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Abstract Let C be a category. Suppose that the hom-sets of C is small. Let CH be a category
consist of the hom-sets of C. Then we define a morphism of CH by a morphisms pair 〈ν, μ〉.
Hence the morphism is monic if and only if ν is epi and μ is monic. An object HomC(P, E) ∈ CH
is an injective object if and only if P is a projective object and E is an injective object. There
exists a bifunctor T : (C ↓ A)op × (B ↓ C)→ (Hom(A,B) ↓ CH). And the bifunctor T is bijective.
There exist the products in CH if and only if there exist the products and coproducts in C.
There exist the pullback in CH if and only if there exist the pushout and pullback in C.

1. Introduction

In this paper, C is a category. Then we define a category CH:
Objects: Hom-sets of C. If A,B ∈ C, then HomC(A,B)

is an object of CH.
Morphisms: Pairs of morphisms of C. Let

ν : C→ A, μ : B→ D. Then 〈ν, μ〉 is a morphism
HomC(A,B)→ HomC(C,D) given by ƒ 7→ μ ◦ ƒ ◦ ν for
all ƒ ∈ HomC(A,B).

The hom-set HomCH(HomC(A,B), HomC(C,D)) is a quotient set. And a hom-set of
two objects in CH is determined by other objects of CH. To avoid trouble, we suppose
that μ ◦ ƒ ◦ ν = μ′ ◦ ƒ ◦ ν′ for all ƒ ∈ Hom(A,B) if and only if ν = ν′ and μ = μ′. In
subsection 3.1, we discuss morphisms of CH in more detail.

The category CH is a subcategory of Sets[1], not full. Hence for an object A ∈ C,
Hom(A,−) is a functor from C to CH.

Proposition (proposition 3.3). The functor Hom(A,−) preserves[1] all monic[1]
morphisms and limits[1] in CH.

It is determined by morphisms of C that a morphism in CH is monic(epi)[1].

Proposition (propositions 3.1 and 3.2). The morphism 〈ν, μ〉 in CH is monic if and
only if μ is monic and ν is epi.

Hence every monic of CH consists of an epi and a monic of C. And an object of CH
is projective(injective)[1] is determined by the objects of C.

Proposition (propositions 3.4 and 3.5). An object Hom(P, E) ∈ CH is a projective
object if and only if P ∈ C is a projective object and E ∈ C is an injective object.

For an object Hom(A,B) ∈ CH, if 〈〈ν, μ〉, Hom(C,D)〉 is an object of comma cat-
egory[1] (Hom(A,B) ↓ CH), then 〈,C〉 ∈ (C ↓ A) and 〈,D〉 ∈ (B ↓ C). See subsec-
tion 3.5 for detail.

The situation of (co)products[1] and pullback(pushout)[1] are similar.
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Proposition (propositions 3.7, 3.8, 3.10 and 3.11). There exist the (co)products in
CH if and only if there exist the products and coproducts in C.

Suppose that J be a category. Let F be a functor from J to CH. We have that

Proposition (propositions 3.14 and 3.15). There exists the (co)limit of F if and only
if there exist the (co)limit of T ◦ F and the (co)limit of S ◦ F. The funtors T and S are
defined in subsection 3.8.
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2. Preliminaries

2.1. Monic and Epi.

Definition 2.1 (Monic[1]). A morphism μ is monic when it is left cancellable, μ ◦ ƒ =
μ ◦ ƒ ′ implies ƒ = ƒ ′.

Definition 2.2 (Epi[1]). A morphism ν is epi when it is right cancellable, ƒ ◦ν = ƒ ′◦ν
implies ƒ = ƒ ′.

2.2. Limit and Colimit.

Definition 2.3 (natural transformation[1]). Let D be a category, T and S be two
functors from D to C. Then a natural transformation τ : T

•→ S is a function which
send every object D ∈ D to a morphism τD : T(D) → S(D) of C in such a way that
every morphism ƒ : D→ D′ of D makes the diagram(2.3) commute.

T(D)
τD //

T(ƒ )
��

S(D)

S(ƒ )
��

T(D′)
τD′
// S(D′)

(2.1)
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Let J be a category, F a functor from J to C. Suppose that Δ is a diagnal func-
tor[1]: C → CJ .

Definition 2.4 (Limit[1]). An object lim
←−

F of CH is the limit of F provided that for all

X ∈ C with a natural transformation τ : Δ(X)
•→ F, there exists unique natural transfor-

mation π : Δ(X)
•→ Δ(lim

←−
F) such that the diagram(2.2) is commutative. The natural

transformation ω : Δ(lim
←−

F)
•→ F is called limit cone[1].

Δ(lim
←−

F)

##

Δ(X)oo

~~
F

(2.2)

Definition 2.5 (Colimit[1]). An object lim
−→

F of CH is the colimit of F provided that
for all X ∈ C with a natrual transformation τ : F→ Δ(X), there exists unique natural
transformation π : Δ(lim

−→
F)

•→ Δ(X) such that the diagram(2.3) is commutative. The

natural transformation ω : F
•→ Δ(lim

−→
F) is called colimit cone[1].

Δ(lim
−→

F) π // Δ(X)

F

cc >>
(2.3)

2.3. Functor Hom(A,−). If A ∈ C, then HomC(A,−) is a functor from C to Sets[1].

Theorem 2.1 (Preserves monic[1]). The functor HomC(A,−) preserves monic for
all A ∈ C.

Proof. Let B,C ∈ C, ƒ a monic morphism from B to C. Then ƒ induces a morphism
ƒ∗ : HomC(A,B)→ Hom(A,C) given by ƒ∗ :  7→ ƒ ◦ . Hence for all , ∈ HomC(A,B),
ƒ ◦  = ƒ ◦  implies  = . Therefore, ƒ∗ is monic. □

Theorem 2.2 (Preserves limits[1]). The functor HomC(A,−) preserves the limits for
all A ∈ C.

Proof. Let J be a category, F a functor from J to C. Then for every A ∈ C we have a
functor Hom(A, F−) : J → Sets what is composition of F and Hom(A,−).

J F−→ C
Hom(A,−)
−−−−−−→ Sets

Suppose that the limit of F exists in C with limit cone ω : Δ(lim
←−

F)
•→ F where the

functor Δ is a diagonal functor. Hence for all A ∈ C with a natural transformation
τ : Δ(A)

•→ F, there exists unique natural transformation η : Δ(A)
•→ Δ(lim

←−
F) factors

through τ. Hence for all , j ∈ J and every morphism ϕ :  → j, the diagram(2.4) is
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commutative in C.

lim
←−

F
ω

""

ωj

##

A
η
ηj

oo

τ

��

τj

}}

F()

F(ϕ)
��

F(j)

(2.4)

Hence the diagram(2.5) is commutative in Sets.

Hom(A, lim
←−

F)
ω∗

((

ω∗

""

Hom(A, F())

(F(ϕ))∗

��
Hom(A, F(j))

(2.5)

Suppose that X is a set and that λ : Δ(X)
•→ Hom(A, F−) is a natural transformation.

Then the diagram(2.6) is commutative for all , j ∈ J and every ϕ : → j.

X
λ //

d
��

Hom(A, F())

(F(ϕ))∗

��
X

λj
// Hom(A, F(j))

(2.6)

Hence for every  ∈ X, we have F(ϕ) ◦ τ = τj where τ := λ(), τj := λj(). Since
the diagram(2.4) is commutative, there exists unique η ∈ Hom(A, lim

←−
F) such that

ω ◦η = τ, ωj ◦η = τj and F(ϕ) ◦ω ◦η = ωj ◦η = τj. Hence we may define a morphism
π : X→ Hom(A, lim

←−
F) given by π :  7→ η for every  ∈ J . The morphism π makes the

diagram(2.7) commutative. It is obvious that π is unique such that the diagram(2.7)
is commutative.

Hom(A, lim
←−

F)
ω∗


((

ω∗
j

''

Xπoo

λ

yy

λj

yy

Hom(A, F())

(F(ϕ))∗

��
Hom(A, F(j))

(2.7)

Hence for all X ∈ Sets with a natural transformation λ : Δ(X)
•→ Hom(A, F−), there

exists unique natural transformation
•
π : Δ(X)

•→ Δ(Hom(A, lim
←−

F)) given by
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(π : X→ Hom(A, lim
←−

F))∈J such that
•
π factors through λ. Therefore,

Hom(A, lim
←−

F) ∼= lim
←−

Hom(A, F−) □

2.4. Projective and Injective.

Definition 2.6 (Injective objective[1]). If E ∈ C is an injective object, then for every
morphism ƒ : A → E and every monic μ : A → B there exists g : B → E such that the
diagram(2.8) is commutative.

A
μ //

ƒ
��

B

g��
E

(2.8)

Definition 2.7 (Projective object[1]). If P ∈ C is a projective object, then for every
morphism ƒ : P→ A and every epi ν : A → B there exists g : P → B such that the
diagram(2.9) is commutative.

P

ƒ
��

g

��
A ν

// B

(2.9)

2.5. Comma category.

Definition 2.8 (Comma category[1]). Let A,B,C ∈ C. Then (A ↓ C) is a comma
category if

Object: 〈ƒ , B〉, where ƒ : A→ B.
Morphism: h : 〈ƒ , B〉 → 〈g,C〉 makes the diagram(2.10) commute in C.

A

�� ��
B h // C

(2.10)

2.6. Product and Coproduct.

Definition 2.9 (Product[1]). Let A,B ∈ C. Then for all C ∈ C and for every morphism
C→ A, C→ B there exists an object A ⊓ B ∈ C and unique morphism C→ A ⊓ B such
that the diagram (2.11) is commutative. We call A ⊓ B product.

A

A ⊓ B

<<

""

C

__

��

oo

B

(2.11)

Definition 2.10 (Coproduct[1]). Let A,B ∈ C. Then for all C ∈ C and for every
morphism A → C, B → C there exists an object A ⊔ B ∈ C and unique morphism
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A ⊓ B→ C such that the diagram (2.12) is commutative. We call A ⊔ B coproduct.

A

��||
A ⊓ B // C

B

bb ??(2.12)

2.7. Pullback and Pushout.

Definition 2.11 (Pullback[1]). Let A → C ← B be morphisms in C. For all D ∈ C, if
the diagram(2.13) is commutative, then there exists an object A⊓CB ∈ C and unique
morphism D → A ⊓C B such that the diagram(2.14) is commutative. That A ⊓C B is
the pullback.

D //

��

B

��
A // C

(2.13)

D

##

��

))A ⊓C B //

��

B

��
B // C

(2.14)

Definition 2.12 (Pushout[1]). Let A ← C → B be morphisms in C. For all D ∈ C, if
the diagram(2.15) is commutative, then there exists an object A⊔CB ∈ C and unique
morphism A ⊔C B → D such that the diagram(2.16) is commutative. That A ⊔C B is
the pushout.

D Boo

A

OO

Coo

OO

(2.15)

D

A ⊔C B

cc

Boo

ii

B

OO

YY

Coo

OO(2.16)

3. Hom-Set Category

We defined the category CH. Now, we prove that the definition of CH is well-
defined.

Proof. There exists identity morphism d : HomC(A,B)→ HomC(A,B) where d :=
〈dA, dB〉. Suppose that Hom(A,B), Hom(C,D), Hom(E, F), Hom(G,H) are objects in
CH. Let ν0 : C→ A, μ0 : B→ D, ν1 : E→ C, μ1 : D→ F, ν2 : G→ E, μ2 : F→ H be mor-
phisms in C. Then we have

Hom(A,B)
〈ν0,μ0〉−→ Hom(C,D)

〈ν1,μ1〉−→ Hom(E, F)
〈ν2,μ2〉−→ Hom(G,H)
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For every ƒ ∈ Hom(A,B), suppose that the diagram(3.1) is commutative.

A

ƒ
��

C
ν0oo

��

E
ν1oo

��

G
ν2oo

��
B μ0

// D μ1
// F μ2

// H

(3.1)

We define the composition

(3.2) 〈ν1, μ1〉 ◦ 〈ν0, μ0〉 := 〈ν0 ◦ ν1, μ1 ◦ μ0〉
Hence we have

�

〈ν2, μ2〉◦〈ν1, μ1〉
�

◦〈ν0, μ0〉 = 〈ν2, μ2〉◦
�

〈ν1, μ1〉◦〈ν0, μ0〉
�

Therefore,
CH is a category. □

3.1. Hom-Set of CH. Let HomC(A,B), HomC(C,D) ∈ CH. Suppose that 〈ν, μ〉 and
that 〈ν′, μ′〉 are morphisms of CH:

HomC(A,B)
〈ν′,μ′〉
−−−−→
〈ν,μ〉

HomC(C,D)

We define a binary relation: 〈ν, μ〉 ∼ 〈ν′, μ′〉 when μ ◦ ƒ ◦ ν = μ′ ◦ ƒ ◦ ν′ for all ƒ ∈
HomC(A,B). It is obvious that ‘∼’ is an equivalence relation. Then HomCH(HomC(A,B), HomC(C,D))
is a quotient set of Hom(C,A) × Hom(B,D) by ∼. These may arise some trouble,
hence we suppose that μ ◦ ƒ ◦ ν = μ′ ◦ ƒ ◦ ν′ for all ƒ ∈ Hom(A,B) if and only if ν = ν′

and μ = μ′ in C. Hence we have the two hypotheses about the categroy C, in this
paper:

• The hom-sets is small.
• ν ◦ ƒ ◦ μ = ν′ ◦ ƒ ◦ μ′ for all ƒ ∈ Hom(A,B) if and only if ν = ν′ and μ = μ′ in C.

3.2. Monic and Epi in CH.

Proposition 3.1. A morphim 〈ν, μ〉 : Hom(A,B)→ Hom(C,D) is monic if and only if
ν : C→ A is epi and μ : B→ D is monic.

Proof. Let ƒ , ƒ ′ ∈ Hom(A,B) with ƒ ̸= ƒ ′. Suppose that ν : C → A is epi and that
μ : B → D is monic. Then ƒ ̸= ƒ ′ implies ƒ ◦ ν ̸= ƒ ′ ◦ ν and μ ◦ ƒ ̸= μ ◦ ƒ ′. It follows that
μ ◦ ƒ ◦ ν ̸= μ ◦ ƒ ′ ◦ ν. On the other hand, Suppose that a morphim 〈ν, μ〉 : Hom(A,B)→ Hom(C,D)
is monic. Hence we have that ƒ ̸= ƒ ′ implies μ ◦ ƒ ◦ ν ̸= μ ◦ ƒ ′ ◦ ν. Hence ƒ ◦ ν ̸= ƒ ′ ◦ ν
and μ ◦ ƒ ̸= μ ◦ ƒ ′. And the morphisms ƒ and ƒ ′ are not fixed. Therefore, that ƒ ̸= ƒ ′

implies ƒ ◦ ν ̸= ƒ ′ ◦ ν and μ ◦ ƒ ̸= μ ◦ ƒ ′. □

Proposition 3.2. A morphism 〈ν, μ〉 : Hom(A,B)→ Hom(C,D) is epi if and only if
ν : C→ A is monic, μ : B→ D is epi.

Proof. Let Hom(E, F) be a object of CH, 〈α, β〉 and 〈α′, β′〉morphisms from Hom(C,D)
to Hom(E, F). Then we have

Hom(A,B)
〈ν,μ〉
−−−→ Hom(C,D)

〈α,β〉
−−−−→
〈α′,β′〉

Hom(E, F)

Suppose that ν is monic and that μ is epi. Then ν ◦ α = ν ◦ α′ and β ◦ μ = β′ ◦ μ im-
plies α = α′ and β = β′, respectively. Hence β ◦ μ ◦ ƒ ◦ ν ◦ α = β′ ◦ μ ◦ ƒ ◦ ν ◦ α′ for all
ƒ ∈ Hom(A,B) implies α = α′ and β = β′. Hence if 〈α, β〉 ◦ 〈ν, μ〉 = 〈α′, β′〉 ◦ 〈ν, μ〉 then
〈α, β〉 = 〈α′, β′〉. Hence 〈ν, μ〉 is epi. On the other hand, Suppose that 〈ν, μ〉 is epi.
Then 〈α, β〉 ◦ 〈ν, μ〉 = 〈α′, β′〉 ◦ 〈ν, μ〉 implies 〈α, β〉 = 〈α′, β′〉. Hence if β ◦ μ ◦ ƒ ◦ ν ◦ α = β′ ◦ μ ◦ ƒ ◦ ν ◦ α′
for all ƒ ∈ Hom(A,B) then α = α′ and β = β′. And β ◦ μ ◦ ƒ ◦ ν ◦ α = β′ ◦ μ ◦ ƒ ◦ ν ◦ α′
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for all ƒ ∈ Hom(A,B) if and only if β ◦ μ = β′ ◦ μ and α ◦ ν = α′ ◦ μ. Therefore, that ν
is monic and μ is epi. □

3.3. Functor Hom(A,−) from C to CH. Let C,D ∈ C, μ a monic from C to D. Then the
functor Hom(A,−) sends C,D to Hom(A,C), Hom(A,D), respectively. And it sends μ
to 〈d, μ〉. Hence we have,

Proposition 3.3. The functor Hom(A,−) preserves all monic morphisms and limits
in CH.

Proof. Immediate from theorems 2.1 and 2.2. □

3.4. Injective and Projective Objects In CH.

Proposition 3.4. An object Hom(P, E) is an injective object in CH if and only if P is
a projective object and E is an injective object in C,

Proof. Let 〈ν, μ〉 : Hom(A,B) → Hom(C,D) be a monic in CH. By proposition 3.1, we
have that ν : C → A is epi and μ : B → D is monic. Suppose that P is a projective
object and that E is an injective object. Then we have P is a projective object if and
only if for every morphim ρ : P → A, there exists a morphism θ : P → C such that
the diagram(3.3) is commutative, and E is an injective object if and only if for every
morphism π : B→ E, there exists a morphism ϕ : C→ E such that the diagram(3.4) is
commutative.

P

ρ
��

θ

��
C ν

// A

(3.3)

B
μ //

π
��

D

ϕ��
E

(3.4)

Then for all ƒ ∈ Hom(A,B) there exists a morphism g : P → E such that the dia-
gram(3.5) is commutative.

P
g //

ρ
��

θ

��

E

C ν
// A

ƒ
// B μ

//

π

OO

D

ϕ
__

(3.5)

It follows that the diagram(3.6) is commutative.

Hom(A,B)
〈ν,μ〉 //

〈ρ,π〉
��

Hom(C,D)

〈θ,ϕ〉ww
Hom(P, E)

(3.6)

Hence Hom(P, E) is an injective object in CH. On the other hand, suppose that
Hom(P, E) is an injective object in CH. Then the diagram(3.6) is commutative. Hence
there exists a pair 〈θ,ϕ〉 such that the diagram(3.5) is commutative for every pair
〈ρ, π〉. It implies the diagrams (3.3) and (3.4) are commutative. Hence P is a projec-
tive object and E is an injective object. □

Proposition 3.5. An object Hom(E, P) is projective object in CH if and only if E is
an injective object and P is a projective object in C.
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Proof. Let morphism 〈ν, μ〉 : Hom(A,B)→ Hom(C,D) be an epi. By proposition 3.2, a
morphism 〈ν, μ〉 is epi if and only if ν : C→ A is monic and μ : B→ D is epi. Suppose
that P is a projective object and that E is an injective object in C. Then for every
morphism ρ : P→ D there exists a morphism θ : P→ B such that the diagram(3.7) is
commutative. And for every morphism π : C → E there exists a morphism ϕ : A → E
such that the diagram(3.8) is commutative.

P

ρ
��

θ

��
B μ

// D

(3.7)

C ν //

π
��

A

ϕ��
E

(3.8)

Hence for all g ∈ Hom(E, P), there exists a morphism ƒ ∈ Hom(A,B) such that the
diagram(3.9) is commutative.

C ν //

π
��

A
ƒ //

ϕ��

B
μ // D

E g
// P

ρ

OO

θ

__

(3.9)

It follows that for every morphism 〈π, ρ〉 there exist a morphism 〈θ,ϕ〉 such that the
diagram(3.10) is commutative.

Hom(E, P)

〈π,ρ〉
��

〈ϕ,θ〉

ww
Hom(A,B)

〈ν,μ〉
// Hom(C,D)

(3.10)

Hence Hom(E, P) is a projective object in CH. On the other hand, suppose that
Hom(E, P) is a projective object. Then for every morphism 〈π, ρ〉 there exists a mor-
phism 〈ϕ, θ〉 such that the diagram(3.10) is commutative. Hence the diagram(3.9) is
commutative. It follows that the diagrams (3.7) and (3.8) are commutative. Hence
P is a projective object and E is an injective object. □

3.5. Comma Category (Hom(A,B) ↓ CH). Suppose that 〈〈ƒ , g〉, Hom(C,D)〉 and
〈〈ƒ ′, g′〉, Hom(E, F)〉 are objects of comma category (Hom(A,B) ↓ CH). Let 〈ν, μ〉
be a morphism from 〈〈ƒ , g〉, Hom(C,D)〉 to 〈〈ƒ ′, g′〉, Hom(E, F)〉. Then the morphism
〈ν, μ〉 makes the diagram(3.11) commute.

Hom(A,B)
〈ƒ ,g〉

ww

〈ƒ ′,g′〉

''
Hom(C,D)

〈ν,μ〉
// Hom(E, F)

(3.11)
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Hence for all  ∈ Hom(A,B), the diagram(3.12) is commutative.

C //

ƒ
��

D

μ

}}

A 
// B

g

OO

g′
��

E //

ƒ ′

OOν

>>

F

(3.12)

Hence the digrams (3.13) and (3.14) are commutative.

E

ƒ ′ ��

ν // C

ƒ��
A

(3.13)

B
g

��

g′

��
D μ

// F

(3.14)

Hence we have that ν : 〈ƒ , E〉 → 〈ƒ ′, C〉 in comma category (C ↓ A) and that μ : 〈g,D〉 →
〈g′, F〉 in comma category (B ↓ C).

Proposition 3.6. There exists a bifunctor T : (C ↓ A)op × (B ↓ C)→ (Hom(A,B) ↓ CH).
And the bifunctor is bijective.

Proof. We define a bifunctor T given by

objects: (〈ƒ , C〉, 〈g,D〉) 7→ 〈〈ƒ , g〉, Hom(C,D)〉
morphisms: (ν, μ) 7→ 〈ν, μ〉

It is obvious that T(d, d) = 〈d, d〉. Suppose that ν′ : 〈ƒ ′′, G〉 → 〈ƒ ′, E〉 in (C ↓ A) and
that μ′ : 〈g′, F〉 → 〈g′′, H〉 in (B ↓ C). By Equation 3.2, we have that

T(ν ◦ ν′, μ′ ◦ μ) = 〈ν ◦ ν′, μ′ ◦ μ〉
= 〈ν′, μ′〉 ◦ 〈ν, μ〉
= T(ν′, μ′) ◦ T(ν, μ)

Hence T is a bifunctor. And it is obvious that T is bijective. □

3.6. Product and Coproduct in CH.

Proposition 3.7. There exist the products in CH if and only if there exist the prod-
ucts and coproducts in C. And

(3.15) Hom(A,B) ⊓Hom(C,D) ∼= Hom(A ⊔ C,B ⊓D)

Proof. Suppose that there exist the products in CH. Let Hom(A,B), Hom(C,D) ∈ CH.
Then for all Hom(E, F) ∈ CH and for every morphism 〈, 〉 : Hom(E, F)→ Hom(A,B),
〈′, ′〉 : Hom(E, F)→ Hom(C,D) there exists a morphism 〈ν, μ〉 such that the dia-
gram(3.16) is commutative.

Hom(A,B)

Hom(A,B) ⊓Hom(C,D)

55

**

Hom(E, F)
〈ν,μ〉oo

gg

ww
Hom(C,D)

(3.16)
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Then there exists Hom(P,Q) ∈ CH such that Hom(A,B) ⊓Hom(C,D) ∼= Hom(P,Q).
Hence for all g ∈ Hom(E, F), the diagram(3.17) is commutative.

A

����

// B

P ν // E
g // F

μ //

OO

��

Q

__

��
C

OO

//

^^

D

(3.17)

It follows that the diagrams (3.18) and (3.19) are commutative.

B

Q

??

��

F
μoo

__

��
D

(3.18)

A

����
P ν // E

C

__ ??(3.19)

Hence we have that P ∼= A⊔C, Q ∼= B⊓D. On the other hand, suppose that there exist
the products and coproducts in C. Then the diagrams (3.18) and (3.19) are commu-
tatives with P ∼= A ⊔ C, Q ∼= B ⊓ D. Hence for all g ∈ Hom(E, F), the diagram(3.17) is
commutative. Hence the diagram(3.20) is commutative.

Hom(A,B)

Hom(A ⊔ C,B ⊓D)

55

))

Hom(E, F)
〈ν,μ〉oo

gg

ww
Hom(C,D)

(3.20)

Hence we have that there exist the product in CH and

Hom(A,B) ⊓Hom(C,D) ∼= Hom(A ⊔ C,B ⊓D) □

Proposition 3.8. There exist the coproducts in CH if and only if there exist the
products and coproducts in C. And

(3.21) Hom(A,B) ⊔Hom(C,D) ∼= Hom(A ⊓ C,B ⊔D)

Proof. The proof of the proposition 3.8 is similar to the proof of proposition 3.7. □

Proposition 3.9. The products and coproducts exist in CH simultaneously.

Proof. Immediate from propositions 3.7 and 3.8. □

3.7. Pushout and Pullback in CH.

Proposition 3.10. There exist the pullback in CH if and only if there exist the
pushout and pullback in C. And

(3.22) Hom(A,B) ⊓Hom(E,F) Hom(C,D) ∼= Hom(A ⊔E C,B ⊓F D)
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Proof. Let Hom(A,B)→ Hom(E, F)← Hom(C,D) be morphisms in CH. Suppose that
there exist the pullback in CH. Then for all Hom(G,H) ∈ CH, if the diagram(3.23)
is commutative then there exists a morphism 〈ν, μ〉 such that the diagram(3.24) is
commutative.

Hom(G,H) //

��

Hom(C,D)

��
Hom(A,B) // Hom(E, F)

(3.23)

Hom(G,H)
〈ν,μ〉

** **

))

Hom(A,B) ⊓Hom(E,F) Hom(C,D) //

��

Hom(C,D)

��
Hom(A,B) // Hom(E, F)

(3.24)

And there exists Hom(P,Q) ∈ CH such that Hom(P,Q) ∼= Hom(A,B) ⊓Hom(E,F) Hom(C,D).
Hence for all ƒ ∈ Hom(G,H), if the diagram(3.25) is commutative then the mor-
phisms ν, μ make the diagram(3.26) commute.

C //

��

D

��
E //

??

��

G
ƒ // H //

OO

��

F

A //

OO

B

??(3.25)

C //

����

D

''E //

77

''

P ν // G
ƒ // H

μ //

OO

��

Q //

__

��

F

A //

OO__

B

77(3.26)

It follows that the diagrams (3.27) and (3.28) are commutative.

G

P

__

Coo

gg

A

OO

WW

E

OO

oo

(3.27)

H

��

��

''
Q //

��

D

��
B // F

(3.28)

Hence there exist the pullback and pushout in C. Hence P ∼= A ⊔E C and Q ∼= B ⊓F D.
Hence we have that

Hom(A,B) ⊓Hom(E,F) Hom(C,D) ∼= Hom(A ⊔E C,B ⊓F D)
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On the other hand, suppose that there exist the pullback and pushout in CH. Then
the diagrams (3.27) and (3.28) are commutative. Hence for all ƒ ∈ Hom(G,H), the
diagrams (3.26) and (3.25) are commutative. Hence the diagram(3.24) is commu-
tative. It follows that there exist pullback in CH. □

Proposition 3.11. There exist the pushout in CH if and only if there exist the pull-
back and pushout in C. And

(3.29) Hom(A,B) ⊔Hom(E,F) Hom(C,D) ∼= Hom(A ⊓E C,B ⊔F D)

Proof. The proof of proposition 3.11 is similar to proposition 3.10. □

Proposition 3.12. There exist the pushout and pullback in CH simultaneously.

3.8. (Co)Limit In CH.

Definition 3.1. Let T : CH → C, S : CH → Cop given by

Object:

T : Hom(P,Q) 7→ Q

S : Hom(P,Q) 7→ P

Morphism:

T : 〈ν, μ〉 7→ μ

S : 〈ν, μ〉 7→ ν

Let D be a category, G and G’ two functors from D to CH. Suppose that τ is a
natural transformation τ : G

•→ G′. Then we have that

Proposition 3.13. That T(τ) is a natural transformation T ◦G •→ T ◦G′ and that S(τ)
is a natural transformation S ◦G •→ S ◦G′. Hence

(3.30) Nt(G,G′) ∼= Nt(T ◦G,T ◦G′) × Nt(S ◦G,S ◦G′)

Proof. Let D1, D2 ∈ D. Then there exist Hom(A1, B1), Hom(B2, B2), Hom(A
′

1, B
′
1), Hom(A

′

2, B
′
2)

in CH such that G(D1) = Hom(A1, B1), G(D2) = Hom(B2, B2), G′(D1) = Hom(A
′

1, B
′

1),
G′(D2) = Hom(A

′

2, B
′

2) in CH. And for every morphism ƒ : D1 → D2 in D the follow-
ing diagram is commutative where τD1 = 〈1, 2〉, τD2 = 〈2, 2〉, G(ƒ ) = 〈ν, μ〉 and
G′(ƒ ) = 〈ν′, μ′〉.

Hom(A1, B1)
τD1 //

〈ν,μ〉
��

Hom(A
′

1, B
′

1)

〈ν′,μ′〉
��

Hom(A2, B2) τD1
// Hom(A

′

2, B
′

2)

Hence the following diagram is commutative for all ƒ ∈ Hom(A1, B1).

A
′

1
// A1

ƒ // B1 //

��

B
′

1

��
A
′

2
//

OO

A2 //

OO

B2 // B
′

2
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Then the following two diagrams are commutative.

B1

��

// B
′

1

��
B2 // B

′

2

A
′

2

��

// A2

��
A
′

1
// A1

By definition 3.1, we have that two natural transformations:

ω : T ◦G •→ T ◦G′ given by ωD := T(τD)

η : S ◦G •→ S ◦G′ given by ηD := S(τD)

Therefore,

Nt(G,G′) ∼= Nt(T ◦G,T ◦G′) × Nt(S ◦G,S ◦G′) □

Let J be a categroy, F a functor from J to CH. Suppose that there exists the limit
of F in CH. Then for all Hom(A,B) ∈ C with a natural transformation Δ(Hom(A,B))

•→ lim
←−

F,

there exists unique natural transformation η : Δ(Hom(A,B))
•→ Δ(lim

←−
F) given by (ηj :=

〈ν, μ〉)j∈J such that the diagram(3.31) is commutative. That Δ is a diagnal func-
tor[1].

Δ(lim
←−

F)

##

Δ(Hom(A,B))
ηoo

yy
F

(3.31)

And there exists Hom(M,N) ∈ CH such that Hom(M,N) ∼= lim
←−

F. Hence for every
j ∈ J with F(j) = Hom(P,Q), the diagram(3.32) is commutative.

Hom(M,N)

''

Hom(A,B)
ηjoo

ww
Hom(P,Q)

(3.32)

Hence for all ƒ ∈ Hom(A,B), the diagram(3.33) is commutative.

A
ƒ // B

��

��

P //

OO

��

Q

M

FF

// N

OO
(3.33)
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It follows that the diagrams (3.34) and (3.35) are commutative.

M // A

P

__ ??

(3.34)

N

��

B

��

oo

Q

(3.35)

The two functors T and S are full by definition 3.1, hence we have that

M ∼= lim
←−

S ◦ F(3.36)

N ∼= lim
←−

T ◦ F(3.37)

Proposition 3.14. There exists the limit of F if and only if there exist the limit of
T ◦ F and the limit of S ◦ F.

Proof. Immediate from diagrams (3.31 to 3.35), definition 3.1 and proposition 3.13.
□

Proposition 3.15. There exists the colimit of F if and only if there exist the colimit
of T ◦ F and the colimit of S ◦ F.

Proof. The proof of proposition 3.15 is similar to the proof of proposition 3.14. □
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