𝟐.𝒄
       (12.11) 

From this we derive a constant orbit diameter D: 

𝑫 = √
𝑮.ℏ.𝑺(𝒏𝒂𝒕)

𝒄𝟑
= √

𝑮.ℏ.

𝒄𝟑
× √𝑺(𝒏𝒂𝒕)  (12.12) 

We can convert equation (12.12) to the Crenel 

Physics model, whereby c=1 and for the Entropy-

Atom S(nat)=ln(4)… 

𝐷(𝐶𝑟𝑒𝑛𝑒𝑙) = √× ℎ𝑐𝑝 × √
ln⁡(4)

2.𝜋
  

…which can be further simplified to: 

𝑫(𝑪𝒓𝒆𝒏𝒆𝒍) = √𝑮𝒄𝒑 × 𝒉𝒄𝒑 × √
𝐥𝐧⁡(𝟐)

𝝅
 (CP12.13) 

Substituting the respective Crenel Physics values 

for 𝐺𝑐𝑝 and ℎ𝑐𝑝 gives: 

⁡𝑫(𝑪𝒓𝒆𝒏𝒆𝒍) = √
𝐥𝐧⁡(𝟐)

𝝅
⁡(𝑪𝒓𝒆𝒏𝒆𝒍)  (CP12.14) 
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Equation (CP12.14) quantifies the local diameter of 

a stable gravitational orbiting system involving two 

Mono-Bits. If both Mono-Bits are (from a local 

perspective) orbiting at this universally equal 

distance, the local system is stable at any orbiting 

velocity. As the orbiting velocity goes up, so does 

the Planck based Content and thereby the 

gravitational force. From a remote perspective 

however, we see the string following a wider orbit 

whereby it has light velocity c. As the curving of 

this wider orbit sharpens, we see: 

1. A Whereabouts gridline shorten proportionally. 

2. An orbiting frequency increase proportionally.  

 

Fig.12.4: The Chord Length of all Entropy-Atoms is 

constant 

The remotely felt duration of the afore mentioned 

spike in gravity would be constant; yet the remotely 

observed frequency would grow proportionally, as 

the wider orbit tightens. 

It should not be overlooked that, although this may 

appear to us within a 3-dimensional space, in 

essence the Entropy-Atom is a 1-dimensional object 

that, with equal probability, can be oriented in any 

spatial direction. 

  

Lower energy (less curve)

Higher energy (more curve)
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The Relationship between nat, pi and ln(2) 

This manuscript addressed the conservation principle’s bottom line. Content and Whereabouts were found 

related to one another (Chapter 1): the product of their UoM’s was found to equal Planck’s constant. The 

ratio thereof was found to equal the gravitational constant. 

But how about the mathematical constants that we used to address Information, the third physical property 

within the Crenel Physics model? We only used three thereof (Chapter 4):  

✓ the nat (for resolving quantitative uncertainty), 

✓ the bit (for resolving state uncertainty),  

✓ π (for linking frequency to Whereabouts coordinates). 

Shouldn’t we then expect a relationship between these three UoM’s?  

We already found that the bit is related to the nat via a conversion factor ln(2): 

1⁡𝑏𝑖𝑡 =
1

𝑙𝑛⁡(2)
𝑛𝑎𝑡  

But how does π fit in? Is there a relationship between the bit and π (or between ln(2) and π)? 

To answer this question, consider the following function F(x): 

𝑭(𝒙) = 𝒙𝟐 × {∑
(−𝟏)𝒏

(𝒏.𝒙+𝟏)
∞
𝒏=𝟎 }  

As it turns out, at x=1 (nat) the value of F(x) equals ln(2): 

𝑭(𝟏) = 𝒍𝒏(𝟐) = ∑
(−𝟏)𝒏

(𝒏+𝟏)
∞
𝒏=𝟎    

And for x=2 the value of F(x) equals π: 

𝑭(𝟐) = 𝝅 = 𝟒 × {∑
(−𝟏)𝒏

(𝟐.𝒏+𝟏)
∞
𝒏=𝟎 }   

The above given function F(x) thus indeed mutually relates the three mathematical constants that we 

utilized. However, a physical explanation for the function F(x) was not found. 
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