Hom-Sets Category

SHAO-DAN LEE

Abstract Let C be a category. Suppose that the hom-sets of C is small. Let Cy be a category
consist of the hom-sets of C. Then we define a morphism of Cy by a morphisms pair (v, u).
Hence the morphism is monic if and only if v is epi and u is monic. An object Hom¢(P, E) € Cy
is an injective object if and only if P is a projective object and E is an injective object. There
exists a bifunctor T: (C | A)°P x (B | C) — (Hom(A, B) | Cx). And the bifunctor T is bijective.
There exist the products in Cyx if and only if there exist the products and coproducts in C.
There exist the pullback in Cy if and only if there exist the pushout and pullback in C.

1. Introduction

In this paper, C is a category. Then we define a category Cy:
Objects: Hom-sets of C. If A, B € C, then Hom¢(A, B)
is an object of Cy.
Morphisms: Pairs of morphisms of C. Let
v:C—A, u:B—D. Then (v,u) is a morphism
Hom¢(A, B) = Hom¢(C, D) given by f— uofov for
all f e Hom¢(A, B).
The hom-set Home,,(Homc¢(A, B), Hom¢(C, D)) is a quotient set. And a hom-set of
two objects in Cy is determined by other objects of C4. To avoid trouble, we suppose
that uofov=p’ofoVv’ for all f € Hom(A,B) if and only if v =V’ and u = pu’. In
[subsection 3.1} we discuss morphisms of Cy in more detail.
The category Cy is a subcategory of Sets[1]], not full. Hence for an object A € C,
Hom(A, =) is a functor from C to Cy.

Proposition (proposition 3.3). The functor Hom(A, =) preserves[l] all monic[1]
morphisms and limits[1]] in C.

It is determined by morphisms of C that a morphism in Cx is monic(epi)[1].

Proposition (propositions and [3.2). The morphism (v, u) in Cy is monic if and
only if u is monic and v is epi.

Hence every monic of Cy consists of an epi and a monic of C. And an object of Cy
is projective(injective)[l]] is determined by the objects of C.

Proposition (propositions and [3.5). An object Hom(P, E) € Cy is a projective
object if and only if P € C is a projective object and E € C is an injective object.

For an object Hom(A, B) € Cy, if {{v, u), Hom(C, D)) is an object of comma cat-
egory[1] (Hom(A,B) | Cx), then (v,C) € (C | A) and (u,D) € (B | C). See
[tion 3.5|for detail.

The situation of (co)products[1] and pullback(pushout)[1] are similar.
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Proposition (propositions and[3.11). There exist the (co)products in
Cy if and only if there exist the products and coproducts in C.

Suppose that 7 be a category. Let F be a functor from J to Cy. We have that

Proposition (propositions[3.14]and[3:15). There exists the (co)limit of F if and only
if there exist the (co)limit of T o F and the (co)limit of So F. The funtors T and S are
defined in[subsection 3.8
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2. Preliminaries
2.1. Monic and Epi.
Definition 2.1 (Monic[1]]). A morphism u is monic when it is left cancellable, pof =
Uof’ implies f =f’.
Definition 2.2 (Epi[1]). A morphism v is epi when it is right cancellable, fov =f’/ov
implies f = f”.
2.2. Limit and Colimit.

Definition 2.3 (natural transformation[1]]). Let D be a category, T and S be two

functors from D to C. Then a natural transformation T: T — S is a function which
send every object D € D to a morphism 1p: T(D) — S(D) of C in such a way that
every morphism f: D — D’ of D makes the diagram(2.3) commute.

T(D) —2~ 5(D)
(2.1) T(f)l lS(f)
T(D") ? S(D")
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Let 7 be a category, F a functor from 7 to C. Suppose that A is a diagnal func-
tor[1]: ¢ — ¢7.

Definition 2.4 (Limit[1[]). An object lim F of Cy is the limit of F provided that for all

X € C with a natural transformation 1: A(X) > F, there exists unique natural transfor-
mation m: A(X) N A(I(iLn F) such that the diagram(2.2) is commutative. The natural

transformation w: A(lim F) > Fis called limit conel1].

A(limF)<-----~ A(X)
(2.2) \ /
F

Definition 2.5 (Colimit[[1]). An object lim F of Cy is the colimit of F provided that
for all X € C with a natrual transformation T: F — A(X), there exists unique natural
transformation m: A(lim F) 5 A(X) such that the diagram(2.3)) is commutative. The

natural transformation w: F — A(lim F) is called colimit cone[1]].

Alim F) - - - - - - A(X)
(2.3) \ /
F

2.3. Functor Hom(A,-). If A€, then Hom¢(A, =) is a functor from C to Sets[1].

Theorem 2.1 (Preserves monic[l]]). The functor Hom¢(A,—) preserves monic for
all A ec.

Proof. Let B,C € C, f a monic morphism from B to C. Then f induces a morphism
f*:Home(A,B) - Hom(A, C) given by f* : u— fou. Hence forall u, ve Hom¢(A, B),
fou=fovimplies u=v. Therefore, f* is monic. O

Theorem 2.2 (Preserves limits[|1]). The functor Hom¢(A, —) preserves the limits for
all Aec.

Proof. Let J be a category, F a functor from 7 to C. Then for every A € C we have a
functor Hom(A, F—): J — Sets what is composition of F and Hom(A, —).

Hom(A,—
JLCL Sets

Suppose that the limit of F exists in C with limit cone w: A(I‘iLn F) > F where the
functor A is a diagonal functor. Hence for all A € C with a natural transformation

T: A(A) > F, there exists unigue natural transformation n: A(A) —'>A(I(iLn F) factors
through 1. Hence for all i,j € J and every morphism ¢: i — j, the diagram(2.4) is
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commutative in C.

. Ni
lim F n/ A
NS
(2.4) 0
wj | T
F(#)
y
F()

Hence the diagram(2.5) is commutative in Sets.

Hom(A, lim F)

(2.5)

Hom(A, F(j))

Suppose that X is a set and that A: A(X) > Hom(A, F—) is a natural transformation.
Then the diagram(2.6)) is commutative for all i,j € 7 and every ¢: i — .

X 2 Hom(A, F(D)
(2.6) idj j(F(tﬁ))*
X - Hom(A, F(j))

'/

Hence for every x € X, we have F(@) o T; = Tj where T; := Ai(x), Tj := Aj(x). Since
the diagram is commutative, there exists unique n € Hom(A, I(iLn F) such that
wion =T, wjon ="Tjand F(¢)ow;on = wjon = T;. Hence we may define a morphism
m: X = Hom(A, lim F) given by m: x — n for every i € 7. The morphism m makes the
diagram(2.7) commutative. It is obvious that m is unique such that the diagram(2.7)
is commutative.

Hom(A, lim F)

Hom (A, F(j))

Hence for all X € Sets with a natural transformation A: A(X) > Hom(A, F—), there
exists unique natural transformation T A(X) > A(Hom(A, lim F)) given by
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(m: X > Hom(A, lim F))ics such that 7 factors through A. Therefore,
Hom(A, Iin = Iin Hom(A, F—) O

2.4. Projective and Injective.

Definition 2.6 (Injective objective[l]]). If E €C is an injective object, then for every
morphism f: A — E and every monic u: A — B there exists g: B — E such that the
diagram(2.8) is commutative.

A-t.B

(2.8) g
. fl 7
09
E

Definition 2.7 (Projective object[1]). If P € C is a projective object, then for every
morphism f: P— A and every epi v: A — B there exists g: P — B such that the
diagram(2.9) is commutative.

P
g,
s

}

(2.9)

2.5. Comma category.

Definition 2.8 (Comma category[1]]). Let A,B,C € C. Then (A | C) is a comma
category if
Object: (f,B), wheref: A —B.
Morphism: h: {f, B) = (g, C) makes the diagram(2.10) commute in C.

A
(2.10) RN
B—" -

2.6. Product and Coproduct.

Definition 2.9 (Product[1]]). Let A, B € C. Then for all C € C and for every morphism
C — A, C — B there exists an object AN B € C and unique morphism C — AnB such
that the diagram (2.11)) is commutative. We call An B product.

/A\
(2.11) ANB=<----—-- C

N

Definition 2.10 (Coproduct[l1]]). Let A,B € C. Then for all C € C and for every
morphism A — C, B — C there exists an object AuB € C and unique morphism
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AT B — C such that the diagram (2.12) is commutative. We call A u B coproduct.

(2.12) ANB- - - - - - ~C

2.7. Pullback and Pushout.

Definition 2.11 (Pullback[1]). Let A — C «— B be morphisms in C. For all D € C, if
the diagram(2.13) is commutative, then there exists an object An¢cB € C and unique
morphism D — A N¢ B such that the diagram(2.14) is commutative. That Anc B is
the pullback.

|

(2.13) (2.14)

>=~—0

O=—"

B——C

Definition 2.12 (Pushout[1]]). Let A < C — B be morphisms in C. For all D € C, if
the diagram(2.15) is commutative, then there exists an object AucB € C and unique
morphism A uc B — D such that the diagram(2.16) is commutative. That Auc B is

the pushout.

AlUcB<~——

l

T

D
(2.15) (2.16)

>——0

O——W

-

O——W

3. Hom-Set Category

We defined the category [l Now, we prove that the definition of Cy is well-
defined.

Proof. There exists identity morphism id: Hom¢(A, B) - Hom¢(A, B) where id :=
(ida, idg). Suppose that Hom(A, B), Hom(C, D), Hom(E, F), Hom(G, H) are objects in
Cy. Letvg:C— A, up:B—-D, vi:E—-C, u1:D—F, v: G—E, u: F— H be mor-
phisms in C. Then we have

Vo,Ho) V1,M1) V2,12)

Hom(A,B)(—> Hom(C,D)(—> Hom(E,F)<—> Hom(G, H)
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For every f € Hom(A, B), suppose that the diagram(3.1)) is commutative.

Vo %1 V2

A C E G
T

B D F H

Ho [T} 12

We define the composition
(3.2) (v1, 11) o (vo, o) := (Vo © V1, U1 © Ho)
Hence we have ({vz, t2) o (v1, 41)) e (vo, Ho) = (v2, u2) o ({v1, u1) o (vo, o)) Therefore,
Cy is a category. O

3.1. Hom-Set of Cy. Let Hom¢(A, B), Hom¢(C, D) € Cy. Suppose that (v, u) and
that (v/, u’) are morphisms of Cy:

Home¢(A, B) )) Hom¢(C, D)
We define a binary relation: (v, u) ~ (v ,M) when pofov =" ofov forall fe
Homc¢(A, B). Itis obvious that ‘~" is an equivalence relation. Then Homc,,(Hom¢(A, B), Hom¢(C, D))
is a quotient set of Hom(C,A) x Hom(B, D) by ~. These may arise some trouble,
hence we suppose that uofov=u’ofo Vv’ forall f e Hom(A,B) if and only if v=V’
and u = u’ in C. Hence we have the two hypotheses about the categroy C, in this
paper:
e The hom-sets is small.
e vofou=v'ofopu’ forall fe Hom(A,B) ifand only if v=v’ and u=pu’ inC.

3.2. Monic and Epi in Cy4.

Proposition 3.1. A morphim (v, u): Hom(A, B) - Hom(C, D) is monic if and only if
v:C—Aisepiand u: B — D is monic.

Proof. Let f,f’ € Hom(A, B) with f # f’. Suppose that v: C — A is epi and that
U: B — D is monic. Then f # f/ implies fov#f/ov and uof #uof’. It follows that
UofoV#uof ov. Onthe other hand, Suppose that a morphim (v, u): Hom(A, B) - Hom(C, D)
is monic. Hence we have that f # f’ implies pofov #uof’ov. Hence fov#f'ov
and uof #uof’. And the morphisms f and f’ are not fixed. Therefore, that f ;éf’

implies fov#f/ovand uof #uof’.

Proposition 3.2. A morphism (v, u): Hom(A, B) - Hom(C, D) is epi if and only if
v:C— Aismonic, u: B— D is epi.

Proof. Let Hom(E, F) be a object of Cy, {a, B) and {a’, B’) morphisms from Hom(C, D)
to Hom(E, F). Then we have

Hom(A, B) Hom(C D) ﬁ)) Hom(E, F)

Suppose that v is monic and that u is epi. Then Voa=vVvoa’and Bou=p"ouim-
plies a = a’ and B = B/, respectively. Hence Bouofovoa=8 ouofovoa’ for all
f € Hom(A, B) implies a = a’ and g = 8’. Hence if (a, B) o (v, u) = (a’, B’) o (v, u) then
(a, B) = {a’, B’). Hence (v, u) is epi. On the other hand, Suppose that (v, u) is epi.
Then (a, B) o (v, u) = {(a’, B’} o (v, u) implies {a, B) = (a’, B’). Henceif Bouofovoa= ouofovoa’
for all f € Hom(A,B) then a=a’ and B =8’. And Bouofovoa=B'ouofovoea’
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for all f e Hom(A,B) if and only if Bou=B’ou and ao v =a’ou. Therefore, that v
is monic and u is epi. O

3.3. Functor Hom(A,—) fromCto Cy. Let C,D €C, ua monic from Cto D. Then the
functor Hom(A, =) sends C, D to Hom(A, C), Hom(A, D), respectively. And it sends u
to (id, u). Hence we have,

Proposition 3.3. The functor Hom(A, =) preserves all monic morphisms and limits
in Cx.

Proof. Immediate from theorems and 2.2 O
3.4. Injective and Projective Objects In Cy.

Proposition 3.4. An object Hom(P, E) is an injective object in Cy if and only if P is
a projective object and E is an injective object in C,

Proof. Let (v, u): Hom(A, B) - Hom(C, D) be a monic in Cy. By [proposition 3.1} we
have that v: C — A is epi and u: B — D is monic. Suppose that P is a projective
object and that E is an injective object. Then we have P is a projective object if and
only if for every morphim p: P — A, there exists a morphism 6: P — C such that
the diagram(3.3) is commutative, and E is an injective object if and only if for every
morphism m: B — E, there exists a morphism ¢: C — E such that the diagram(3.4) is
commutative.

P B—-D
7/
(3.3) ° jp (3.4) le %
¥ )
A ¥
¢ v E

Then for all f € Hom(A, B) there exists a morphism g: P — E such that the dia-
gram(3.5) is commutative.

g

P—~E
/7 ™
(3.5) 0 lp "T N
¥ AN
C—>A—=B—>D
It follows that the diagram(3.6) is commutative.

Hom(A, B) 2L Hom(C, D)

(3.6) , T
(o n)l - 60)
Hom(P, E)

Hence Hom(P, E) is an injective object in Cx. On the other hand, suppose that
Hom(P, E) is an injective object in C3. Then the diagram(3.6) is commutative. Hence
there exists a pair (6, ¢) such that the diagram(3.5) is commutative for every pair
(o, m). It implies the diagrams and are commutative. Hence P is a projec-
tive object and E is an injective object. O

Proposition 3.5. An object Hom(E, P) is projective object in Cy if and only if E is
an injective object and P is a projective object in C.
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Proof. Let morphism (v, u): Hom(A, B) - Hom(C, D) be an epi. By[proposition 3.2} a
morphism (v, u) is epi if and only if v: C — A is monic and u: B — D is epi. Suppose
that P is a projective object and that E is an injective object in C. Then for every
morphism p: P — D there exists a morphism 6: P — B such that the diagram(3.7) is
commutative. And for every morphism m: C — E there exists a morphism ¢: A - E
such that the diagram(3.8) is commutative.

/P C—YsA
e , 4
(3.7) ) Lp (3.8) nl .
¥ /,/ ¢
B—>p D E

Hence for all g € Hom(E, P), there exists a morphism f € Hom(A, B) such that the
diagram(3.9) is commutative.

cC—2-A B D
! // ‘\
(3.9) n¢/¢ 9\\Tp
E P
g

It follows that for every morphism {m, p) there exist a morphism (6, ¢) such that the
diagram(3.10) is commutative.

Hom(E, P)
(9.6) -~
(3.10) - l(n,p)

A
Hom(A, B) W Hom(C, D)

Hence Hom(E, P) is a projective object in C4. On the other hand, suppose that
Hom(E, P) is a projective object. Then for every morphism (m, p) there exists a mor-
phism (¢, 6) such that the diagram(3.10) is commutative. Hence the diagram(3.9) is
commutative. It follows that the diagrams and are commutative. Hence
P is a projective object and E is an injective object. O

3.5. Comma Category (Hom(A,B) | Cy). Suppose that ((f, g), Hom(C, D)) and
((f’, g’), Hom(E, F)) are objects of comma category (Hom(A,B) | Cy). Let (v,u)
be a morphism from ((f, g}, Hom(C, D)) to ({f’, g’), Hom(E, F)). Then the morphism
(v, 1) makes the diagram(3.11) commute.

Hom(A, B)

{f.g) {r',9")
(3.11)

Hom(C, D) Hom(E, F)

(v,u)
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Hence for all u € Hom(A, B), the diagram(3.12) is commutative.
C——D

1 s

(3.12) v A—u>B u

E——F

Hence the digrams (3.13) and (3.14) are commutative.

E—Y—C /
g g
(3.13) \ / (3.14) / \
i f
A u

D F

Hence we have that v: (f, E) — (f’, C) in comma category (C | A) and that u: (g, D) —
(g’, F) in comma category (B | C).

Proposition 3.6. There exists a bifunctor T : (C | A)°P x (B | C) = (Hom(A, B) | Cy).
And the bifunctor is bijective.

Proof. We define a bifunctor T given by

objects: ({f, C), (9, D)) — ({f, g9), Hom(C, D))
morphisms: (v, u) — (v, u)
It is obvious that T(id, id) = (id, id). Suppose that v’: (f”/,G) — (f’,E) in (C | A) and
that 1’: (¢/, F) — (g”, H) in (8 | ). By[Equation 3.2, we have that
T(voVi,wou) = (vov', uop)
= (V. u)e(v,u)
= TV, W)eT(v,u)
Hence T is a bifunctor. And it is obvious that T is bijective. d

3.6. Product and Coproduct in Cy.

Proposition 3.7. There exist the products in Cy if and only if there exist the prod-
ucts and coproducts in C. And

(3.15) Hom(A,B)nHom(C,D)= Hom(AucC,BnD)

Proof. Suppose that there exist the products in Cy4. Let Hom(A, B), Hom(C, D) € Cy.
Then for all Hom(E, F) € Cy and for every morphism (v, u): Hom(E, F) - Hom(A, B),
(v/,u’): Hom(E, F) - Hom(C, D) there exists a morphism (v, u) such that the dia-
gram(3.16) is commutative.

Hom(A, B)

/

(3.16) Hom(A,B)nHom(C,D)< - - - - = — — — — — Hom(E, F)

\/

Hom(C, D)
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Then there exists Hom(P, Q) € Cy such that Hom(A,B)nHom(C,D) = Hom(P, Q).
Hence for all g € Hom(E, F), the diagram(3.17) is commutative.

(317) P_Z>E_g>.F_£>-Q
C——D
It follows that the diagrams (3.18) and (3.19) are commutative.
/B\ A
(3.18) Q=<--%---F (3.19) pl__Y__
D C

Hence we have that P= AUC, Q = BnD. On the other hand, suppose that there exist
the products and coproducts in C. Then the diagrams and are commu-
tatives with P= AuC, Q = BnD. Hence for all g € Hom(E, F), the diagram(3.17) is
commutative. Hence the diagram(3.20) is commutative.

Hom(A, B)

.

(3.20) Hom(AuC,BnD)<—- - - —~-—— —— — Hom(E, F)

Hence we have that there exist the product in Cy and
Hom(A,B)nHom(C,D)=Hom(AuC,BnD) O

Proposition 3.8. There exist the coproducts in Cy if and only if there exist the
products and coproducts in C. And

(3.21) Hom(A,B)uHom(C,D)=Hom(AnC,BuD)

Proof. The proof of the |proposition 3.8|is similar to the proof of [proposition 3.7, O

Proposition 3.9. The products and coproducts exist in Cy simultaneously.
Proof. Immediate from propositions and[3.8] O
3.7. Pushout and Pullback in Cy4.

Proposition 3.10. There exist the pullback in Cy if and only if there exist the
pushout and pullback in C. And

(3.22) Hom(A, B) MHom(g,Fry Hom(C, D) = Hom(A ug C, BMg D)



12 SHAO-DAN LEE

Proof. Let Hom(A, B) - Hom(E, F) — Hom(C, D) be morphisms in Cy;. Suppose that
there exist the pullback in C. Then for all Hom(G, H) € Cy, if the diagram(3.23)
is commutative then there exists a morphism (v, u) such that the diagram(3.24) is
commutative.

Hom(G,H) —— Hom(C, D)

(3.23) l l

Hom(A,B) —— Hom(E, F)

Hom(G, H)

(3.24) Hom(A, B) MHom(e,Fy Hom(C, D) — Hom(C, D)
Hom(A, B) Hom(E, F)

And there exists Hom(P, Q) € Cy such that Hom(P, Q) = Hom(A, B) Nxom(g,Fry Hom(C, D).
Hence for all f € Hom(G, H), if the diagram(3.25) is commutative then the mor-
phisms v, u make the diagram(3.26) commute.

(3.25) E\j\;_)I/F
(3.26) E%i:Ek
\l_}i/

It follows that the diagrams (3.27) and (3.28) are commutative.

H
N
\
N

\
T

(3.27) (3.28)

D

Hence there exist the pullback and pushout in C. Hence P=AUgC and Q =B nNgD.
Hence we have that

Hom(A, B) MHom(g,Fry Hom(C, D) = Hom(A ug C, BMg D)
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On the other hand, suppose that there exist the pullback and pushout in Cy. Then
the diagrams (3.27) and (3.28) are commutative. Hence for all f € Hom(G, H), the

diagrams (3.26) and (3.25) are commutative. Hence the diagram(3.24) is commu-
tative. It follows that there exist pullback in Cy. O

Proposition 3.11. There exist the pushout in Cy if and only if there exist the pull-
back and pushout in C. And

(3.29) Hom(A, B) Uxom(g,Fry Hom(C, D) = Hom(Ang C, B Ug D)
Proof. The proof of [proposition 3.11|is similar to[proposition 3.10] O

Proposition 3.12. There exist the pushout and pullback in Cy simultaneously.
3.8. (Co)Limit In Cy.
Definition 3.1. Let T:Cy — C, S: Cx — C°P given by

Object:
T:Hom(P,Q)—Q
S:Hom(P,Q)— P
Morphism:
T:{v,u)—u
S:(v,u)—vVv

Let D be a category, G and G’ two functors from D to C4. Suppose that T is a
natural transformation T: G — G’. Then we have that

Proposition 3.13. That T(T) is a natural transformation ToG 2 ToG’ and that S(1)

is a natural transformation So G — S o G’. Hence

(3.30) Nat(G,G") = Nat(ToG,ToG’) x Nat(SoG,SoG’)

Proof. Let Dy, Dy € D. Then there exist Hom(A1, B1), Hom(B2, B2), Hom(A}, B'1), Hom(A, B'2)
in Cy such that G(D1) = Hom(A1, B1), G(D2) = Hom(Ba, B2), G’(D1) = Hom(A, BY),

G’(D2) = Hom(A,, B,) in C. And for every morphism f: D1 — D in D the follow-

ing diagram is commutative where tp, = (v1, U2), ™, = (v2, u2), G(f) = (v, u) and
G'(f)= (v, ).

Hom(A1, B1) — Hom(A’, B',)

(v,u)\ j(V’,u’)

Hom(Az, B2) —— Hom(A’, B.)
1

Hence the following diagram is commutative for all f € Hom (A1, B1).
’ f ’

Al A[l T B}
A'2 A> B> B’2
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Then the following two diagrams are commutative.

B — B, A, —=A;
By —= B, Al —A;

By we have that two natural transformations:

w:ToG T oG’ given by wp :=T(Tp)
n:SoG > SoG’ given by np := S(1p)

Therefore,

Nat(G,G) = Nat(ToG,ToG’')x Nat(SoG,SoG’) O

Let 7 be a categroy, F a functor from 7 to Cx. Suppose that there exists the limit
of Fin Cy. Then for all Hom(A, B) € C with a natural transformation A(Hom (A, B)) S lim F,

there exists unique natural transformation n: A(Hom(A, B)) 5 A(lim F) given by (n; :=
(v, u))jes such that the diagram(3.31) is commutative. That A is a diagnal func-
tor[1].

A(imF)<---=--- A(Hom(A, B))

(3.31) \ /
F

And there exists Hom(M, N) € Cy such that Hom(M, N) = lim F. Hence for every
j € J with F(j) = Hom(P, Q), the diagram(3.32) is commutative.

Hom(M,N)< - - - - - - — — — — Hom(A, B)

(3.32) \ /

Hom(P, Q)

Hence for all f € Hom(A, B), the diagram(3.33) is commutative.

[
|

LH

(3.33)

—>O|
|
/
14
M——N
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It follows that the diagrams (3.34) and (3.35) are commutative.

M------ ~A N<-—----- B
(3.34) \ / (3.35) \ /
P Q
The two functors T and S are full by [definition 3.1} hence we have that
(3.36) MZ1lim SoF
(3.37) N=limToF

Proposition 3.14. There exists the limit of F if and only if there exist the limit of
T oF and the limit of SoF.

Proof. Immediate from diagrams (3.31|to(3.35)), [definition 3.1f and |proposition 3.13]
O

Proposition 3.15. There exists the colimit of F if and only if there exist the colimit
of T o F and the colimit of SoF.

Proof. The proof of [proposition 3.15|is similar to the proof of proposition 3.14| O
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