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Abstract. First in this paper we will prove the Kakeya maximal function

conjecture in a special case when tube intersections behave like line intersec-
tions. This paper highlights how different tube intersections can be than line
intersections. However, we show that the general case can be deducted from
the linelike case.

1. Introduction

A line li is defined as

li := {y ∈ Rn|∃a, x ∈ Rn and t ∈ R s.t y = a+ xt}

We define the δ-tubes as δ neighbourhoods of lines:

T δ
i := {x ∈ Rn||x− y| ≤ δ, y ∈ li}.

The order of intersection is defined as the number of tubes intersecting in an in-
tersection. We define A . B to mean that there exists a constant Cn depending
only on n such that A ≤ CnB. We say that tubes are δ-separated if their angles
are δ-separated. Moreover, let f ∈ L1

loc(R
n). For each tube in B(0, 1) define a as

it‘s center of mass. Define the Kakeya maximal function as
f∗
δ : Sn−1 → R via

f∗
δ (ω) = sup

a∈Rn

1

T δ
ω(a) ∩B(0, 1)

∫
T δ
ω(a)∩B(0,1)

|f(y)|dy.

In this paper any constant can depend on dimension n. In study of the Kakeya
maximal function conjecture we are aiming at the following bounds

(1.1) ||f∗
δ ||p ≤ Cǫδ

−n/p+1−ǫ||f ||p,

for all ǫ > 0 and some n ≤ p ≤ ∞. A very important reformulation of the problem
by Tao is the following. A bound of the form (1.1) follows from a bound of the
form

(1.2) ||
∑
ω∈Ω

1B(0,1)1Tω(aω)||p/(p−1) ≤ Cǫδ
−n/p+1−ǫN1/p′

δ(n−1)/p′

,

for all ǫ > 0, and for any set of N ≤ δ1−n δ-separated of δ-tubes. See for example
[3] or [2]. It’s enough to consider the case p = n and the rest of the cases will
follow via interpolation [3, 2]. Moreover it’s enough to consider the case where the
δ-separated set is maximal. We will prove that
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Theorem 1.1. Let there be a N . δ1−n δ-separated δ-tubes. Assume that the
intersection of each pair of different tubes contains only maximally one intersection
of given dyadic order. Then we have

||
∑
ω∈Ω

1B(0,1)1Tω(aω)||n/(n−1) ≤ Cn(log (
1

δ
Nδn−1)(n−1)/n.

It is a fact that the intersection of each pair of different lines contains only
maximally one point. So this paper emphasis the difference between line and tube
intersections and it can be said that we first prove the Kakeya maximal function
conjecture in a linelike case. However, we have the general case also.

Corollary 1.2. Let there be a N . δ1−n δ-separated δ-tubes. Then we have

||
∑
ω∈Ω

1B(0,1)1Tω(aω)||n/(n−1) ≤ Cn(log (
1

δ
Nδn−1)(n−1)/n.

One of our results is the following: a generalization of a lemma of Corbóda.

Lemma 1.3. [A generalization of a lemma of Corbóda] For δ-separated tube inter-
sections of order 2k > 1 it holds that

|
2k⋂
i=1

Ti| . δn−12−k/(n−1).

It‘s not hard to check that the above bound is essentially tight.

2. Previously known results

We will use the following bound for the pairwise intersections of δ-tubes:

Lemma 2.1 (Corbòda). For any pair of directions ωi, ωj ∈ Sn−1 and any pair of
points a, b ∈ R

n ∩B(0, 1), we have

|T δ
ωi
(a) ∩ T δ

ωj
(b)| .

δn

|ωi − ωj |
.

A proof can be found for example in [2].
For any (spherical) cap Ω ⊂ Sn−1, |Ω| & δn−1, δ > 0, define its δ-entropy Nδ(Ω)

as the maximum possible cardinality for an δ-separated subset of Ω.

Lemma 2.2. In the notation just defined

Nδ(Ω) ∼
|Ω|

δn−1
.

Again, a proof can essentially be found in [2].

3. A proof of the generalization of the lemma of Corbóda

Let us define

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti
(x)1B(0,1)(x) ≤ 2k+1}.

Let us suppose that 2k = δ−β , 0 < β ≤ n − 1, and let‘s suppose that tube Tω′

intersecting Tω∩E2k has it‘s direction outside of a cap of size ∼ δn−1−β on the unit
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sphere. Then the angle between Tω and Tω′ is greater than ∼ δ1−β/(n−1). Thus by
lemma 1.3 the intersection

(3.1) |
2k⋂
i=1

Ti| ≤ |Tω ∩ Tω′ ∩ E2k | ≤ |Tω ∩ Tω′ | . δn−1+β/(n−1) ≤ δn−12−k/(n−1).

Thus, we can suppose that the directions in the intersection E2k ∩ Tω ∩ Tω′ belong
to a cap of size ∼ δn−1+β . If we δ - separate the cap via lemma 2.2 we get that
the cap can contain at most ∼ 2k tube-directions. Thus, for any tube Tω in the
intersection there exists a tube Tω′ , such that the angle between Tω and Tω′ is
∼ δ1−β/(n−1) and the inequality (3.1) is valid. Thus we proved the lemma 1.3.

4. The proof of the linelike case

We define

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti
1B(0,1) ≤ 2k+1}.

We have for k > 0 that

E2k =

M⋃
i=1

2k⋂
j=1

Tij .

We assume the special case that

(4.1) E2k ∩ Tl ∩ Tm ⊂
2k⋂
j=1

Tij ,

for l 6= m. We then say that the intersection Tl ∩ Tm is linelike, because the above
holds for tubes replaced by lines. However it’s easy to construct examples of situ-
ations where (4.1) does not hold. Now, via standard dyadic decomposition

∑
k

(2k)n/(n−1)|E2k | ∼ ||
∑
ω∈Ω

1B(0,1)1Tω(aω)||
n/(n−1)
n/(n−1)

It suffices to proof that

(4.2) |E2k | . 2−kn/(n−1)Nδn−1.

We use Fubini to deduct

(4.3)

(2k)3|E2k | ∼

∫
E

2k

(

N∑
i=1

1B(0,1)1Ti
)3 =

N∑
i=1

N∑
j=1

N∑
l=1

∫
1B(0,1)1Ti

1Tj1Tl

∼
N∑
i=1

N∑
j=1

N∑
l=1

|B(0, 1) ∩ Ti ∩ Tj ∩ Tl ∩ E2k |
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Now, for each three different tubes Ti, Tj and Tl there are only ∼ 2k tubes that
B(0, 1) ∩ Ti∩, . . . , T2k ∩ E2k 6= ∅. Moreover,
(4.4)
N∑
i=1

N∑
j=1

N∑
l=1

|B(0, 1) ∩ Ti ∩ Tj ∩ Tl ∩ E2k |

. N + C

N∑
i=1

N∑
j=1

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k |

+

N∑
i=1,i 6=j,i 6=l

N∑
j=1,j 6=i,l 6=j

∼2k∑
l=1,l 6=i,l 6=j

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k ∩ Tl|

. δn−1N + 2kδn−1N +

N∑
i=1,i 6=j,i 6=l

N∑
j=1,j 6=i,l 6=j

∼2k∑
l=1,l 6=i,l 6=j

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k ∩ Tl|

In the above from Fubini
N∑
i=1

N∑
j=1

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k | ∼ (2k)2|E2k | . 2kδn−1N,

where we used that

∑
k

2k|E2k | ∼ ||
N∑
i=1

1Ti
||1 =

N∑
i=1

|Ti| ∼ δn−1N.

Next we can sum Tj away and obtain

(4.5)

=

N∑
i=1,i 6=j,i 6=l

N∑
j=1,j 6=i,l 6=j

∼2k∑
l=1,l 6=i,l 6=j

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k ∩ Tl|

.

N∑
i=1,i 6=l

∼2k∑
l=1,l 6=i

2k|B(0, 1) ∩ Ti ∩ E2k ∩ Tl|

This ”summing away” is based on Fubini:

N∑
i=1

N∑
j=1

∼2k∑
l=1

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k ∩ Tl|

=

N∑
i=1

N∑
j=1

∼2k∑
l=1

∫
B(0,1)∩Ti∩Tl∩E

2k

1Tj

=

N∑
i=1

∼2k∑
l=1

∫
B(0,1)∩Ti∩Tl∩E

2k

N∑
j=1

1Tj

.

N∑
i=1

∼2k∑
l=1

∫
B(0,1)∩Ti∩Tl∩E

2k

2k

=
N∑
i=1

∼2k∑
l=1

2k|B(0, 1) ∩ Ti ∩ E2k ∩ Tl|
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Now, it follows from the lemma 1.3 that we have

(4.6) |B(0, 1) ∩ Tj ∩ Tl ∩ E2k | . 2−k/(n−1)δn−1,

for i 6= l. Thus, the claim (4.2), follows from the equations (4.3), (4.4), (4.5) and
(4.6).

5. The proof the general case

We divide each δ-tube to L paraller δ′-tubes. So we have

|E2k | ∼ |{x ∈ Rn|2k ≤
N∑
i=1

L∑
j=1

1T δ′

ij
1B(0,1) ≤ 2k+1}|.

Now, we define

E′
j2k := {x ∈ Rn|2k ≤

N∑
i=1

1Tijδ
′ 1B(0,1) ≤ 2k+1}.

Thus,
L∑

j=1

|E′
j2k | ∼ |E2k |.

We make δ′ so small that we have linelike intersections, in other words

E′
2k ∩ T δ′

l ∩ T δ′

m ⊂
2k⋂
j=1

T δ′

ij .

So we have
|E′

2k | . 2−kn/(n−1)Nδ
′(n−1)

via previous theorem 1.1. And we have

|E2k | ∼
L∑

j=1

|E′
j2k | . 2−kn/(n−1)NLδ

′(n−1) ∼ 2−kn/(n−1)Nδn−1,

whuch proves the corollary 1.2.
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