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Abstract 

 

In the past, theorems have shown implementing a (former) power series method to derive solutions to 

algebraic ordinary differential equations, or AODEs.  First, this paper will give a quick synopsis of these 

“bottom-up” approaches while further elaborating on a recent theorem that established the (modified) 

generating function technique, or [m]GFT, as a powerful method for solving differentials equations.  

Instead of building a (formal) power series, the latter method uses a predefined set of Laurent series 

comprised of product ring-based generating functions to produce an analytic solution.  Next, this study 

will utilize the [m]GFT to create several analytic solutions to a few example AODEs.  Ultimately, one 

will find [m]GFT may serve as a powerful "top-down" method for solving linear and nonlinear AODEs. 

 

1.)  Introduction 

 

AODEs use differential algebra to define differential equations with only one independent variable [1].  

Numbers theory and computer-based algebra are extensively utilized and supported by this field.  Finally, 

AODEs have many formulations, such as differential Galois theory and modules (i.e., M, D, etc.). 

 

Most methods for solving AODEs involve a “bottom-up” approach regarding a formal power series.  In 

other words, an individual tries to establish an analytic solution by finding a pattern within the leading 

coefficient of a solitary power series [2].  If the value turns out to be a combinatorial number, then the 

power series becomes formal [3].  This process often involves enacting many iterations, hence making the 

“bottom-up” means of acquiring an analytic solution very time-consuming [2,3]. 

 

This article will consider a new “top-down” approach for finding solutions to AODEs.  It is well-known 

that (formal) power series can form a new analytic function [4].  For instance, GFT, which incorporates a 

set of Laurent series of product ring-based formal power series or generating functions, can be used to 

discover analytic solutions to both linear and nonlinear partial differential equations [5].  This method 

might be the pinnacle of power series methods to develop new functions; hence, [m]GFT is viewed as a 



“top-down” means for solving differential equations, such as AODEs, since it uses preformed generating 

functions to find analytic solutions. 

 

There are several sections in this paper.  Section two will have a more thorough discourse on methods and 

theorems which implement a "bottom-up" basis for deriving analytic solutions to AODEs. On the other 

hand, the theorem explaining why [m]GFT, an effective “top-down” instrument in solving nonlinear 

partial differential equations, will be further elucidated and expanded upon to show it as a method for 

finding solutions AODEs in section three.  Section four will show the application of [m]GFT on a few 

examples of AODEs.  Finally, the conclusion, or section five, will gleam a terse description and beneficial 

facets of [m]GFT. 

 

2.)  (Formal) Power Series and their solutions to AODEs 

 

Consider the following power series, also known as a Taylor series: 

𝑦(𝑥) = ∑𝑛=0
∞  𝑎𝑛(𝑥 − 𝑥0)𝑛. 

If 𝑥0, or the center of the series, was equal to null or zero, then the above expression is considered a 

Maclaurin series.  Some coefficients of a power series incorporated a division by factorial 𝑛.  It was 

the main purgative for an individual to define the value of this coefficient for each serial term [6].  Also, 

the Cauchy-Hadamard theorem stated that power series converged at specific values [7,8]: when a series 

was deemed convergent, it formed an analytic function [9].   

 

There were many algorithms and methods for establishing power series solutions to various differential 

equations via iterative or “bottom-up” means.  For instance, N. Thieu Vo and associates devised an 

algorithm that helped an individual iteratively access each coefficient of a prospective power series 

solution to an AODE [10].  Building an analytic solution via single power series is generally time-

consuming, but others in the field are finding ways to accelerate the process [11]. 

 

3.)  The modified Generating Function Technique Revisited 

 

The central theorem that established the GFT as a method for solving (nonlinear) PDEs claimed that a 

Laurent series of formal power series derived analytic solutions to many (nonlinear) differential equations 

[5].  The theorem suggested that formal power series within the set of Laurent series are polynomial rings.  

Upon applying the polynomial rings within a differential equation, an individual would form a free ideal 

ring whose generators were necessary to form algebraic equations.  Setting these algebraic equations to 

zero, then solving for as many coefficients and constants as possible would allow the individual to 

establish analytic solutions to many differential equations. 

 



Definition 3.1.  The predefined set of Laurent series of formal power series or generating functions 

served as the general solution to an AODE of interest and was a symmetric (Lie) algebra.   

 

The general solution 𝑦 of [m]GFT was defined as follows: 

𝑦(𝑥) = ∑𝑖=1
2  ∑𝑗=−𝑝s

𝑝s  (𝑎(𝑖, 𝑗)(∑𝑘=0
∞  2𝑆𝑘(0)𝑖(∏𝑙  𝑓𝑙(𝑥))𝑘)

𝑗
+ 𝑏(𝑖, 𝑗)(∑𝑘=0

∞  2C𝑘(0)𝑖(∏𝑙  𝑓𝑙(𝑥))𝑘)
𝑗
), 

where  𝑓𝑙 is the l-th auxiliary function, 𝑆𝑘and 𝐶𝑘were the square root of the Fibonacci and Chebyshev U 

combinatorial numbers about zero, respectively.  Note: 

𝑆𝑘(0) = sin (
𝜋𝑘

2
), 

and 

𝐶𝑘(0) = cos (
𝜋𝑘

2
). 

The other coefficients accompanying each formal power series were 𝑎(𝑖, 𝑗) and 𝑏(𝑖, 𝑗).  The formal power 

series used in the general solution were "complete" polynomial rings. 

 

Note:  the general solution 𝑦 with a Frobenius adjustment[18] is: 

𝑦(𝑥) = 𝑥𝑟 ∑𝑖=1
2  ∑𝑗=−𝑝s

𝑝s   (𝑎(𝑖, 𝑗)(∑𝑘=0
∞  2𝑆𝑘(0)𝑖(∏𝑙  𝑓𝑙(𝑥))𝑘)

𝑗
+ 𝑏(𝑖, 𝑗)(∑𝑘=0

∞  2C𝑘(0)𝑖(∏𝑙  𝑓𝑙(𝑥))𝑘)
𝑗
). 

 

Definition 3.2.  The auxiliary function  𝑓𝑙, in the primary expression defining the general solution 𝑦, was a 

polynomial ring based upon the dependent variable, or intermediate, x.  The dependent variable x was 

linearized, exponentiated, or hypergeometric transformed. 

 

Definition 3.3.  The multiplication of auxiliary functions 𝑓𝑙 established a polynomial product ring.  

 

For this paper's ppurpose, we defined the auxiliary function 𝑓𝑙 as a linearized, exponentiated, or 

hypergeometric transformed Laurent polynomial ring 𝑙, or: 

𝐿𝑙(𝑥) = 𝛼𝑙(0) + 𝑥2𝛼𝑙(2) +
𝛼𝑙(−2)

𝑥2
+ 𝑥𝛼𝑙(1) +

𝛼𝑙(−1)

𝑥
, 

or 

𝐿𝑙(𝑥) = 𝛼𝑙(0) + 𝑥3/2𝛼𝑙(3) +
𝛼𝑙(−3)

𝑥3/2 + 𝑥2𝛼𝑙(4) +
𝛼𝑙(−4)

𝑥2 + 𝑥𝛼𝑙(2) + √𝑥𝛼𝑙(1) +
𝛼𝑙(−1)

√𝑥
+

𝛼𝑙(−2)

𝑥
, 



where 𝛼𝑙 was simply a coefficient/constant within an unnormalized Alexander knot polynomial.  This 

algebraic entity added to the topology of the space of future analytic solutions to an AODE that was 

derived using [m]GFT [12,13].  (Note:  the former auxiliary function 𝐿𝑙 was used in the rest of this 

section and for deriving solutions to the example AODEs given in the next section of this study since it 

possessed a significantly lower computational cost than its counterpart.)  To establish the auxiliary 

function 𝑓𝑙 , the Laurent series was either linearized (𝑙 = 1), exponentiated (𝑙 = 2), or the hypergeometric 

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 (𝑙 = 3). 

 

Since one considered the composition of formal power series as a set of polynomial rings, (s)he could 

claim each completed polynomial ring was a symmetric algebra [14]. 

 

Lemma and definition 3.4.  Plugging the set of Laurent series described above into an AODE of interest 

would form another set of symmetric algebras, referred to as Hopf algebras.   

 

Hopf algebras were known to be skewed polynomial rings called noncommutative principal ideal rings, or 

𝑅PI [15].  In AODEs, the generator of these structures became apparent when an individual times the 

common denominator/multiplicative inverse of the greatest common (zero) divisor, or (𝑅GCD)−1, of post 

transformed equation with the transformed equation to yield a particular product ring, called a principal 

integral/ideal domain, or 𝑅PID [16].  In other words, the numerator of a principal ideal ring was a 

principal ideal domain.   

𝑅PI = 𝑅PID𝑅GCD 

𝑅PI(𝑅GCD)−1 = 𝑅PID𝑅GCD(𝑅GCD)−1 

𝑅PI(𝑅GCD)−1 = 𝑅PID 

A principal ideal domain was also known as a free ideal ring, or fir [17].  For example, the linearized, 

exponentiated, and hypergeometric transformed variable 𝑥 may serve as generators, or 

⟨𝑥, 𝑒𝐿2(𝑥),1 𝐹1(𝛽1; 𝛽2; 𝐿3(𝑥))⟩, for the RPID produced from some AODEs even with variable coefficients 

and/or inhomogeneous components.  (Note: the general solution may only use part of generator set, like 

⟨𝑥𝑝 , 𝑒𝐿2(𝑥)⟩.)  The generator is used to derive more algebraic equations or objects from the product ring of 

the differential equation and its common denominator/multiplicative inverse of zero divisor [5].  These 

algebraic objects are likely symmetric. 

 

Corollary 3.5.  By setting the algebraic equations derived from the product ring discussed above to null 

or zero, an individual should be able to define at least one set of coefficients/constants properly.  After 

plugging in these coefficients/constants into the set of Laurent series described in definition 3.1, the last 

item may become an analytic solution to the AODE of interest.   

 



One exploited the algebraic equations for the values of the coefficients/constants 𝑎, 𝑏, 𝛼𝑙 , 𝛽1, and 𝛽2  

whenever possible after setting all the algebraic equators equal to null or zero.  Using computer 

mathematics software, like Mathematica®, individuals derived sets of known coefficients/constants that 

yielded analytic solutions to AODEs. 

 

It was important to note that when the AODE contained variable coefficients and inhomogeneous 

components, either an exponential or trigonometric function, an individual limited the auxiliary function 

𝑓𝑙 as an exponentiated expression of the independent variable 𝑥, or let 𝑙 = 2.   

 

Mathematica® was used to derive solutions to the following AODEs.  Thus, one can follow most of the 

work in this paper by examining the Mathematica® spreadsheet. 

 

4.)  Examples 

 

This study section will consider and solve three examples AODEs found within the Kamke set [18].  The 

first equation, ODE No. 29, in the paper is as follows: 

𝐹(𝑥, 𝑦, 𝑦′) = 𝑦′(𝑥) − 𝑥𝑦(𝑥)2 − 3𝑥𝑦(𝑥) = 0. 

By setting the domain of 𝑝𝑠 of the predefined set of Laurent series, a composition of formal power series 

between [0,2], then plugging it into the above equation, one obtains a significant expression involving the 

variable 𝑥.  Next, (s)he times the common denominator/multiplicative inverse of the greatest common 

(zero) divisor of the expression with the original equation/principal ideal ring to derive a product ring, or 

free ideal ring.  The coefficients associated with the generator ⟨𝑥, 𝑒𝑥(𝛼2(1)+𝛼2(2)𝑥), 𝐹1(𝛽1; 𝛽2; 𝛼3(0) +

𝑥(𝛼3(1) + 𝑥𝛼3(2)))⟩ produces one hundred fifty-nine algebraic equations.  After setting these algebraic 

equations to null or zero, one derives two hundred seventy-nine sets of coefficients/constants, thus 

possible analytic solutions.  The expression below is an example of an analytic solution derived for 

AODE given above: 

𝑦(𝑥) = −
3𝛼1(0)𝑒𝛼2(0)+

3𝑥2

2  1𝐹1(𝛽1; 𝛽2; 𝛼3(0))

𝛼1(0)𝑒𝛼2(0)+
3𝑥2

2  1𝐹1(𝛽1; 𝛽2; 𝛼3(0)) + 𝑖

 

 

Another AODE from the Kamke set is ODE No. 1115: 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′) = 𝑥𝑦′′(𝑥) − (3𝑥 − 2)𝑦′(𝑥) + (3 − 2𝑥)𝑦(𝑥) = 0. 

By setting the domain of 𝑝𝑠 predefined set of Laurent series consisting of formal power series also 

between [-1,0], then plugging it into the above equation, one obtains a significant expression involving 

the variable 𝑥.  Again, (s)he times the common denominator/multiplicative inverse of the greatest 



common (zero) divisor of the expression and the equation itself to derive a product ring, or free ideal 

ring—the coefficients associated with the generator ⟨𝑥, 𝑒
𝛼2(−1)+𝑥(𝛼2(0)+𝛼2(1)𝑥)

𝑥 ,  1𝐹1 (𝛽1; 𝛽2;
𝛼3(−1)

𝑥
+

𝛼3(0) + 𝑥𝛼3(1))⟩ yield thirty-six algebraic equations.  After solving the coefficients/constants, one 

derived twenty-seven sets of possible solutions.  The following is an example of an analytic solution 

derived by [m]GFT for the above AODE: 

𝑦(𝑥) = 𝑎(1, −1) 1𝐹1 (1 −
6

√17
; 2; √17𝑥) 𝑒𝛼2(0)−

1
2

(√17−3)𝑥. 

The final AODE from the Kamke set is ODE No. 1700: 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′) = 𝑦(𝑥)𝑦′′(𝑥) − 𝑦′(𝑥)2 + 1 = 0. 

By setting the domain of 𝑝𝑠 predefined set of Laurent series comprised of formal power series again 

between [-1,0], then plugging it into the above equation, one produces a significant expression involving 

the variable 𝑥.  Again, (s)he multiplies the common denominator/multiplicative inverse of the greatest 

common (zero) divisor of the expression and the equation itself to derive a product ring, or free ideal ring.  

The coefficients associated with the generator ⟨𝑥, 𝑒𝛼2(1)𝑥,  1𝐹1(𝛽1; 𝛽2; 𝑥𝛼3(1))⟩ establish one hundred 

thirty-seven algebraic equations.  These sets of coefficients/constants generate thirty-one different results.  

An example of an analytic solution derived by [m]GFT for the above AODE is as follows: 

𝑦(𝑥) =
(𝑎(1,−1)+𝑎(2,−1))𝑒

𝑥

√𝑎(2,−1)2−𝑎(1,−1)2

2𝛼1(0)
+

1

2
𝛼1(0)(𝑎(1, −1) − 𝑎(2, −1))𝑒

−
𝑥

√𝑎(2,−1)2−𝑎(1,−1)2
. 

 

5.)  Conclusion 

 

Unlike many "bottom-up" methods that build analytic solutions from solitary formal power series, 

[m]GFT uses a predefined set of Laurent series of generating functions comprised of linearized, 

exponentiated, and hypergeometric transformed polynomial product rings to establish a solution to 

differential equations.  Once applied to differential equations, like AODEs, it also establishes Hopf 

symmetric algebras.  Finally, [m]GFT is not only a powerful tool for solving (nonlinear) partial 

differential equations, but it possesses great potential as a means for finding analytic solutions to many 

linear and nonlinear differential equations, unlike other methods. 
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