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Abstract 

Hilbert spaces are relevant because these extensions of vector spaces 

are capable of archiving sets of numbers in a structured way such that 

these data can be retrieved in a well-organized way. 

Currently, textbooks about Hilbert spaces do not contain a treatise of 

Paul Dirac’s bra-ket combination for quaternionic numbers. 

This paper shows that the bra-ket combination gives Hilbert spaces a 

range of unexpected capabilities. The fact that the quaternionic version 

of the bra-ket combination is practically unknown has a deep impact on 

the comprehension of the fundamentals of physical reality. 

1 Sets 

This paper considers the universe as a special kind of set. 

Popularly, the universe is often described as all of space and time or 

spacetime and its contents. In short, it is a special kind of set. Humans 

cannot think about subjects without giving these subjects an identifier 

and a sufficient description. Physical reality must operate without these 

linguistic tools. It probably acts via a trial-and-error approach. It must 

obey the arithmetic of its number systems. It exploits the freedom that 

this arithmetic does not settle. Physical reality operates very 

successfully. Humans use their senses and their brain to create an 

impression of their living environment. This is done such that the 

incoming information is filtered before it is accepted such that incorrect 

or noisy information does not cause a psychotic reaction in the brain. 

https://en.wikipedia.org/wiki/Universe
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Look at “How the brain works” in 

https://vixra.org/author/j_a_j_van_leunen  

The consequence is that humans do not observe their environment 

without thorough processing. They interpret the information that is 

retrieved from their living environment. For humans, their living 

environment is an association of information that is gathered or created 

about their environment. Thus, it cannot be avoided that the brain 

creates part of the applied information. This interpretation is even more 

important when instruments are applied that empower our senses. 

Mathematics is created by humans. This is the reason that a 

mathematical treatment of the considered set introduces number 

systems into the set. The number system will be used to give locations 

in space an individual identity. Since the coverage of plain space with 

number systems can occur in many ways, a special structure brings 

order into the coverage. This special structure appears to be a system of 

Hilbert spaces. In other words, this paper concerns a special type of set. 

A system of Hilbert spaces that all share the same underlying vector 

space describes this set. 

Set theory does not always establish beforehand the issues of what acts 

as the container of the set and what the restrictions for the members of 

the set are. This paper will consider a set that is contained in plain space 

and the members of the set are vectors. First, coverage of space by 

point-like objects that act like locations will be investigated. This 

coverage will be used to turn the vector space into a Hilbert space. 

By filling plane space with locations, the switch from countable content 

to uncountable content can be interpreted as a fundamental change in 

the behavior of the content of the set. According to set theory, the 

switch changes this kind of set into a continuum. The switch is 

https://vixra.org/author/j_a_j_van_leunen
https://en.wikipedia.org/wiki/Set_theory
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counterintuitive and cannot be established in a step-by-step fashion. 

Instead, the switch requires a redefinition of the set. 

The existence of the switch does not exclude the possibility that 

encapsulated subregions inside the continuum contain discrete sets. It 

also allows the container incorporates discrete subjects that interact 

with the continuum. All other content of the container acts as a tool 

that helps navigate the members of the set and is not supposed to 

influence the behavior of the set.  

1.1 Different types of sets 

The switch to a continuum is counterintuitive. Also, the switch in the 

behavior of the set when it changes from finite to infinite is 

counterintuitive. These switches cannot be reached in a step-by-step 

fashion. The switches enforce humans to redefine the set into another 

type of set with different behavior. 

A number system is characterized by its arithmetic. That arithmetic 

does not settle all aspects of the number system. Consequently, 

number systems exist in many versions that distinguish in the way that 

coordinate systems can settle the selection freedom of the number 

system. Cartesian coordinate axes appear to play an important role. 

This happens in the determination and comparison of geometric 

symmetries and in the way that change is taking its effect. 

It appears, that our universe can be interpreted as an ongoing show of 

possible coverages of the simple space with locations. The system of 

Hilbert spaces provides a regular place for all contents of this container. 

Each Hilbert space relates uniquely the identifiers to the corresponding 

locations. 

Instead of coverage by locations, space can also be covered by vectors. 

The result is a vector space. The arithmetic of vectors is simple. 
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Astonishingly, a detailed mathematical investigation of the system of 

Hilbert spaces that apply the same vector space reveals all essential 

aspects of what humans can observe in their universe. 

  



5 
 

 

 

2 Vector space 

In this paper, a plain space is a container that has the capability to 

harbor sets of point-like objects that represent locations. Empty space 

contains nothing that can be referred to. It has no size, no boundaries, 

and no center.  

A vector is a combination of two point-like objects that are connected 

by a line. This line defines the direction of the vector. One of the points 

is the base of the vector and the other point is its pointer. The vector 

has a length that is represented by a scalar. Shifting the vector along its 

direction line does not change the integrity of the vector. Also shifting 

the vector parallel to its direction does not change its integrity. Adding a 

vector to an empty space turns that space into a vector space. Vectors 

obey vector arithmetic. Via that arithmetic, vectors can reach all 

locations of point-like objects that are contained in the vector space.  

For example, by recurrently repeating the described shift along the 

direction line, the set of natural numbers can be constructed such that 

each new vector pointer location is identified by a corresponding 

natural number. This enables humans to think about these vector 

pointer locations. 

2.1 Vector arithmetic 

In this section vectors that reside in a vector space will be indicated 

with boldface and scalars will be indicated with italics. 

The addition of vectors is commutative. It can be done by shifting one of 

the vectors in parallel until it coincides with the alternative point of the 

other vector. Now the two resulting points represent the vector sum. 

Vector addition is commutative. The addition creates new vectors. 
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 + = +v w w v  (1.1) 

Vector addition is also associative. 

 ( ) ( )+ + = + +u v w u v w  (1.2) 

Multiplication with a scalar is commutative. This multiplication may 

change the length and thus the integrity of the vector. It may create a 

new vector. 

 a a= =w v v  (1.3) 

Multiplication with scalars is distributive for scalars and vectors. 

 
( )

( )

a b a b

a a a

+ = +

+ = +

v v v

v w v w
 (1.4) 

Multiplication with negative scalars reverses the direction of the vector. 

In particular   

 ( )1− = −v v  (1.5) 

2.1.1 Base vectors 

A selected base  iu  is a subset of the vectors that is used to define 

another vector as a superposition of the members of the base. 

 
0

i N

i i

i

v
=

=

= v u  (1.6) 

An inner product ,v w  of two vectors v  and w would be defined in 

terms of the orthonormal base  iu as  

 
0

, ,
i N

i j i j

i

v w
=

=

= v w u u  (1.7) 

while 
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 ,i j ij=u u  (1.8) 

If the orthonormal base spans the full vector space, then the vector 

space contains N dimensions. N can be infinite. 

The inner product that is taken over all dimensions generates a metric. 

That metric can establish the length 
a
 of the vectoraas a scalar. The 

inner product can indicate the length of a vector 

 
2

,

=

=

a a

a a a
 (1.9) 

If the inner product equals zero, then either one of the vectors has zero 

length or the two vectors live in different dimensions. In that case, the 

vectors are independent. In a N dimensional vector space precisely N  

vectors can be mutually independent. 

2.2 Number systems 

We intend to apply the vector space to cover the empty space with one 

or more associated number systems that become the base of a 

coordinate system that helps us to navigate in the vector space. The 

coordinate markers will be point-like objects that will be identified with 

the corresponding element of the number system. After finishing the 

construction of the number system, the point-like coordinate markers 

will be detached from the numbers, but these markers will keep their 

identification with the number. In this way, the life story of the 

coordinate marker can be followed via this identifier. For 

multidimensional numbers, the real part of the number may act as a 

progress indicator for the dynamic behavior. The detached number 

system acts as a parameter space for a function that acts like the 

detached coordinate markers. The detached coordinate markers 

represent the target values of the function.  
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The arithmetic of vectors enables the construction of number systems. 

Several types of number systems exist. Hilbert spaces can only cope 

with number systems that are associative division rings. This reduces 

the choice to the real numbers, the complex numbers, and the 

quaternions. Later will become clear that the complex numbers and the 

quaternions are mixtures of real numbers and spatial numbers. Another 

name for a spatial number is an imaginary number. This paper avoids 

that name because it may generate confusion.  

Mixed numbers are often introduced as superpositions of base numbers 

in which real numbers play as superposition coefficients. This paper 

does not pursue that approach. Instead, mixed numbers are introduced 

as combinations of real numbers and spatial numbers. In this way, 

coordinate axes can be introduced at a later stage. The split into real 

numbers and spatial numbers follows the more essential split in 

different arithmetic. 

  

https://en.wikipedia.org/wiki/Division_algebra#Associative_division_algebras
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3 Real numbers 

The locations inside the vector space form a set. The set theory 

describes what happens in the set. If the locations are confined to the 

same direction line, then the set may expose the arithmetic of the real 

numbers. The square of a real number is zero or it equals a positive real 

number. We start with a simple subset. The set of natural numbers can 

be constructed by subsequently shifting a vector along the direction line 

of the vector. The shift replaces the base point of the vector such that it 

coincides with the former location of the pointer of the vector.  

The shifts introduce the procedures of counting and addition. An 

ongoing shift generates the set of natural numbers. This set is 

countable. We shall call a set countable when every member of the set 

can be labeled with a natural number. The resulting point-like objects 

are members of an ordered set. Reversing the shift introduces the 

subtraction procedure. If counting is reversed, then the point will be 

reached that the space is empty again. This is the reason to give the first 

base point a special identifier. It will be called point zero. If subtraction 

proceeds past point zero, then the negative integer numbers are 

introduced. Together with zero and the natural numbers, the negative 

numbers form the integer numbers.   

We can add multiple shifts in one action or shifts that involve longer 

vectors. This does not introduce new integer numbers. It introduces a 

procedure that in arithmetic is called multiplication. The reverse 

procedure is called division. Division can introduce new numbers that 

can be interpreted as ratios. Numbers that can be interpreted as ratios 

are called rational numbers. Rational numbers constitute classes of 

numbers that in addition and multiplication feature the same value. 

Each class corresponds with a location in vector space to which a vector 

points. Scientists have proven that every rational number class can be 



10 
 

labeled with a natural number. Thus, the set of rational number classes 

is countable. Without the addition of other numbers, all rational 

numbers appear to be surrounded by empty volume. On the applied 

direction line still, abundant empty volume is left to insert other 

numbers.  

Rational numbers can be squared. The result is again a rational number 

that results when the number is multiplied by itself. The reverse 

procedure is called square root. The square root need not result in a 

rational number. However, a converging sequence of rational numbers 

can approach the result arbitrarily close. If the converging series does 

not result in an existing rational number, then the result is called an 

irrational number. In many situations, a converging series of rational 

numbers does not result in a rational number. The missing number 

belongs to the irrational numbers. The set of irrational numbers cannot 

be counted. Each completely connected set of irrational numbers is 

uncountable. 

Adding to the rational numbers in one lump all limits of converging 

series that are not rational numbers makes the total set uncountable 

and turns the connected set into a continuum. This defines the set of 

real numbers. In this continuum, none of the members is surrounded by 

empty volume. Empty volume does not contain point-like objects that 

act as locations. In addition to the rational numbers, the real numbers 

contain all irrational numbers for which the square is a positive real 

number. Irrational numbers are limits of converging series of numbers 

where the limit is not a rational number. In the set of real numbers, all 

converging series of numbers result in a limit which is also a real 

number. Like the rational numbers, the real numbers form classes in 

which the members feature the same value. Featuring the same value 

means occupying the same location. A location is a point-like object that 
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is identified by a real number class. With the help of the real number 

classes, we can navigate along with the locations on the real number 

direction line. Countable infinity cannot be reached in a step-by-step 

fashion. The switch to infinity redefines the set. It is important to notice 

that switching from a countable set to an uncountable set cannot be 

achieved in a step-by-step fashion. Also, the switch to a continuum 

redefines the set. 

3.1 Real arithmetic 

We will indicate the real numbers with the suffix ᵣ.  

For real numbers, addition and multiplication are commutative, 

associative, and distributive. 

 
( ) ( )

r r r r

r r r r r r

b a a b

a b c a b c

+ = +

+ + = + +
  (3.1.1) 

 
( ) ( )

r r r r

r r r r r r

b a a b

a b c a b c

=

=
  (3.1.2) 

 ( )r r r r r r ra b c a b a c+ = +   (3.1.3) 

For real numbers, the square is zero or it is positive  

 0r ra a    (3.1.4) 

 

3.2 Selection freedom 

The arithmetic does not settle the selection freedom that exists in the 

development of real numbers. For example, inside the vector space, the 

location of point zero is selected without any restriction. Further, the 

direction of the direction line can be selected freely. The shift of vectors 

can be taken upward or downward. The consequence is that real 
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number systems exist in many versions that differ in the choices that 

are made. 

It is possible to add a coordinate marker to each real number class. The 

coordinate marker links the identity of the real number class to an 

actual point-like object. Via their values and position, the real number 

classes form an ordered set. We are interested in the behavior of the 

set of the point-shaped objects that we call coordinate markers above. 

The addition of a coordinate system establishes all selections and 

removes the selection freedom. The coordinate system freezes the 

version and the geometric symmetry of the number system.  
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4 Spatial numbers 

The square of a non-zero real number is always a positive real number. 

Numbers exist whose square equals a negative real number. The 

arithmetic of these numbers differs from the arithmetic of the real 

numbers. These numbers are spatial numbers. They no longer fit on the 

direction line of the real numbers. Instead, they reside on independent 

direction lines that still lay inside the vector space that contains the real 

number direction line. Spatial numbers may cover one or three 

independent direction lines. The one-dimensional spatial numbers 

together with the real numbers constitute the two-dimensional 

complex numbers. The three-dimensional spatial numbers together 

with the real numbers constitute the four-dimensional quaternions. If 

spatial numbers exist beyond the first spatial direction line, then the 

arithmetic of the spatial numbers enforces the third independent 

spatial direction line. Some mathematicians tend to call spatial 

numbers, imaginary numbers. This paper avoids that name giving 

because imaginary has other meanings that might confuse the 

significance of spatial numbers. 

Apart from zero, every spatial number has a direction. We will indicate 

the spatial numbers with a direction cap. This convention is also 

followed when the spatial numbers cover only one spatial dimension. 

Like the real numbers, the spatial numbers also contain rational 

numbers and irrational numbers on their direction lines. Like the real 

numbers, the completely connected set of spatial numbers is 

uncountable and forms a continuum. This also holds for the complex 

numbers and the quaternions.  

This does not take away that real numbers and spatial numbers can also 

occur in discrete sets. Discrete sets can be contained in an encapsulated 

region that is situated within a spatial continuum. 
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4.1 Spatial arithmetic 

For spatial numbers, addition and multiplication are commutative and 

associative. 

 
( ) ( )
b a a b

a b c a b c

+ = +

+ + = + +
  (4.1.1) 

The product d of two spatial numbers a and b results in a real scalar part 

rd  and a new spatial part d  

 rd d d ab= + =   (4.1.2) 

,rd a b= −  is the inner product of a and b  

For the inner product and the norm a holds 
2

,a a a=  

 , cos( )a b a b =   (4.1.3) 

The angle   between the spatial numbers a and b is measured in 

radians. 

The square of a spatial number equals zero or it is a negative real 

number. 

 , 0aa a a= −    (4.1.4) 

d a b=  is the outer product of a and b  

The spatial vector d is independent of a and independent of b . This means 

that , 0a d = and , 0b d =  

 
sin( )a b a b

a b b a

 =

 = − 
  (4.1.5) 
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4.2 Base numbers 

It is possible to write spatial numbers as superpositions of base 

numbers. For the three-dimensional spatial numbers, this means. 

 i j ka a i a j a k= + +   (4.2.1) 

4.3 Selection freedom 

Like real number systems, the spatial number systems exist in many 

versions that differ in the selections that are made during the 

development of this number system.  

It looks sensible but it is not necessary to take point zero at a common 

position for the real numbers and the spatial numbers. Point zero of the 

spatial numbers acts as the geometrical center of the spatial number 

system. In mixed number systems, the choice for the location of the 

geometrical center becomes more relevant.  

Apart from the fact that the main direction lines must be independent, 

in a three-dimensional spatial number system, the actual spatial 

directions can be selected freely. The first spatial direction line reduces 

the angular choice to two π radians. Inside this direction line, the 

direction of the shift has two choices. In the resulting spatial dimension, 

the choice of a direction line leaves a range of π radians. The 

independent direction line can be oriented right-handed or left-handed. 

Inside that independent direction line, the shift has again two choices. 

The handedness of the multiplication of spatial numbers is a special 

kind of symmetry.  
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4.4 Mixed arithmetic 

The addition and multiplication of real numbers with spatial numbers 

are commutative.  

 r r

r r

a b b a

a b ba

+ = +

=
  (4.4.1) 

Mixed numbers are indicated without suffixes and caps. In the next 

formula c is a mixed number. 

 
rc c c= +   (4.4.2) 

Mathematics often treats spatial numbers as vectors because their 

behavior corresponds to a large degree to other types of vectors. Also, 

large differences exist between types of vectors. Mathematics defines 

the inner product of vectors that represent spatial numbers as the 

above geometric scalar vector product (4.1.3). It is also called the dot 

product of two vectors.   

Only three mutually independent spatial number parts can be involved 

in the outer product. Vectors do not obey an outer product. This is why 

a vector space can have more than three dimensions. An equivalent of 

the dot product is possible in vector space. That equivalent does not 

produce values in the form of complex numbers or quaternions. 

The above formulas still do not determine the sign of the outer product. 

Apart from that sign, the outer product is fixed. 

Quaternionic multiplication obeys the equation  

 

( )( )
,

r r r

r r r r

c c c ab a a b b

a b a b a b ab a b

= + = = + +

= − + +  
  (4.4.3) 
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The   sign indicates the freedom of choice of the handedness of the 

product rule that exists when selecting a version of the quaternionic 

number system. In this way, the handedness of the product rule is 

treated as a special kind of symmetry. The version must be selected 

before it can be used in calculations. 

Two quaternions that are each other’s inverse can rotate the spatial 

part of another quaternion. 

 /c ab a=   (4.4.4) 

The construct rotates the spatial part of b  that is perpendicular to a  

over an angle that is twice the angular phase   of ia a e =  where 

/i a a=  . 

Cartesian quaternionic functions apply a quaternionic parameter space 

that is sequenced by a Cartesian coordinate system. In the parameter 

space, the real parts of quaternions are often interpreted as instances 

of (proper) time, and the spatial parts are often interpreted as spatial 

locations. With these interpretations, the real parts of quaternionic 

functions represent dynamic scalar fields. The spatial parts of 

quaternionic functions represent dynamic vector fields. 

4.4.1 Selection freedom 

Since the direction lines of real numbers and the direction lines of 

spatial numbers are independent it is possible to select in the 

underlying vector space a new location for the geometrical center for 

each value of the real number system. The vector of the underlying 

vector space that points to the geometrical center will be called the 

state vector. 

4.4.2 Orthonormal bases 

In an orthonormal base, all members have unit length, and all members 

are mutually independent. The base vectors span the vector space or a 
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subspace of a vector space. A multidimensional vector space owns 

many orthonormal bases. 

If all members of one orthonormal base of a vector space depend on all 

members of another base of that vector space, then the two bases span 

different manifestations of the same vector space. Often a 

transformation exists that transforms the first orthonormal base into 

the other. Sometimes, these vector spaces will be given different 

names.  The same holds for subspaces of vector spaces. For example, 

position space and change space are different manifestations of the 

same vector space. These manifestations are spanned by vectors that 

point to locations that correspond to spatial numbers. Vectors that 

point to real numbers are independent of the vectors in position space. 

They are also independent of the vectors in change space. A special 

transformation converts members of the position space into members 

of the change space. Since the vectors that correspond to real numbers 

are independent of both the position space and the change space, they 

are often applied to indicate the progression of change. Physicists call 

this progression a timestamp.  
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5 Hilbert space 

5.1 Inner product spaces 

In literature, Hilbert spaces are often introduced as inner product 

spaces. The concept of inner product space is meant to be a way of 

using the inner product of vectors to apply mixed numbers to pairs of 

vectors such that these mixed numbers can be interpreted as 

eigenvalues of operators while the inner product is interpreted as a 

map of one of the vectors onto the other vector. This idea is sensible for 

inner products that deliver real numbers but does not make much sense 

for results that contain a spatial part. To avoid confusion, this paper 

avoids the application of the notion of inner product space. Instead, this 

document applies Dirac’s bra-ket combination to turn vector spaces into 

Hilbert spaces. Dirac’s bra-ket combination turns a simple vector space 

into a powerful archive of numbers and continuums. 

5.2 Dirac’s bra-ket combination 

Paul Dirac introduced a handy notation for the relationship that exists 

between the ingredients of a Hilbert space. The bra-ket combination 

provides the opportunity to use complex numbers and quaternions as 

superposition coefficients. The bra-ket combination restricts the applied 

numbers to members of an associative division ring. This reduces the 

choice to real numbers, complex numbers, and quaternions. The bra-ket 

combination select a private version of that associative division ring. 

First, we focus on separable Hilbert spaces. In separable Hilbert spaces, 

the applied sets of numbers are countable. With that restriction, the 

bra-ket combination turns the underlying vector space into a separable 

Hilbert space. 

By selecting a version of the number system, the symmetry of the 

number system is fixed. This section treats the case that the Hilbert 

space applies quaternions to specify the values of bra-ket combinations. 

The format of the formulas that are shown, also holds for complex 
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numbers and real numbers. The values of bra-ket combinations will be 

used in linear combinations of vectors and as eigenvalues of operators. 

To make this possible, the bra-ket method distinguishes the vectors 

from the underlying vector space into two types of vectors with 

different arithmetic. The two types represent different views of the 

underlying simple vector space. The ket f   is a covariant vector, and 

the bra g   is a contravariant vector. The vectors f and g  reside in the 

underlying vector space. The arithmetic of the ket vectors differs from 

the arithmetic of the bra vectors. The bra-ket combination |f g  has a 

quaternionic value. If the underlying vectors f and g are equal, then the 

bra-ket combination can act as a metric. Since the product of 

quaternions is not commutative, care must be taken with the format of 

the formulas when quaternions are applied.  

5.2.1 Ket vectors 

The addition of ket vectors is commutative and associative. 

 + = + = +f g g f f g   (5.2.1) 

 ( ) ( )+ + = + + = + +f g h f g h f g h   (5.2.2) 

Together with quaternions, a set of ket vectors forms a ket vector 

space. Ket vectors are covariant vectors.  

A quaternion   can be used to construct a covariant linear combination 

with the ket vector f   

  =f f   (5.2.3) 

5.2.2 Bra vectors 

For bra vectors hold 

 + = + = +f g g f f g   (5.2.4) 

https://en.wikipedia.org/wiki/Metric_(mathematics)
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 ( ) ( )+ + = + + = + +f g h f g h f g h   (5.2.5) 

Bra vectors are contravariant vectors. 

 * =f f   (5.2.6) 

Quaternions can constitute linear combinations with bra vectors. 

A set of bra vectors form the vector space that is adjunct to the vector 

space of ket vectors that are the origins of these maps. If the map 

images the adjunct space onto the original vector space, then the bra 

vectors may be mapped onto the corresponding ket vector. 

5.2.3 Bra-ket combination 

For the bra-ket combination holds 

 
*

| |=f g g f   (5.2.7) 

For quaternionic numbers   and    hold 

 ( )
** *| | | |   = = =f g g f g f f g   (5.2.8) 

 | | =f g f g   (5.2.9) 

 
( )

( )

* *

*

| | |

|

   

 

+ = +

= +

f g f g f g

f g
  (5.2.10) 

This corresponds with (5.2.3) and (5.2.6) 

 * =f f   (5.2.11) 

  =g g   (5.2.12) 

We made a choice. Another possibility would be  =f f  and 
* =g g   
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5.2.4 Operator construction 

f g  is a constructed operator.  

 ( )
†

=g f f g   (5.2.13) 

The superfix † indicates the adjoint version of the operator. 

 For the orthonormal base  iq consisting of eigenvectors of the 

reference operator, holds 

 |n m nmq q =   (5.2.14) 

The bra-ket method enables the definition of new operators that are 

defined by quaternionic functions. 

  
1

| )| (i i

N

i

i

F q F q q
=

= g h g h   (5.2.15) 

The symbol F is used both for the operator F and the sampled 

quaternionic function ( )F q . This enables the shorthand 

 ( )i i iF q F q q   (5.2.16) 

for operator F . It is evident that for the adjoint operator 

 ( )† *

i i iF q F q q   (5.2.17) 

For reference operatorRholds 

 
i i iq q q=R   (5.2.18) 

If  iq  consists of all rational values of the version of the quaternionic 

number system that Hilbert spaceHapplies then the eigenspace of R

represents the natural parameter space of the separable Hilbert space

H. It is also the parameter space of the function ( )F q that defines the 

natural operator F in the formula (5.2.16). 
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5.2.5 Expected value 

Any bra vector g  can be written as a linear combination of the bra 

base vectors  iq . 

  
1

i i

N

i

q q
=

= g g   (5.2.19) 

Any ket vector g can be written as a linear combination of the ket base 

vectors  iq . 

  
1

N

i i

i

q q
=

= g g   (5.2.20) 

The eigenvalues are archived as a combination of a real value and a 

spatial value. These parts take independent dimensions. If the real parts 

are sequenced, then the sequence of eigenvalues represents an 

ongoing hopping path. If this ongoing hopping path recurrently 

regenerates the same hop landing location swarm, then the hop landing 

locations can be summed over the regeneration period in the cells of a 

dense spatial grid. The total sum results in a spatial center location. The 

sums in the cells describe a location density distribution. The center 

location acts as the expected spatial value of the hop landing locations. 

A hop landing location distribution will describe the hop landing 

location swarm. If the swarm covers a larger number of locations, then 

the description by the location density distribution will be more 

accurate. If the results for the grid cells are sampled over a larger part 

of the real numbers, then the describing location density distribution 

approaches a continuous function. 

This means that 
2

i i iq q q=g g g  can take the role of a hop 

landing location distribution.  Here, we only used the spatial parts of the 

eigenvalues.  
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The expected spatial value for operator R  and vectorg  is

  
1

i i i

N

i

q q q
=

= = g
g g g gR R   (5.2.21) 

The expected value plays its role in a series of subsequent observations 

or events. After sequencing the timestamps of the samples, the string of 

samples represents an ongoing hopping path. If the vector g  aims at a 

special location inside the parameter space of the Hilbert space, then 

the mechanism that generates the ongoing hopping path recurrently 

regenerates a hop landing location swarm that is described by a stable 

location density distribution. For large values of N the location density 

distribution approaches a continuous function q qg g , and the 

distribution qg  can be interpreted as a probability amplitude. The 

square of the modulus of this probability amplitude is a probability 

density distribution.  What these continuous functions approximately 

describe are discrete sets. The approach fits better if the number of 

elements in the set is larger and there exists a requirement that the 

coherence of the set is large. If at instant zero the vector g  equals the 

eigenvector that belongs to eigenvalue zero, and the expectation value 

g  also equals zero, then the hop landing locations  iq  will tend to stay 

awhile about the geometrical center of the Hilbert space. If the 

tendency lasts, then the vector g will act as a unique state vector of the 

Hilbert space. 

To give the location density distribution a statistical sense, a stochastic 

selection process must be or have been active. That selection process is 

then represented by a footprint vector g  that varies over time. How

g  varies over time is checked by the characteristic function of the 

selection process. The footprint vector is represented by a vectorg in 

the underlying vector space. The Hilbert space can archive the life 
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history of the footprint vector in the form of a cord of quaternionic 

eigenvalues from a dedicated footprint operator. 

The state vector of the Hilbert space is a special footprint vector of the 

Hilbert space. It is the footprint vector that at every instant of time has 

the expectation value of zero. At instant zero the state vector equals 

the eigenvector that belongs to location zero. This still does not say 

everything about the essence of the required underlying stochastic 

selection mechanism. For example, this description does not explain the 

value and the stability of the recurrence rate of the hop landing location 

swarm. It is not clear why the characteristic function of the stochastic 

mechanism is stable. 

5.2.6 Operator types 

I  is used to indicate the identity operator. 

For normal operator N  holds † †NN NN= . 

The normed eigenvectors of a normal operator form an orthonormal 

base of the Hilbert space. 

For unitary operator U holds † †UU U U I= =  

For Hermitian operator H holds †H H=  

A normal operator N  has a Hermitian part 
†

2

N N+
 and an anti-

Hermitian part 
†

2

N N−
 

For anti-Hermitian operator A  holds †A A= −  

A Hermitian operator has real eigenvalues. An anti-Hermitian operator 

has spatial eigenvalues. 

The reference operatorR is a normal operator. 
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5.3 Non-separable Hilbert space 

Every infinite-dimensional separable Hilbert space owns a unique non-

separable companion Hilbert space that embeds its separable partner. 

The non-separable Hilbert space allows operators that maintain 

eigenspaces that in every dimension and every spatial direction contain 

closed sets of rational and irrational eigenvalues. These eigenspaces are 

uncountable and behave as dynamic sticky continuums. These 

continuums can vibrate, deform, and expand. 

Gelfand triple and Rigged Hilbert space are other names for the 

general non-separable Hilbert spaces. 

In the non-separable Hilbert space, for operators with continuum 

eigenspaces, the bra-ket method turns from a summation into an 

integration. 

 ( ) | | q dVdF q F q   g h g h   (5.3.1) 

Here we omitted the enumerating subscripts that were used in the 

countable base of the separable Hilbert space. Instead, the integration 

applies the infinitesimal dVd  that is taken from the continuum in the 

private parameter space.  

The shorthand for the operator F is now  

 ( )F q F q q   (5.3.2) 

For eigenvectors q , the function ( )F q defines as 

 ( )  | | ' ( ') ' | ' 'F q q Fq q q F q q q dV d= =     (5.3.3) 

The function ( )F q  is no longer sampled.  

The reference operator that provides the continuum natural 

parameter space as its eigenspace follows from 
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  | q Vdq dq   g h g h   (5.3.4) 

The corresponding shorthand is  

 q q q   (5.3.5) 

The reference operator is a special kind of defined operator. Via the 

quaternionic functions that specify defined operators, the claim 

becomes clear that every infinite-dimensional separable Hilbert space 

owns a unique non-separable companion Hilbert space that can be 

considered to embed its separable companion. 

The reverse bra-ket method combines Hilbert space operator 

technology with quaternionic function theory and indirectly with 

quaternionic differential and integral technology. 

5.3.1 Expected spatial value 

Like the situation in the separable Hilbert space, a grid overlay of the 

spatial part of the parameter space is applied to be able to integrate 

over the grid cells. The expected spatial value is averaged over a part of 

the real part of the parameter space. 

In the non-separable Hilbert space, the expected spatial value is defined 

as an average over the spatial part of the parameter space. 

  
0

q dVq q= = g
g g g gR R   (5.3.6) 

The real part of the parameter space is usually held fixed, and the 

integration is done over the spatial part of the parameter space. 

The location density distribution is a continuous function with values 

corresponding to locations in the spatial part of the parameter space. 

 
2

q q q=g g g   (5.3.7) 
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Thus, the variable q can be any value in the spatial part of the 

parameter space.  

5.4 Dynamics 

It is possible to interpret multidimensional numbers as a combination of 

a scalar timestamp in the form of a real number and a one-dimensional 

or three-dimensional spatial location. The progression indicator runs 

monotonic with the natural numbers on the real number direction line. 

In this way, the deformation, vibration, and expansion of the 

corresponding coordinate system become dynamic behaviors where the 

timestamps play the role of the progression indicator. 

With this interpretation, the continuum eigenspace of an operator can 

be interpreted as the combination of a scalar field and a vector field. 

These fields can be described by continuous quaternionic functions. The 

change in these fields can be described by quaternionic differential 

calculus. 

In a non-separable Hilbert space, the location density distribution that 

describes a hop landing location swarm is a continuous function. It can 

correspond with the continuous Fourier transform that acts as the 

characteristic function of the stochastic process that generated the 

hopping path that recurrently regenerates the hop landing location 

swarm. The hopping path and the hop landing location swarm are 

discrete distributions, but the characteristic function and the location 

density distribution are continuous functions. 
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6 Change 

In continuums, all convergent series of numbers end in a limit that is a 

member of that continuum. This fact enables the differentiation of the 

continuum. Differential calculus shows that a continuum can change. 

The continuum shows astonishing behavior. It has the habit to remove 

deformations. Without disturbing actuators, the continuum stays flat. 

6.1 Differentiation 

Along a direction line, change can be described by a partial differential. 

If in a region of the space coverage inside this direction line all 

converging series of coordinate markers result in a limit that is a 

coordinate marker, then the partial change of the space coverage along 

the direction of r is defined as the limit  

 
( )

0

( )
lim
r

r r r

r r

  

→

+ −
=


  (6.1.1) 

  

If the region is covered by all its irrational numbers, then this limit 

exists. The existence of the limit is not ensured. If the limit does not 

exist, then the location represents a singular point. It is also possible 

that the surrounding region is covered by a discrete set of point-like 

objects.  

If the spatial part of the neighborhood is isotropic and the limit also 

exists in the real number space, then the total differential change df of 

field f equals 

 
f f f f

df d idx jdy kdz
x y z




   
= + + +

   
  (6.1.2) 
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In this equation, the partial differentials , , ,
f f f f

x y y

   

   
  behave like 

quaternionic differential operators. 

The quaternionic nabla   assumes the special condition that partial 

differentials direct along the axes of the Cartesian coordinate system in 

a natural parameter space of a non-separable Hilbert space. Thus, 

 
4

0

i

i i

e i j k
x x y z=

    
 = = + + +

    
   (6.1.3) 

This will be applied in the next section by splitting both the quaternionic 

nabla and the function in a scalar part and a vector part. 

The first-order partial differential equations divide the first-order 

change of a quaternionic field into five different parts that each 

represent a new field. We will represent the quaternionic field change 

operator by a quaternionic nabla operator. This operator behaves like a 

quaternionic multiplier. 

The first order partial differential follows from 

 , , , r
x y z

    
 = =  +  

    
  (6.1.4) 

The spatial nabla is well-known as the del operator and is treated in 

detail in Wikipedia. The partial derivatives in the change operator only 

use parameters that are taken from the natural parameter space. 

 
( )

,

r

r r r r

   


    

 
=  = +  + 

 

=  −  +  +   

  (6.1.5) 

https://en.wikipedia.org/wiki/Del
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In a selected version of the quaternionic number system, only the 

corresponding version of the quaternionic nabla is active. In a selected 

Hilbert space, this version is always and everywhere the same. 

The differential   describes the change of field  . The five separate 

terms in the first-order partial differential have separate physical 

meanings. All basic fields feature this decomposition. The terms may 

represent new fields. 

 ,r r r  =  −    (6.1.6) 

r  is a scalar field. 

 
r r   =  +      (6.1.7) 

  is a vector field. 

f is the gradient of f . 

, f is the divergence of f . 

f  is the curl of f . 

Important properties of the del operator are 

 ( ) 2,     =  =    (6.1.8) 

 ( ), 0   =   (6.1.9) 

 ( ) 0r   =   (6.1.10) 

 ( ) ( ) ( ), ,      =   −     (6.1.11) 

Sometimes parts of the change get new symbols 

 
r rE  = − −   (6.1.12) 
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 B =    (6.1.13) 

The formula (6.1.5) does not leave room for gauges. In Maxwell 

equations, the equation (6.1.6) is treated as a gauge. 

 ( ), 0B =   (6.1.14) 

 
r r rE B  = −  − = −   (6.1.15) 

 ( ) ( ) ( ), , ,r rE   = −  −     (6.1.16) 

 

 

The conjugate of the quaternionic nabla operator defines another type 

of field change. 

 *

r =  −   (6.1.17) 

 
( )*

,

r

r r r r

   


    

 
=  = −  + 

 

=  +  +  −  

  (6.1.18) 

All dynamic quaternionic fields obey the same first-order partial 

differential equations (6.1.5) and (6.1.18).  

 † * † *

r r r =  =  − =  +  =  +    (6.1.19) 

In the Hilbert space, the quaternionic nabla is a normal operator. The 

operators 

 † † * * ,r r  =  =   =  =   +     (6.1.20) 

are normal operators who are also Hermitian operators. 



33 
 

The separate operators
r r   and ,   are also Hermitian operators.  

,  is known as the Laplace operator.  

The two operators can also be combined as ,r r=   −    . This is 

the d’Alembert operator.  

The solutions to , 0r r  +   =  and , 0r r  −   =  differ. These 

two equations offer different solutions and for that reason, they deliver 

different dynamic behavior of the field. The equations control the 

behavior of the embedding field that physicists call their universe. This 

dynamic field exists everywhere in the reach of the parameter space of 

the function. Both equations also control the behavior of the symmetry-

related fields. The homogeneous d’Alembert equation is known as the 

wave equation and offers waves and wave packages as its solutions. 

Both equations offer shock fronts as solutions but only the operators in 

(6.1.20) deliver shock fronts that feature a spin or polarization vector. 

Integration over the time domain turns both equations in the Poisson 

equation and removes the spin or polarization vector. Shock fronts 

require a corresponding actuator and occur only in odd numbers of 

participating dimensions. Spherical shock fronts require an isotropic 

actuator. Otherwise, the shock front does not appear. 

6.2 Continuity equations 

Continuity equations are partial quaternionic differential equations. 

The dynamic changes in the field are interpreted as field excitations as 

field deformations or field expansions.  

The field excitations that will be discussed here are solutions to 

mentioned second-order partial differential equations. Without a 

corresponding actuator, the field will not react. It appears that spherical 
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pulses are the only actuators that deform the field. The field reacts to 

these pulses by quickly removing the deformation by sending the 

deformation away in all directions in the form of shock fronts until 

these fronts vanish at infinity. This follows from the solutions presented 

in (6.2.9) and (6.2.11). 

One of the second-order partial differential equations results from 

combining the two first-order partial differential equations  =   and 
* =  . 

 
( )( )( )

( )

* * *

,

r r r

r r

     



=  =   =  =  +   −  +

=   +  
  (6.2.1) 

All other terms vanish. ,   is known as the Laplace operator. 

Integration over the time domain results in the Poisson equation 

 , =    (6.2.2) 

Under isotropic conditions, a very special solution of the Poisson 

equation is the green’s function
1

4 'q q −
  of the affected field. This 

solution is the spatial Dirac ( )q   pulse response of the field under strict 

isotropic conditions. 

 
( )

3

'1

' '

q q

q q q q

−
 = −

− −
  (6.2.3) 
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( )
( )3

1 1
, ,

' '

'
, 4 '

'

q q q q

q q
q q

q q


    
− −

−
= −  = −

−

  (6.2.4) 

This solution corresponds with an ongoing source or sink that exists in 

the field. A point-like stationary spatial pulse cannot start a shock front. 

The stationary spatial point-like object must be a sink or a source. In 

physics, this means that stationary point-like masses do not exist in 

physical reality. 

Change can take place in one spatial dimension or combined in two or 

three spatial dimensions. 

Under the proper conditions, the dynamic pulse response of the field is 

a solution of a special form of the equation (6.2.1)  

 ( ) ( ) ( ), 4 ' 'r r q q      +   = −    (6.2.5) 

Here ( )   is a temporal step function and ( )q  is a spatial Dirac pulse 

response. For the spherical pulse response, the pulse must be isotropic. 

After the instant ' , the equation turns into a homogeneous equation.  

A remarkably simple solution is the shock front in one dimension along 

the line 'q q− . 

 ( )( )' 'f q q c n  = −  −   (6.2.6) 

Here n  is a normed spatial quaternion. This spatial quaternion has an 

arbitrary direction that does not vary in time. Here, the normalized 

vector n  can be interpreted as the polarization of the solution. We 
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intentionally placed the spatial vector n  close to speed c. The function 

f can be a primitive shock front, but it can also be a superposition of 

primitive shock fronts. The single primitive shock-front solution 

represents a dark energy object. It represents a quantum of energy. 

In isotropic conditions, we better switch to spherical coordinates. Then 

the equation gets the form 

 

( )

2 2

2 2

2 2

2 2

2

0

r r r

r
r







   
+ + 

   

  
= + = 

  

  (6.2.7) 

 

The second line describes the second-order change of r  in one 

dimension along the radius r. That solution is described above. A 

solution to this equation is 

 ( )r f r c n =    (6.2.8) 

 

The solution of (6.2.7) is described by 

 
( )( )' '

'

f q q c n

q q

 


−  −
=

−
  (6.2.9) 

The normalized vector n  can be interpreted as the spin of the solution.  

It might be related to the direction that is selected when the 

quaternion-based Hilbert space is temporarily reduced to a subspace 

that contains a complex-number-based Hilbert space. The spherical 

pulse response acts either as an expanding or as a contracting spherical 
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shock front. Over time this pulse response integrates into the green’s 

function. This means that the isotropic pulse injects the volume of the 

green’s function into the field. Subsequently, the front spreads this 

volume over the field. The contracting shock front collects the volume 

of the green’s function and sucks it out of the field. The ± sign in the 

equation (6.2.5) selects between injection and subtraction. The shock 

front moves away from the pulse that caused the front. Finally, it 

vanishes at infinity. The inserted volume expands the field. 

Spherical shock fronts are dark matter objects. 

Shock fronts only occur in one and three dimensions. A pulse response 

can also occur in two dimensions, but in that case, the pulse response is 

a complicated vibration that looks like the result of a throw of a stone in 

the middle of a pond. 

Equations (6.2.1) and (6.2.2) show that the operators 
2

2




and ,   

are valid second-order partial differential operators. These operators 

combine in the quaternionic equivalent of the wave equation. 

 
2

2
,  



 
= −   = 

 
   (6.2.10) 

This equation also offers one-dimensional and three-dimensional shock 

fronts as its solutions. 

 
( )( )' '

'

f q q c

q q

 


−  −
=

−
  (6.2.11) 

 ( )( )' 'f q q c  = −  −   (6.2.12) 

https://en.wikipedia.org/wiki/Wave_equation
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These pulse responses do not contain the normed vector n . Apart from 

pulse responses, the wave equation offers waves as its solutions. 

If locally the field can be split into a time-dependent part ( )T   and a 

location-dependent part ( )A q , then the homogeneous version of the 

wave equation can be transformed into the Helmholtz equation. 

 
2

2

2
,


  




=   = −


   (6.2.13) 

 ( , ) ( ) ( )q A q T  =    (6.2.14) 

 
2

2

2

1 1
,

T
A

T A





=   = −


   (6.2.15) 

 2, 0A A  + =    (6.2.16) 

 
2

2

2
0

T
T




+ =


   (6.2.17) 

  acts as quantum coupling between(6.2.16) and (6.2.17). 

The time-dependent part ( )T   depends on initial conditions, or it 

indicates the switch of the oscillation mode.  

During the switch, the quaternionic Hilbert space temporarily switches 

to a complex-number-based Hilbert space that is a subspace of the 

Hilbert space. The switch takes a corresponding interval and during that 

interval, the subspace emits or absorbs a sequence of equidistant one-

dimensional shock fronts. Together, these shock fronts constitute a 

photon. The one-dimensional shock fronts are discussed above. The 

switch of the oscillation mode means that temporarily the oscillation is 

stopped and instead an object is emitted or absorbed that compensates 

for the difference in potential energy. The location-dependent part of 

https://en.wikipedia.org/wiki/Helmholtz_equation
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the field ( )A q  describes the possible oscillation modes of the field and 

depends on boundary conditions. The oscillations have a binding effect. 

They keep moving objects within a bounded region.  

For three-dimensional isotropic spherical conditions, the solutions have 

the form 

 ( ) ( )( ) ( ) 
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Y   


= =−

= +    (6.2.18) 

Here 
lj  and 

ly  are the spherical Bessel functions, and m

lY  are 

the spherical harmonics. These solutions play a role in the spectra 

of atomic modules. 

Planar and spherical waves are the simpler wave solutions to 
the equation (6.2.13) 

  

 ( ) ( ) 0, exp ,q n k q q   = − − +   (6.2.19) 

 ( )
( ) 0

0

exp ,
,

n k q q
q

q q

 
 

− − +
=

−
  (6.2.20) 

A more general solution is a superposition of these basic types. 

Two quite similar homogeneous second-order partial differential 

equations exist. They are the homogeneous versions of equations 

(6.2.5) and (6.2.10). The equation (6.2.5) has spherical shock-front 

solutions with a spin vector that behaves like the spin of elementary 

particles. Obviously, the field only reacts dynamically when it gets 

triggered by corresponding actuators. Pulses may cause shock fronts 

that after the trigger keep traveling. Oscillations of type (6.2.19) and 

(6.2.20) must be triggered by periodic actuators.  

The inhomogeneous pulse activated equations are 

https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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 ( ) ( ) ( ), 4 ' 'r r q q         = −    (6.2.21) 

Without the interaction with actuators, all vibrations and deformations 

of the field keep busy vanishing until the affected field resembles a flat 

field. Only an ongoing stream of actuators can generate a more 

persistently deformed field. This is provided by an ongoing embedding 

of the actuators into the eigenspaces of operators that archive the 

dynamic fields. 

6.3 Isotropic conditions 

The two shock-front solutions show an interesting property of the 
Laplace operator. In isotropic conditions, the Poisson equation can be 
rewritten as 

 ( )
2 2

2 2

2 1
, r

r r r r r
   

   
=   = + = 

   
   (6.3.1) 

The product ( )r = is a solution of a one-dimensional equation in 

which r plays the variable.  

The same thing holds for all differential equations that contain the 

Laplace operator ,    

So, spherical solutions of the second-order differential equations / r

can be obtained from the solutions ξ of one-dimensional second-order 

differential equations by dividing   by the distance r  to the center. 

It looks as if in isotropic conditions the quaternionic differential calculus 
can be scaled down to complex-number-based differential calculus. This 
already works at local scales. If on larger scales the isotropic condition is 
violated, then the coordinates of the complex-number-based 
abstraction must be adapted to the possibly deformed Cartesian 
coordinates of the quaternionic platform. This makes sense in the 
presence of moderate deformations of the quaternionic field. After 
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adaptation, the map of each complex-number-based coordinate line 
becomes a geodesic. 

These tricks are possible because complex-number-based Hilbert spaces 
can be considered subspaces of quaternionic Hilbert spaces. 

If the dimension of the quaternionic Hilbert space is reduced to the 
dimension of a subspace that contains a complex-number-based Hilbert 
space, then it might become important whether the selected direction 
involves a polar angle or an azimuth angle. In mathematics, the range of 
the polar angle is twice the range of the azimuth angle. In physics, the 
two ranges are exchanged. 
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7 Transport of change 

The del operator has a direction. This suggests that change moves in 

that direction. 

Enclosure balance equations are quaternionic integral equations that 

describe the balance between the inside, the border, and the outside of 

an enclosure. 

These integral balance equations base on replacing the del operator   

with a normed vector n . The vector n  is oriented outward and 

perpendicular to a local part of the closed boundary of the 

enclosed region. 

 n       (7.1.1) 

This approach turns part of the differential continuity equation into a 

corresponding integral balance equation. 

 

 dV n dS  =      (7.1.2) 

n dS    plays the role of a differential surface. n  is perpendicular to that 

surface. 

This result separates into three parts 

 
,

,

r

r

n

n n n

    

  

 = −  +    

= − +  
  (7.1.3) 

The first part concerns the gradient of the scalar part of the field 

 
r rn       (7.1.4) 

 
r rdV n dS  =      (7.1.5) 
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The divergence is treated in an integral balance equation that is known 

as the Gauss theorem. It is also known as the divergence theorem. 

 , ,n     (7.1.6) 

 , ,dV n dS  =    (7.1.7) 

The curl is treated in a corresponding integrated balance equation 

 n      (7.1.8) 

 dV n dS  =     (7.1.9) 

Equation (7.1.7) and equation (7.1.9) can be combined in the extended 

theorem 

 dV n dS  =       (7.1.10) 

The method also applies to other partial differential equations. For 

example 

 
( ) ( ), ,

, ,n n n n

   

 

  =   −     

= −
  (7.1.11) 

 ( )     , ,
V S S

dV dS dS    =   −      

 (7.1.12) 

One dimension less, a similar relation exists. 

 ( ), ,
S C

a n dS a dl =    (7.1.13) 

This is known as the Stokes theorem. 

The curl can be presented as a line integral 
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8 Functions and coordinate systems 

This elucidates the sense of introducing the coordinate system. Humans 

can more easily imagine the dynamic life of coordinate markers than 

they can visualize what happens to the target values of a 

multidimensional function that uses a borderless multidimensional 

parameter space. If the differential equations that describe the 

behavior of coordinate markers are everywhere the same, then these 

equations hold at all scales. Even if spatial expansion plays a role, then 

its effects can easily be separated from spatial deformation and spatial 

vibration. 

Without triggering by an actuator, the space coverage does not deform 

or vibrate. This does not exclude the possibility that an encapsulated 

spatially coherent countable subset of coordinate markers statically 

deforms the space coverage. This happens for a phenomenon that is 

called a black hole. 
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9 Other features of Hilbert spaces 

It is already indicated that complex-number-based Hilbert spaces 

appear as subspaces of quaternionic Hilbert spaces and that real-

number-based Hilbert spaces appear as subspaces of complex-number-

based Hilbert spaces. 

9.1 Position space and change space 

This will be used to introduce other orthogonal bases than the natural 

parameter base. First, we separate the subspace that relates to the real 

numbers. What is left we call the position space. Next, we introduce the 

change base, which is an alternative orthogonal base of the position 

space that is constituted by the eigenvectors that belong to the change 

operator. To be able to represent this in a formula we first limit to 

eigenvectors that belong to a selected direction line. This reduces 

position space to a single direction. For example, we select the direction 

i along the x coordinate. The change 
xp of a field   along that direction 

is xp
x





=


. The suffix x  indicates the relation with the coordinate x . 

9.2 Fourier transform 

x  and 
xp  are related via a Fourier transform.  In this section, we do not 

indicate in the exponentials the spatial direction number i  with a vector 

cap. Instead, we use the convention that is applied in complex number 

versions of the exponential function. 

The Fourier transform in a separable complex-number-based Hilbert 

space is given by the relation between ( )x  and ( )xnp  in the sum 

 ( ) ( ) ,2

, , 1 ,( ) x nixp

x n x n x n

n

x p e p p


 


+

=−

= −   (9.2.1) 

In the limit where ( ), 1 , 0x x n x np p p+ = − →  the sum becomes an integral 
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 ( ) 2
( ) xixp

x xx p e dp
 



−
=    (9.2.2) 

The reverse Fourier transform runs as 

 ( ) 2
( ) xixp

xp x e dx
 


−

−
=    (9.2.3) 

In these formulas, the symbol i  represents a normalized spatial number 

part of a complex number. i  corresponds to the spatial direction that 

was selected for constructing the complex-number-based Hilbert space. 

The function 2 xixp
e

 is an eigenfunction of the operator xp i
x


=


 which 

is recognizable as part of the change operator (6.1.4). 

 2 2
2x xixp ixp

xi e p e
x

 


=


  (9.2.4) 

The eigenvalue xp represents the eigenfunction and the eigenvector xp

in the change space. In the same sense, the function 2 xixp
e

−  is an 

eigenfunction of the position operator 
x

i
p


−


and corresponds with the 

eigenvalue x  of that operator. 

 2 2
2x xixp ixp

x

i e xe
p

 − −
− =


  (9.2.5) 

The eigenvalue x represents the eigenfunction and the eigenvector x in 

the position space. 

The Fourier transform of a Dirac delta function is 

 ( ) 2
( ) 1xixp

xp x e dx
 


−

−
= =   (9.2.6) 

The inverse transform tells 
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  2
( ) 1 xixp

xx e dp




−
=    (9.2.7) 

 

 ( )1
( )

2
xi x a p

xx a e dp


 −

−
− =    (9.2.8) 

 2 2
( )x xip a ixp

e x a e dx
 



−
= −   (9.2.9) 

The operator xp i
x


=


 is often called the momentum operator for the 

spatial direction i  of the coordinate x . p differs from the classical 

momentum which is defined as the product of velocity v and mass m . It 

is important to notice that every orthonormal base vector of the 

position space is a superposition of ALL orthonormal base vectors of the 

change space. Further, the norms of the superposition coefficients are 

all equal. Similarly, every orthonormal base vector of the change space 

is a superposition of ALL orthonormal base vectors of the position 

space. Again, the norms of the superposition coefficients are all equal. 

Thus, jumping between different bases completely randomizes the 

landing base vector. 

9.3 Uncertainty principle 

The uncertainty principle states  

 ( )
2

22 2

0 ,0 2

1
( ) ( ) ( ) ( )

16
x x x xx x x dx p p p dp 



 

− −

 
− −  

 
   

 (9.3.1) 

For a Gaussian distribution, the equality sign holds. The Fourier 

transform of a Gaussian distribution is again a Gaussian distribution that 

has a different standard deviation. 

If ( )x  spreads, then ( )xp  shrinks and vice versa. 
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9.4 Stochastic processes 

In this way, the characteristic function of a stochastic process that 

resides in the change space can control the spread of the location 

density distribution of the produced location swarm that resides in 

position space. 

The stochastic process consists of a Poisson process that regulates the 

distribution in the real-number-based Hilbert space which is a subspace 

of the quaternionic Hilbert space and a binomial process that regulates 

the distribution in position space. This distribution is described by a 

location density distribution. 

The production of the stochastic process is archived in the eigenspace 

of a dedicated footprint operator that stores its eigenvalues in 

quaternionic storage bins that consists of a real number valued 

timestamp and a three-dimensional spatial number value that 

represents a hop landing location. After sequencing the timestamps, the 

hop landing locations represent a hopping path of a point-like object. 

The hopping path regularly regenerates a coherent hop landing location 

swarm. The location density distribution describes this swarm. 

If this location density distribution is a Gaussian distribution, then its 

Fourier transform determines exactly the location density distribution 

of the swarm. The Fourier transform is again a Gaussian distribution, 

but it has different characteristics. The Fourier transform of the 

convolution of two functions equals the product of the Fourier 

transforms of the functions. 

The described stochastic process can deliver the actuators that 

generate the pulse responses that may deform the dynamic universe 

field. In some way, an ongoing embedding process must map the 

eigenspace of the footprint operator onto the embedding field. As 

previously argued, the footprint operator's eigenspace corresponds to a 
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dynamic footprint vector that defines a location density function and a 

probability amplitude. The footprint vector resides in the underlying 

vector space and has a representation in Hilbert space via the footprint 

operator. 

9.4.1 Optical Transfer Function and Modulation Transfer function 

The stochastic processes that own a characteristic function which are 

described here, are in common use in the qualification of imaging 

quality via the Optical Transfer Function of an imaging process or 

imaging equipment. The Optical Transfer Function is the Fourier 

transform of the Point Spread Function. For spatial locations, the PSF 

acts as a location density distribution. The modulus of the Optical 

Transfer Function is a symmetric function and is called the Modulation 

Transfer Function. Along the vertical axis of the MTF shows the energy 

distribution of the spatial spectrum. In the case of light, it is the 

chromatic distribution of the PSF. A central peak in the form of a quick 

decrease of the MTF at low spatial frequencies indicates the existence 

of a veiling glare or halo. It is energy that is less correlated to location. 

The Line Spread Function equals the integral over the Point Spread 

Function in the direction of the line. The Fourier transform of the Line 

Spread Function equals the cut through the center of the Optical 

Transfer Function. The cut is taken perpendicular to the direction of the 

line. The LSF can be a function of the direction of the line. In that case, 

the PSF has a non-isotropic angular distribution. The result of the 

Fourier transform conforms to the convolution of the OTF with the 

Fourier transform of the blade sharp pulse that corresponds to the 

Fourier transform of the integral along the line. 

If the PSF is generated in a dynamic ongoing process, then also a phase 

distribution will occur. The Optical Transfer Function combines the 

Modulation Transfer Function and the Phase Transfer Function. The 
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Phase Transfer Function is the argument of the Optical Transfer 

Function. 

A system of Hilbert spaces that share the same underlying vector space 

can perform the job of the imaging platform. In this system, the imaging 

process will be called the embedding process. This explanation still says 

nothing about the essence of the necessary underlying stochastic 

selection process. That remains a mystery. 

9.4.2 Deformation and the universe 

If the hop landings of a particle cause a spherical shock front, then the 

deformation that is caused by the footprint is roughly defined by the 

convolution of the location density distribution that describes the 

footprint and the green’s function of the embedding field. This 

formulation is not exact because each spherical shock front quickly 

fades away. The pulses occur in a sequence and not in a single instant. 

This effect weakens the deformation. Still, due to the huge number of 

hops that constitute the swarm, the spherical pulse response will blur 

the hop landing location swarm such that its image becomes a smooth 

function. This smooth function describes the local deformation 

potential of the considered particle. Far from the geometric center at 

distance r from the particle, the particle looks point-like, and the 

deformation potential ( )V r can be described by  

 ( ) /V r MG r=  (9.4.1) 

Here M is the mass of the particle. G  is a constant.  

The embedding field is a superposition of deformation potentials. A 

formula like (9.4.1) does not directly show that deformation leads to the 

attraction between massive objects. The deformation potential does 

not own a point of engagement. Or that point must be given by the 

geometrical center of local deformation.  
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10 Hilbert repository 

A system of Hilbert spaces that all share the same underlying vector 

space can act as a modeling platform that not only supports dynamic 

fields that obey quaternionic differential equations.  

The Hilbert repository applies the structured storage capacity of the 

Hilbert spaces that are members of the system. The requirement that 

all member Hilbert spaces must share the same underlying vector space 

restricts the types of Hilbert spaces that can be a member of the Hilbert 

repository. In the chapter about change, we already restricted the 

definition of partial change along the directions of the Cartesian 

coordinate system. It appears that the coordinate systems that 

determine the symmetry type of the Hilbert spaces must have the 

Cartesian coordinate axes in parallel. This restriction enables the 

determination of differences in symmetry. Only the sequence along the 

axis can be freely selected up or down. It also means that partial change 

has a systemwide significance. This also means that only a small set of 

symmetry types will be tolerated. One of the Hilbert spaces will act as 

the background platform and its symmetry will act as background 

symmetry. Its natural parameter space will act as background 

parameter space. All other members of the system will float with the 

geometric center of their parameter space over the background 

parameter space. This already generates a dynamic system. The 

symmetry differences generate symmetry-related sources or sinks that 

will be located at the geometric center of the natural parameter space 

of the corresponding floating Hilbert space. The sources and sinks 

correspond to symmetry-related charges that generate symmetry-

related fields. 

Not the symmetries of the floating Hilbert spaces are important. 

Instead, the differences between the symmetry of the floating member 
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and the background symmetry are important for establishing the type 

of the member Hilbert space. The counts of the differences in symmetry 

restrict to the shortlist -3, -2, -1, 0, +1, +2, +3. 

The existence of symmetries and symmetry differences can be 

comprehended. The existence of corresponding symmetry-related 

charges is counterintuitive. The realization of these charges as sources 

or sinks of symmetry-related fields is not yet explained. 

All floating Hilbert spaces are separable. The background Hilbert space 

is an infinite-dimensional separable Hilbert space. It owns a non-

separable companion Hilbert space that embeds its separable partner. 

The Hilbert repository supports the containers of footprints that can 

map into the quaternionic fields. The vectors that represent the 

footprint vectors originate in the underlying vector field. They act as 

state vectors for the Hilbert spaces that act as containers for the 

footprints. The state vector represents the vector from the underlying 

vector space that aims at the geometric center of the floating Hilbert 

space. This enables the maps of these state vectors and the 

corresponding footprint in the dynamic universe field. The state vector 

represents a vector from the underlying vector space that tries to locate 

the position of the geometric center of the floating platform in the 

parameter space of the background platform. State vectors are special 

footprint vectors. Together this entwined locator installs an ongoing 

embedding process that acts as an imaging process of the geometric 

center of the floating platform onto the background parameter space. 

The eigenspace of a dedicated operator maps this image into the 

dynamic field that represents the universe.   

In this way, a huge amount of ongoing hopping paths are mapped onto 

the embedding field. Physicists call this dynamic field the universe. On 

the floating platforms, the hopping paths are closed. The movement of 
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the floating platforms breaks the closure of the images of the hopping 

paths. 

10.1 Standard Model 

The structure and behavior of the purely mathematical Hilbert 

repository show a striking resemblance with the structure of the 

Standard Model of the elementary fermions. The Standard Model of the 

elementary fermions is part of the Standard Model of particle physics 

that experimental particle physicists treat as their workbook. This does 

not include the physical theories that are often considered part of the 

Standard Model of particle physics. These theories are Quantum Field 

Theory, Quantum Electro Dynamics, and Quantum Chromo Dynamics. 

QFT, QED, and QCD seek their foundation in the Lagrangian that is 

derived from the least action principle. The author considers this 

principle a high-level concept that follows from the behavior of the 

coverage of space by an uncountable set of point-like objects. 

The first-order change equations (6.1.5) and (6.1.18) already reflect this 

typical behavior. 

The least action principle does not imply the ongoing recurrent 

regeneration of the elementary fermions.  

The shortlist of counts of the differences in symmetry corresponds to a 

shortlist of electric charges -1, -2/3, -1/3, 0, +1/3, +2/3, and +1 in the 

Standard Model. These values are due to the choice of physicists to 

attribute electric charge -1 to the electrons.  

The mathematical model allows but does not predict that each 

elementary fermion owns a private footprint vector that also acts as a 

state vector. The state vectors synchronize the beginnings of the 

ongoing hopping paths. Each fermion type has a fixed mass. This means 

that the private stochastic mechanisms very regularly regenerate the 

https://en.wikipedia.org/wiki/Standard_Model#Fermion
https://en.wikipedia.org/wiki/Standard_Model#Fermion
https://en.wikipedia.org/wiki/Stationary_Action_Principle
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same deformation. The mathematical model does not yet predict this 

regularity.  

10.1.1 Particles and fields 

The floating elements of the system can be interpreted as particles. In 

contrast, the background platform cannot be interpreted as a particle. 

Still, all elements of the system of Hilbert spaces are platforms that 

show similar capabilities and properties. All floating platforms act like 

symmetry-related fields and these fields correspond to symmetry-

related charges. The background platform does not show a symmetry-

related field and a symmetry-related charge. Instead, it acts as a 

universe-wide embedding field that can be deformed by the presence 

of floating members. 

10.2 Conglomerates 

Elementary fermions appear to behave as elementary modules. The 

conglomerates of these elementary modules populate the dynamic field 

that we call our universe. All massive objects, except black holes, are 

conglomerates of elementary fermions. All conglomerates of 

elementary fermions own mass. This means that the universe is covered 

by massive modular systems. 

A private stochastic process determines the complete local life story of 

each elementary fermion. That stochastic process is controlled in the 

change space of its private Hilbert space. The private stochastic process 

produces an ongoing hopping path and corresponds to a footprint 

vector that consists of a dynamically changing superposition of the 

reference operator's eigenvectors. This is explained in the formula 

(5.2.21). Each floating platform of the Hilbert repository owns a single 

private footprint vector. The footprint vector acts as the state vector of 

the elementary fermion and the probability amplitude corresponds to 

what physicists call the wavefunction of the particle. 
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This invites the idea that conglomerates of elementary fermions are 

defined by stochastic processes whose characteristic functions are 

defined in the change space of the background platform. In this change 

space, the characteristic function of a stochastic process that defines a 

conglomerate is a superposition of the characteristic functions of the 

components of the conglomerate. The dynamic superposition 

coefficients act as displacement generators. This means that these 

displacement generators define the internal oscillations of the 

components within the conglomerates. It might not hold for higher 

order conglomerates, but it holds for the lower order conglomerates. 

Since in change space, the position is not defined, the fact that a 

component belongs to a conglomerate does not restrict the distance 

between the components. This way of defining the membership of a 

conglomerate introduces entanglement. Independent of their mutual 

distance, components of a conglomerate must still obey the Pauli 

exclusion principle. 

10.3 Interaction with black holes 

Field excitations cannot enter or leave black holes, but the Hilbert 

spaces that represent elementary fermions may hover over the 

enclosed region of the black hole. So, part of the footprint of the 

elementary particle may be mapped into the region of the black hole. 

The mass of the black hole attracts nearby elementary fermions. 

Together with the effect of hovering this may enable the growth of 

black holes and the merge of approaching black holes. It may also 

explain the merge of a black hole and a dense star. 

10.4 Hadrons 

Hadrons can be mesons or baryons. They are conglomerates of quarks.  

Quarks can only bind via oscillations and via the attraction that is 

induced by their electric charges. Since the symmetry of quarks does 
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not differ from the background symmetry in an isotropic way, the 

footprint of quarks does not deform the embedding field. So, mass does 

not help to bind the quarks until they reach an isotropic symmetry 

difference. This phenomenon is called color confinement. Hadrons 

feature mass. Thus, these conglomerates are sufficiently isotropic to 

deform the embedding field. Once configured, the mutual binding of 

baryons is very strong. The nuclei of atoms are constituted by baryons. 

10.5 Atoms 

Compound modules are composite modules for which the images of the 

geometric centers of the platforms of the components coincide in the 

background platform. The charges of the platforms of the elementary 

modules establish the primary binding of the corresponding platforms. 

Physicists and chemists call these compound modules atoms or atomic 

ions. 

In free compound modules, the geometric symmetry-related charges do 

not take part in the internal oscillations. The targets of the private 

stochastic processes of the elementary modules oscillate. This means 

that the hopping path of the elementary module folds around the 

oscillation path and the hop landing location swarm gets smeared along 

the oscillation path. The oscillation path is a solution to the Helmholtz 

equation. Each fermion must use a different oscillation mode. A change 

of the oscillation mode goes together with the emission or absorption 

of a photon. As suggested earlier the emission or absorption of a 

photon involves a switch from the quaternionic Hilbert space to a 

subspace that is represented by a complex-number-based Hilbert space. 

The duration of the switch lasts a full particle regeneration cycle. During 

that cycle, the stochastic mechanism does not produce a swarm of hop 

landing locations that produce pulses that generate spherical shock 

fronts, but instead, it produces a one-dimensional string of equidistant 

pulse responses that cause one-dimensional shock fronts. The center of 
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emission coincides with the geometrical center of the compound 

module. This ensures that the emitted photon does not lose its 

integrity. All photons will share the same emission duration, and that 

duration will coincide with the regeneration cycle of the hop landing 

location swarm. This is the reason that photons obey the Planck-

Einstein relation E hv= . Absorption cannot be interpreted so easily. It 

can only be comprehended as a time-reversed emission act. Otherwise, 

the absorption would require an incredible aiming precision for the 

photon. The number of one-dimensional pulses in the string 

corresponds to the step in the energy of the Helmholtz oscillation. 

The type of stochastic process that controls the binding of components 

appears to be responsible for the absorption and emission of photons 

and the change of oscillation modes. If photons arrive with too low 

energy, then the energy is spent on the kinetic energy of the common 

platform. If photons arrive with too high energy, then the energy is 

distributed over the available oscillation modes, and the rest is spent on 

the kinetic energy of the common platform, or it escapes into free 

space. The process must somehow archive the modes of the 

components. It can apply the private platform of the components for 

that purpose. Most probably, the current value of the dynamic 

superposition coefficient is stored in the eigenspace of a special 

superposition operator. 

10.6 Molecules 

Molecules are conglomerates of compound modules that each keep 

their private geometrical center. However, electron oscillations are 

shared among the compound modules. Together with the geometric 

symmetry-related charges, this binds the compound modules into the 

molecule. 
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11 Dynamics in the Hilbert repository 

11.1 Embedding in the background platform 

The differences in the symmetry between the platforms only become 

apparent when a floating platform is embedded into the background 

platform or more specific when eigenvalues of a dedicated footprint 

operator are mapped to corresponding eigenvectors in the background 

platform. A special operator in the non-separable Hilbert space of the 

background platform manages in its eigenspace the dynamic field that 

embeds discrete eigenvalues that originate from the eigenspace of the 

footprint operator that resides in the considered floating platform.  

The entwined locator concerns a specific background vector and 

representations of that vector that perform different tasks. The main 

task of the locator is to locate the position of the geometrical center of 

a selected floating platform and to embed that position into the target 

embedding field. This action is blurred by a stochastic detection 

mechanism and affected by deformations of the embedding field. The 

second part of the task is to locate the geometrical center in the realm 

of the floating platform. The result is a hop landing location swarm that 

will be (or is already) archived as a cord of quaternions in the 

eigenspace of a footprint operator that resides on the floating platform. 

Each quaternion in this cord archives a combination of a timestamp and 

a three-dimensional location. The archival decouples the generation of 

the landing location swarm from the retrieval of that swarm.  If before 

the retrieval, the timestamps are sequenced, then the retrieved swarm 

represents an ongoing hopping path. The swarm recurrently 

regenerates and can then be described by a stable location density 

distribution. This location density distribution has a Fourier transform 

that characterizes the detection process. An extra task is that the 

expected value of the archived data must result in position zero of the 

parameter space of the floating platform. This makes the locator the 
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state vector of the floating platform. The image of the locator onto the 

background parameter space is blurred by the stochastic mechanism 

and by possible new deformation of the target field by the impinging 

hop landings. The imaging process is also affected by existing 

deformations of the embedding field. 

The coverage of the embedding field lets the field act as a sticky 

medium. The sticky medium resists the embedding of objects that break 

the symmetry of the embedding field. It appears that only isotropic 

symmetry breaks can deform the embedding field. The sticky medium 

reacts to new deformations by moving the deformation in all directions 

away from the embedding location until it vanishes at infinity. 

Differential calculus shows that the sticky medium reacts with a 

spherical pulse response that behaves as a spherical shock front that 

diminishes its amplitude with increasing distance from the location of 

the pulse. The pulse responses can superpose and join into a more 

persistent and more smoothed local deformation. This occurs when 

large amounts of nearby point-like actuators cooperate during a long 

enough time interval. 

Aside from this footprint streaming mechanism, the symmetry-related 

charges represent sources or sinks that generate streams that embed 

symmetry-related fields into the embedding field. The charges are not 

spread over the root geometry of the floating platform. Instead, they 

locate in the geometric center of the floating platform. Thus, for 

isolated fermions, the map of the footprint spreads around the image of 

the symmetry-related charge.  

Without these streaming processes, not many dynamics would occur in 

the embedding field. 
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11.2 Hilbert Book Model 

The real part of the parameter space of a Hilbert space is independent 

of the spatial part of the parameter space. This means that for every 

value of the real part of the parameter space the Hilbert space offers an 

archive of the spatial part of the parameter space. In a non-separable 

Hilbert space, the archived spatial continuums can change. The values 

of the real part of the parameter space can be interpreted as instants of 

time. This means that like a book the Hilbert space describes the history 

of the spatial continuum in a sequence of one page per instant of time. 

11.3 Footprint 

An ongoing embedding of a stream of symmetry-disturbing eigenvalues 

may cause a quasi-persistent deformation of the embedding field. The 

eigenspace of the footprint operator can archive a cord of quaternionic 

storage bins that contain the timestamps and the landing locations that 

will be embedded. After sequencing the timestamps, the archive shows 

an ongoing hopping path that is used in an ongoing embedding process. 

This embedding process runs during the running episode of the Hilbert 

repository and acts as an imaging process in which the image quality is 

characterized by an Optical Transfer Function. This function is the 

Fourier transfer of the Point Spread Function. The Point Spread 

Function can be interpreted as a hop landing location density 

distribution. Its Fourier transform is the Optical Transfer Function of the 

imaging process that embeds the footprint of the considered object. 

11.3.1 Footprint mechanism 

The mechanism that generates the content of the eigenspace of the 

footprint operator did its work in the creation episode of the Hilbert 

repository. The private natural parameter space of the Hilbert space 

already exists in this creation episode. The timestamps and the hopping 

locations of the hopping path were taken from this private parameter 

space. The footprint mechanism owns a characteristic function that 
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ensures that the hopping path recurrently regenerates a hop landing 

location swarm that features a stable location density distribution 

which is the Fourier transform of the characteristic function of the 

footprint mechanism. The location density distribution equals the 

mentioned Point Spread Function, and the characteristic function 

equals the corresponding Optical Transfer Function.  

The footprint generation mechanism replicates the attempt of the state 

vector to locate the geometrical center of the Hilbert space. For that 

reason, the state vector represents a vector from the underlying vector 

space. The mechanism archives its results in the eigenspace of the 

footprint operator. Once archived, these data can be retrieved as an 

ongoing sequence. The embedding process reads the data in the order 

of the archived timestamps. 

The hopping path, the hop landing location swarm, the location density 

distribution, and the Point Spread Function reside in the position space 

of the Hilbert space. The continuous location density distribution equals 

the Point Spread Function and describes the discrete hop landing 

location swarm. 

The Optical Transfer Function equals the characteristic function of the 

footprint mechanism, and both reside in the change space.  

The position space and the change space concern the same subspace of 

the Hilbert space. They distinguish in the orthonormal base with the 

help of which superpositions are defined. The subspace of the Hilbert 

space that archives timestamps is complementary to the part that 

archives the spatial eigenvalues in the private parameter space of the 

Hilbert space. Only the archival in quaternionic eigenvalues connects 

timestamps to spatial locations. Retrieval of the eigenvalues retrieves 

the connection between timestamps and spatial locations. Retrieval can 
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be done by another operator than the operator that archived the 

quaternionic eigenvalues. 

Nothing is said yet about the original distribution of the timestamps. In 

imaging processes, the distribution of discrete objects in the imaging 

beam can often be characterized as the result of a combination of a 

Poisson process and a binomial process, where the binomial process is 

implemented by a spatial point spread function. In that case, the 

Poisson process handles the distribution of the timestamps.  

11.3.2 Footprint characteristics 

After sequencing the timestamps, the footprint generating mechanism 

recurrently produces a constant stream of potential point-like actuators 

in the form of a swarm that features a constant location density 

distribution. The stream takes the form of an ongoing hopping path. The 

actuators that originate from the same floating separable Hilbert space 

have a constant symmetry. Some of these actuator symmetries can 

disturb the symmetry of the embedding field and therefore they can 

generate pulse responses that at least temporarily deform this field. A 

symmetry disturbance that generates a spherical pulse response must 

represent an isotropic difference between the two symmetries. A 

sufficiently constant and sufficiently dense and coherent stream of such 

actuators can generate a quasi-persistent deformation. 

11.4 Resisting change 

The Green’s function, the shock fronts, and the oscillations also 

demonstrate the stickiness of dynamic quaternionic fields. Discrete sets 

of quaternions do not show this stickiness. 

The stickiness of the field tends to flatten the field and it resists 

permanent deformations of the field. 
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12 Deformation potentials 

In physics, potential energy is the energy held by an object because of 

its position relative to other objects.  

The deformation potential at a location is equal to the work (energy 

transferred) per unit mass that would be needed to move an object to 

that location from a reference location where the value of the potential 

equals zero. 

The spherical shock fronts integrate over time into the green’s function 

of the field. Thus, the shock front injects the content of the green’s 

function into the affected field. All spherical shock fronts spread the 

contents of the front over the full field.  

We consider the deformation potential to be zero at infinity. Thus, if 

infinity is selected as the reference location, then the deformation 

potential at a considered location is equal to the work (energy 

transferred) per unit mass that would be needed to move an object 

from infinity to that location. The potential at a location represents the 

reverse action of the combined spherical shock fronts that act at that 

location. 

12.1 Center of deformation 

The deformation potential ( )V r  describes the effect of a local response 

to an isotropic point-like actuator and reflects the work that must be 

done by an agent to bring a unit amount of the injected stuff from 

infinity back to the considered location. 

 ( ) /pV r m G r=    (12.1.1) 

Here 
pm  represents the mass that corresponds to the full pulse 

response. G  takes care for adaptation to physical units. r is the distance 

to the location of the pulse.  

https://en.wikipedia.org/wiki/Energy
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A stream of footprint actuators recurrently regenerates a coherent 

swarm of embedding locations in the dynamic universe field. Viewed 

from sufficient distance r  that swarm generates a potential 

 ( ) /V r MG r=    (12.1.2) 

Here M  represents the mass that corresponds to the considered 

swarm of pulse responses. r is the distance to the center of the 

deformation. This formula is valid at sufficiently large values of r  such 

that the whole swarm can be considered as a point-like object. 

In a coherent swarm of massive objects , 1,2,3,...p i n
i

= , each with 

static mass
im at locations 

ir , the center of mass R  follows from  

 ( )
1

0
n

i i

i

m r R
=

− =  (12.1.3) 

Thus 

 
1

1 n

i i

i

R m r
M =

=   (12.1.4) 

Where 

 
1

n

i

i

M m
=

=   (12.1.5) 

In the following, we will consider an ensemble of massive objects that 

own a center of mass R  and a fixed combined mass M as a single 

massive object that is located at R . The separate masses 
im may differ 

because, at the instant of summation, the corresponding deformation 

might have partly faded away.  

R  can be a dynamic location. In that case, the ensemble must move as 

one unit. The problem with the treatise in this paragraph is that in 

physical reality, point-like objects that possess a static mass do not 
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exist. Only pulse responses that temporarily deform the field exist. 

Except for black holes, these pulse responses constitute all massive 

objects that exist in the universe. 

12.2 Pulse location density distribution 

It is false to treat a pulse location density distribution as a set of point-

like masses as is done in formulas (12.1.3) and (12.1.4). Instead, the 

deformation potential follows from the convolution of the location 

density distribution and the green’s function. This calculation is still not 

correct, because the exact result depends on the fact that the 

deformation that is due to a pulse response quickly fades away and the 

result also depends on the density of the distribution. If these effects 

can be ignored, then the resulting deformation potential of a Gaussian 

density distribution would be given by 

 
( )

( )
ERF r

g r GM
r

  (12.2.1) 

Where ( )ERF r  is the well-known error function. Here the deformation 

potential is a perfectly smooth function that at some distance from the 

center equals the approximated deformation potential that was 

described above in the equation (12.1.2). As indicated above, the 

convolution only offers an approximation because this computation 

does not account for the influence of the density of the swarm, and it 

does not compensate for the fact that the deformation by the individual 

pulse responses quickly fades away. Thus, the exact result depends on 

the duration of the recurrence cycle of the swarm. 

In the example, we apply a normalized location density distribution, but 

the actual location density distribution might have a higher amplitude. 

This might explain why some elementary module types exist in multiple 

generations. These generations appear to have their own mass. For 
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example, elementary fermions exist in three generations. The two more 

massive generations usually get the name muon or tau generation. 

 

This might also explain why different first-generation elementary 

particle types show different masses. Due to the convolution, and the 

coherence of the location density distribution, the blue curve does not 

show any sign of the singularity that is contained in the red curve, which 

shows the green’s function. 

In physical reality, no point-like static mass object exists. The most 

important lesson of this investigation is that far from the deformation 

center of the distribution the deformation of the field is characterized 

by the here shown simplified form of the deformation potential   

 ( )
GM

r
r

   (12.2.2) 

Warning: This simplified form shares its shape with the green’s function 

of the deformed field. This does not mean that the green’s function 

owns a mass that equals 
1

GM
G

= . The functions only share the form of 

their tail. 

12.3 Rest mass 

The weakness in the definition of the deformation potential is the 

definition of the unit of mass and the fact that shock fronts move with a 

fixed finite speed. Thus, the definition of the deformation potential only 
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works properly if the geometric center location of the swarm of injected 

spherical pulses is at rest in the affected embedding field. The 

consequence is that the mass that follows from the definition of the 

deformation potential is the rest mass of the considered swarm. We 

will call the mass that is corrected for the motion of the observer 

relative to the observed scene the inertial mass. 

12.4 Observer 

The inspected location is the location of a hypothetical test object that 

owns an amount of mass. It can represent an elementary particle or a 

conglomerate of such particles. This location is the target location in the 

embedding field. The embedding field is supposed to be deformed by 

the embedded objects.  

Observers can access information that is retrieved from storage 

locations that for them have a historic timestamp. That information is 

transferred to them via the dynamic universe field. This dynamic field 

embeds both the observer and the observed event. The dynamic 

geometric data of point-like objects are archived in Euclidean format as 

a combination of a timestamp and a three-dimensional spatial location. 

The embedding field affects the format of the transferred information. 

The observers perceive in spacetime format. A hyperbolic Lorentz 

transform converts the Euclidean coordinates of the background 

parameter space into the spacetime coordinates that are perceived by 

the observer.   

12.4.1 Lorentz transform 

In dynamic fields, shock fronts move with speed c . In the quaternionic 

setting, this speed is unity.  

 2 2 2 2 2x y z c + + =   (12.4.1) 

In flat dynamic fields, swarms of triggers of spherical pulse responses 

move with lower speed v. 
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For the geometric centers of these swarms still holds: 

 2 2 2 2 2 2 2 2 2 2' ' ' 'x y z c x y z c + + − = + + −   (12.4.2) 

  

If the locations  , ,x y z and  ', ', 'x y z  move with uniform relative speed v, 

then 

 ( ) ( )' cosh sinhct ct x = −   (12.4.3) 

 ( ) ( )' cosh sinhx x ct = −   (12.4.4) 

 ( )
( ) ( )

2 2

exp exp
cosh

2

c

c v

 


+ −
= =

−
  (12.4.5) 

 ( )
( ) ( )

2 2

exp exp
sinh

2

v

c v

 


− −
= =

−
  (12.4.6) 

 ( ) ( )
2 2

cosh sinh 1 − =   (12.4.7) 

This is a hyperbolic transformation that relates two coordinate systems, 

which is known as a Lorentz boost. 

This transformation can concern two platforms P  and 'P  on which 

swarms reside and that move with uniform relative speed. 

However, it can also concern the storage location P  that contains a 

timestamp   and spatial location  , ,x y z and platform 'P  that has 

coordinate time 't  and location  ', ', 'x y z  . 

In this way, the hyperbolic transform relates two platforms that move 

with uniform relative speed. One of them may be a floating Hilbert 

space on which the observer resides. Or it may be a cluster of such 

platforms that cling together and move as one unit. The other may be 

the background platform on which the embedding process produces 

the image of the footprint. 

https://en.wikipedia.org/wiki/Lorentz_transformation#Physical_formulation_of_Lorentz_boosts
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The Lorentz transform converts a Euclidean coordinate system 

consisting of a location  , ,x y z and proper timestamps   into the 

perceived coordinate system that consists of the spacetime coordinates 

 ', ', ', 'x y z ct in which 't  plays the role of coordinate time. The uniform 

velocity v  causes time dilation 
2

2

'

1

t
v

c


 =

−

 and length contraction 

2

2
' 1

v
L L

c
 =  −   

12.4.2 Minkowski metric 

Spacetime is ruled by the Minkowski metric. 

In flat field conditions, proper time τ is defined by 

 
2 2 2 2 2c t x y z

c


− − −
=    (12.4.8) 

And in deformed fields, still 

 2 2 2 2 2 2 2 2ds c d c dt dx dy dz= = − − −   (12.4.9) 

 

Here ds  is the spacetime interval and d is the proper time interval. dt  

is the coordinate time interval 

12.4.3 Schwarzschild metric 

Polar coordinates convert the Minkowski metric to the Schwarzschild 

metric. The proper time interval d obeys 

 ( )
1

2 2 2 2 2 2 2 2 21 1 sins sr r
c d c dt dr r d d

r r
  

−

   
= − − − − +   

   
  (12.4.10) 

Under pure isotropic conditions, the last term on the right side 

vanishes.  
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According to mainstream physics, in the environment of a black hole, 

the symbol sr  stands for the Schwarzschild radius. 

 
2

2
s

GM
r

c
=  (12.4.11) 

 

The variable r equals the distance to the center of mass of the massive 

object with mass M . 

The Hilbert Book model finds a different value for the boundary of a 

spherical black hole. That radius is a factor of two smaller. 

12.4.4 Event horizon 

The deformation potential energy ( )U r   

 ( )
mMG

U r
r

=  (12.4.12) 

at the event horizon 
ehr r=  of a black hole is supposed to be equal to 

the mass-energy equivalent of an object that has unit mass 1m =  and is 

brought by an agent from infinity to that event horizon. Dark energy 

objects are energy packages in the form of one-dimensional shock 

fronts that are a candidate for this role. Photons are strings of 

equidistant samples of these energy packages. The energy equivalent of 

the unit mass objects is  

 2

eh

mMG
E mc

r
= =  (12.4.13) 

Or  

 
2eh

MG
r

c
=  (12.4.14) 
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At the event horizon, all energy of the dark energy object is consumed 

to compensate for the deformation potential energy at that location. 

No field excitation and in particular no shock front can pass the event 

horizon. 

12.5 Inertial mass 

The Lorentz transform also gives the transform of the rest mass to the 

mass that is relevant when the embedding field moves relative to the 

floating platform of the observed object with uniform speed v . 

In that case, the inertial mass M  relates to the test mass 0M  as 

 0
0 2

2
1

M
M M

v

c

= =

−

 (12.5.1) 

This indicates that the formula (12.1.2) for the deformation potential at 

distance r must be changed to 

 0

2

2

( )

1

M G
V r

v
r

c

=

−

   (12.5.2) 

12.6 Inertia 

The relation between inertia and mass is complicated. We apply an 

artificial field that resists its changing. The condition that for each type 

of massive object, the deformation potential is a static function, and the 

condition that in free space, the massive object moves uniformly, 

establish that inertia rules the dynamics of the situation. These 

conditions define an artificial quaternionic field that resists change. The 

scalar part of the artificial field is represented by the deformation 

potential, and the uniform speed of the massive object represents the 

vector part of the field. 
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The first-order change of the quaternionic field can be divided into five 

separate partial changes. Some of these parts can compensate for each 

other.  

Mathematically, the statement that in the first approximation nothing 

in the field  changes indicates that locally, the first-order partial 

differential   will be equal to zero. 

 , 0r r r r      =  =  −  +  +    =  (12.6.1) 

Thus 

 , 0r r r  =  −  =  (12.6.2) 

 0r r   =  +    =  (12.6.3) 

These formulas can be interpreted independently. For example, 

according to the equation (12.6.2), the variation in time of r  can 

compensate the divergence of  . The terms that are still eligible for 

change must together be equal to zero. For our purpose, the curl 

of the vector field   is expected to be zero. The resulting terms of the 

equation (12.6.3) are 

 0r r  +  =  (12.6.4) 

In the following text plays  the role of the vector field and r  plays the 

role of the scalar deformation potential of the considered object. For 

elementary modules, this special field concerns the effect of the hop 

landing location swarm that resides on the floating platform on its 

image in the embedding field. It reflects the activity of the stochastic 

process and the uniform movement of the geometric center of the 

floating platform over the embedding field in the background platform. 

It is characterized by a mass value and by the uniform velocity of the 
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floating platform with respect to the background platform. The real 

(scalar) part conforms to the deformation that the stochastic process 

causes. The vector part conforms to the speed of movement of the 

floating platform. The main characteristic of this field is that it tries to 

keep its overall change zero. The author calls   the conservation field. 

At a large distance r , we approximate this potential by using the 

formula 

 ( )r

GM
r

r
   (12.6.5) 

Here M is the inertial mass of the object that causes the deformation. 

The new artificial field ,
GM

v
r


 

=  
 

considers a uniformly moving mass 

as a normal situation. It is a combination of scalar potential 
GM

r
 and 

speed v . This speed of movement is the relative speed between the 

floating platform and the background platform. At rest this speed is 

uniform. 

If this object accelerates, then the new field ,
GM

v
r

 
 
 

 tries to counteract 

the change of the vector field v  by compensating this with an 

equivalent change of the scalar part 
GM

r
 of the new field  . According 

to the equation (12.6.4), this equivalent change is the gradient of the 

real part of the field. 

 
3

GM GM r
a v

r r

 
= = − = 

 

 
 (12.6.6) 

This generated vector field acts on masses that appear in its realm. 
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Thus, if two uniformly moving masses m  and M  exist in each other’s 

neighborhood, then any disturbance of the situation will cause the 

deformation force 

 ( )
( ) ( )0 1 2 0 0 1 2

1 2 0 3 3

1 2 1 2

Gm M r r Gm M r r
F r r m a

r r r r


− −
− = = =

− −
 (12.6.7) 

Here 0M M=  is the inertial mass of the object that causes the 

deformation. 
0m is the rest mass of the observer. 

The inertial mass M relates to its rest mass 0M  as 

 0
0 2

2
1

M
M M

v

c

= =

−

 (12.6.8) 

This formula holds for all elementary particles except for quarks.  

The problem with quarks is that these particles do not provide an 

isotropic symmetry difference. They must first combine into hadrons to 

be able to generate an isotropic symmetry difference. This 

phenomenon is known as color confinement. 

12.7 Momentum 

In the formula (12.6.7) that relates mass to force the factor  that 

corrects for the relative speed can be attached to 0m  or to 0M  

 ( )
( )0 0 1 2

1 2 3

1 2

Gm M r r
F r r

r r


−
− =

−
 (12.7.1) 

The force relates to the temporal change of the momentum vector P of 

the observer 

  
dP

F P
dt

= =  (12.7.2) 
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The momentum vector P  is part of a quaternionic momentum P . The 

momentum depends on the relative speed of the moving object that 

causes the deformation which defines the mass. The speed is 

determined relative to the field that embeds the object and that gets 

deformed by the investigated object. For free elementary particles, the 

speed equals the floating speed of the platform on which the particle 

resides. 

 
rP P P= +  (12.7.3) 

 
22 2

rP P P= +  (12.7.4) 

 
0P m v=  (12.7.5) 

 
2 22 2

0P m v=  (12.7.6) 

 
2 22 2 2 2 2 2

0 0rP m c P m v = = +  (12.7.7) 

 
0 /P m c E c= =  (12.7.8) 

 2

0E m c=  (12.7.9) 

 
( )

22 2 2 2 2 2

0 0

2
22 2 2 2 2 2 2 2

0 0 01

rP m c m v

v
m c v m c m c

c

 

 

= −

 
= − = − =  

 

 (12.7.10) 

 
0r

E
P m c

c
= =  (12.7.11) 

 0P m v=  (12.7.12) 

 

 
0 0 0r

E
P P P m c m v m v

c
 


= + = + = +  (12.7.13)
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If 0v =  then 0P =  and 0rP P P m c= = =  

Here Einstein’s famous mass-energy equivalence is involved. 

 2 2

0E m c mc= =  (12.7.14) 

The disturbance by the ongoing expansion of the embedding field 

suffices to put the deformation force into action. The description also 

holds when the field  describes a conglomerate of platforms and M

represents the mass of the conglomerate. 

The artificial field  represents the habits of the underlying model that 

ensures the constancy of the deformation potential and the uniform 

floating of the considered massive objects in free space. 

Inertia ensures that the third-order differential (the third-order change) 

of the deformed field is minimized. It does that by varying the speed of 

the platforms on which the massive objects reside. 

Inertia bases mainly on the definition of mass that applies to the region 

outside the sphere where the deformation potential behaves like the 

green’s function of the field. There, the formula r

GM

r
 = applies. 

Further, it bases on the intention of modules to keep the deformation 

potential inside the mentioned sphere constant. At least that holds 

when this potential is averaged over the regeneration period. In that 

case, the overall change    in the conservation field  equals zero. Next, 

the definition of the conservation field supposes that the swarm which 

causes the deformation moves as one unit. Further, the fact is used that 

the solutions of the homogeneous second-order partial differential 

equation can superpose in new solutions of that same equation. 

The popular sketch in which the deformation of our living space is 

presented by smooth dips is obviously false. The story that is 
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represented in this paper shows the deformations as local extensions of 

the field, which represents the universe. In both sketches, the 

deformations elongate the information path, but none of the sketches 

explain why two masses attract each other. The above explanation 

founds on the habit of the stochastic process to recurrently regenerate 

the same time average of the deformation potential, even when that 

averaged potential moves uniformly. Without the described habit of the 

stochastic processes, inertia would not exist. 

The applied artificial field also explains the deformation attraction by 

black holes. 

The artificial field that implements mass inertia also plays a role in other 

fields. Similar tricks can be used to explain the electrical force from the 

fact that the electrical field is produced by sources and sinks that can be 

described with the green’s function.  

12.7.1 Forces 

In the Hilbert repository, all symmetry-related charges are located at 

the geometric center of an elementary particle and all these particles 

own a footprint that for isotropic symmetry differences can deform the 

embedding field. In that case, the particle features mass and forces 

might be coupled to acceleration via  

 F ma=  (12.7.15) 

Or to momentum via F P=  (12.7.16) 
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13 Conclusions 

The Hilbert Book Model applies the system of Hilbert spaces that all 

share the same underlying vector space. The author calls this system 

the Hilbert repository. This approach differs on several essential points 

from the approach that mainstream physics follows. Still, an astonishing 

agreement exists between the Standard Model of the elementary 

fermions that is contained in the Stand Model of the experimental 

particle physicists and the Hilbert repository.  

In the Hilbert repository spatial coordinate axes play an important role. 

These axes must be systemwide in parallel. In spatial continuums, first-

order change always occurs along the spatial coordinate axes. The 

freedom of choice left by spatial arithmetic always occurs along the 

Cartesian coordinate axes.   

 

In the Hilbert Book Model (HBM), the footprints of all massive objects 

are recurrently regenerated with a high repetition rate that corresponds 

with the duration of the emission of photons.  

Mainstream physics still has not found a suitable explanation for dark 

matter objects and dark energy objects. The HBM explains these objects 

as field excitations that behave as shock fronts and are described in 

detail by solutions of second order quaternionic partial differential 

equations. The spherical shock fronts are the only field excitations that 

deform the field that embeds them. Photons are strings of equidistant 

one-dimensional shock-fronts.  

Elementary fermions are complicated objects that are represented by a 

private quaternionic separable Hilbert space that manages the 

properties of the fermion. These Hilbert spaces own a private 

parameter space and a private symmetry. The separable Hilbert spaces 
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float with the geometric center of their parameter space over a 

background parameter space that is managed by a background 

separable Hilbert space. This background Hilbert space owns a non-

separable Hilbert space The non-separable Hilbert space embeds its 

separable companion. The non-separable Hilbert space manages several 

continuums in the eigenspace of a corresponding dedicated operator. 

One of the continuums is a dynamic field, which physicists call our 

universe. The universe field embeds the images of the geometric 

centers of the floating separable Hilbert spaces. This map is blurred by 

stochastic disturbances of the locator vector that resides in the 

underlying vector space and points to the geometric center of the 

floating Hilbert space. Depending on the difference in symmetry, the 

embedding of the image may cause a spherical shock response that will 

temporarily deform the universe field. The corresponding shock front 

moves away in all directions until it vanishes at infinity. The content of 

the shock front expands the covered volume of the field. An isotropic 

symmetry difference with the background platform is required for the 

generation of the spherical shock front. Only few fermions feature an 

isotropic symmetry difference.  Isolated quarks do not possess the 

required isotropic symmetry difference and will not produce a 

deformation of the universe. However, combined in a hadron such that 

the combination features an isotropic symmetry difference, the hadron 

can cause deformation. This phenomenon is known as color 

confinement. 

The non-separable Hilbert space embeds its separable partner. 

Consequently, the parameter space of the non-separable Hilbert space 

is the parameter space of the separable companion Hilbert space where 

the irrational numbers are added to the rational numbers. The result is 

a continuum. The parameter spaces are not affected by deforming 

actuators. However, the continuum eigenspaces of other operators 
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than the reference operator of the non-separable can be vibrated, 

deformed, and expanded. 

Symmetry-related charges are located at the geometric centers of the 

floating Hilbert spaces. The charges depend on the difference in the 

symmetry between the floating platform and the background platform. 

The charges act as sources or sinks of corresponding symmetry-related 

fields. These fields differ fundamentally from the universe field. 

However, both types of fields obey the same quaternionic field 

equations. They differ in their start and boundary conditions. 

The archival of the footprint in the floating separable Hilbert space 

enables the independent retrieval of that footprint at a later instance. 

Thus, the footprint can have been generated in an episode before the 

beginning of the flow of time. The retrieval can occur as a function of 

the flow of time and uses the archived timestamps for synchronizing the 

retrieval. This means that at the instant of time zero, none of the 

archived footprint data was retrieved. Without deforming actuators, the 

embedding field stays flat. Thus, at the beginning of the flow of time, 

the embedding field was in its maiden state. The function that 

described the universe field was equal to its parameter space. 

Immediately after that instant the locator landings started, distributed 

randomly over that parameter space, to mark the locations of the 

geometrical centers of the floating Hilbert spaces. Depending on the 

symmetry of the floating Hilbert space this resulted in a corresponding 

spherical shock front. This certainly does not look like the Big Bang that 

mainstream physics promotes. Instead, already at its start the ongoing 

embedding was a quiet imaging process. 

The background non-separable Hilbert space defines in change space 

the conglomerates of elementary fermions as superpositions. For that 

reason, it applies the characteristic functions of the stochastic 
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mechanisms that generate the footprints of the elementary fermions. In 

change-space, position is not defined. This is the reason for the 

existence of entanglement. The Pauli exclusion principle works 

independently of the distance between the elements of the 

conglomerate. 

Elementary fermions act like elementary modules. Together they 

constitute all massive objects that occur in the universe. The notorious 

exception is formed by the black holes. For the rest, the contents of the 

universe is one large modular system that produces a huge number and 

enormous diversity of modular subsystems. Atoms, molecules, rocks, 

planets, stars, galaxies, living species are all examples of modular 

systems. Every human is a modular system. On planet earth, before the 

arrival of humans, the modularization happened in a stochastic way. 

Since the arrival of the humans, the modularization can happen in an 

intelligent way. Computers are excellent examples of this development. 

Once the elementary fermions were formed, the rest of the content of 

the universe followed automatically. Modular systems that care for 

their own community and that take care for the modular systems on 

which they depend have the greatest chance to survive. See “A law of 

nature” in https://vixra.org/author/j_a_j_van_leunen . 

Mainstream physics usually bases on the steady action principle. The 

steady action principle does not request a recurrent regeneration of the 

objects that occur in the universe. It does not request that 

conglomerates be generated in a modular way. It also does not oppress 

the strange reaction of continuums on disruptions by actuators. 

Forces require a point of engagement. Fields do not own a point of 

engagement. For quaternionic functions, the first-order change already 

connects the gradient of a scalar field to the time variation of the 

corresponding vector part of the field. It suffices that the universe field 

https://vixra.org/author/j_a_j_van_leunen
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shows a gradient in its scalar part and that the spatial part of the field 

moves uniformly. Thus, a gravitational potential raises an acceleration 

of the moving spatial field. Intuition cannot tell you this. But 

mathematics does. 
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