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Abstract In  this  paper  it  is  going  to  be  proved  that  Schnilermann's  theorem can  not  hold.  A disproof  is  based  on

fundamental theorem of arithmetic. However, since the proof of the theorem is widely accepted, that creates an unusual

paradox that theorem can be proved and disproved at the same time.

1 Introduction

In elementary mathematics, a number line is a picture of the graduated straight line that serves as an

abstraction to real numbers.  Idea of number line was first introduced by John Napier [1], and later,

John Wallis [2] used this graphical representation to explain operations of addition and subtraction in

terms of moving backward and forward under the metaphor of a person walking. However, that type of

graphical  interpretation is  not  particularly suitable in  other  contexts of  interest.  In  order to  obtain

another  useful  representation  of  natural  numbers,  a  multiplication  tensor  or  M
N
-tensor  has  been

recently introduced [3]. Idea came from the fundamental theorem of arithmetic [4]. In [5] an addition

tensor  has  been  introduced.  Multiplication  and  addition  tensors  are  introduced  as  new  ways  of

presentation of numbers that should simplify reasoning in some contexts.

In  this  paper,  we are going to present  a  disproof of  the Schnilermann's  theorem [6]  that  uses  the

presentation of numbers introduced in [4] and [5].

Remark:  In the text that follows,  it is important to notice that there is no context in which it is



correct to state that number of natural numbers is equal to the number of odd or even numbers (or

that number of natural numbers is equal to the number of numbers divisible by 3, or 5, and so on) –

or in general, it is not considered possible that a set can have the same number of elements as the

proper subset of that set (even in the case when a set contains infinite number of elements).

One way to understand the problem, for instance, is that it is possible to generate the same number

of unique labels for odd or even numbers using the same number of unique labels for natural

numbers. However, if we want to produce all those even and all those odd labels at the same time,

obviously, it is necessary to have two sets of labels with natural numbers at the same time (it is

necessary to clone the set of labels with natural numbers), which means that the number of labels

with natural numbers on them, in that moment, is two times bigger than the number of labels with

even or odd numbers on them. (In Cantor's set theory increase of the number of the elements of the

set by cloning is ignored. In that theory, counting takes care only about unique elements of the set –

it creates a completely different reality with all  known unusual phenomena that look completely

counter intuitive, if you are not all the time aware of the fact  that cloning does not change the

number of elements of infinite set.  However, if we assume that Cantor is right (or that his theory

belongs  to  classical  and  not  alternative  mathematics)  we will  have  to  accept  that  fundamental

theorem of arithmetic can not hold, and that creates a paradox, since it is proved that fundamental

theorem of arithmetic holds.  That consequence can be expected having in mind fact that if you

change a way of counting the numbers, you will quite probably have to change a way how you add

the numbers - then you will have to change how you multiply numbers, and that quite predictably

can lead toward problems with fundamental theorem of arithmetic. This problem will be addressed

in separate paper, but the problem can easily be identified at the end of this paper.)

The analysis of the problem can also be made in quantum probabilistic context, but it is beyond the

scope of this paper. What can be immediately understood is that quantum probabilistic approach

will offer a different angle from which problem can be analyzed, since in that context cloning is not



allowed.

2 Multiplication tensor

The  fundamental  theorem  of  arithmetic  states  that  every  integer  greater  than  1  can  be  uniquely

represented by a product of powers of prime numbers, up to the order of the factors [4].   Having that

in mind, an infinite dimensional tensor M
N
 that contains all natural numbers only once, is going to be

constructed [3]. In order to do that we are going to mark vector that contains all prime numbers with p.

So,  p(1) = 2,  p(2) = 3,  p(3) = 5, and so on. Tensor  M
N
 with elements m

i1  i2  i3   ...
  is defined by the

following equation (i
1
, i

2
, i

3
, … are natural numbers):

mi1 i2 i3 ...= p(1)i1− 1 p (2)i2− 1 p(3)i3− 1... .

The alternative definition is also possible. Now, the following notation is going to be assumed for some

infinite size vectors

2 = [20 21 22 23 …], 3 = [30 31 32 33 …],  5 = [50 51 52 53 …] … 

It is simple to be seen that every vector is marked by bold number that is equal to some prime number

and that components of the vector are defined as powers of that prime number, including power zero (it

can be seen that every vector represents infinite cyclic semi group defined by a primitive that is one of

the prime numbers). Now, the M
N
-tensor can be defined as

M
N
 = 2 ○ 3 ○ 5 ○ 7 ○..., 

where ○ stands for outer product.

The tensor M
N
 is of infinite dimension (equal to number of prime numbers) and size, and contains all

natural numbers exactly ones. It is easy to understand why it is so, having in mind  the fundamental



theorem of arithmetic.  This type of infinite tensor is called a half infinite tensor [3].

3 Addition tensor

Now, recently introduced [5] addition tensor, or  A
N
–tensor,  is going to be presented. The tensor  A

N

with elements a
i1 i2 i3  ...

  is defined by the following equation (i
1
, i

2
, i

3
, … are natural numbers):

a i1 i2 i3 ...=(i1− 1) p(1)+(i2− 1) p (2)+(i3− 1) p(3)+... .

The edges of that tensor will contain the following vectors 

2a = [0 2 4 6 …], 3a = [0 3 6 9 …],  5a = [0 5 10 15 …] … 

It is simple to be seen that every vector is defined by some prime number and that components of the

vector represent all non-negative integer multiples of that prime number. Now, the  A
N
-tensor can be

defined as

A
N
 = 2a ○+ 3a ○+ 5a ○+ 7a ○+..., 

where  ○+ stands for outer sum, which is  analogous to outer product where operation of interest  is

addition..

It  is interesting to notice that the tensor  M
N
 does not contain number 0 that is neutral element for

addition, while, on the other hand, the tensor A
N
 does not contain number 1 that is neutral number for

multiplication. 



4  A disproof of Schnirelmann's theorem

Schnirelmann theorem [6] states that any natural number bigger than 1 can be written as the sum of not

more than C prime numbers, where C is effectively computable constant (estimated by Schnirelmann

as  C < 800000). By comparing sub-tensor  A
N
(1:C+1, 1:C+1, 1:C+1, …) and sub-tensor  M

N
(1:C+1,

1:C+1, 1:C+1, …), where C is any finite number, it is simple to understand that those two sub-tensors

have the same number of elements by construction. Sub-tensor A
N
(1:C+1, 1:C+1, 1:C+1, …) contains

all  natural  numbers  that  can  be  created  as  sums of  at  most  C primes  (together  with  many other

numbers).  The  sub-tensor  M
N
(1:C+1,  1:C+1,  1:C+1,  …)  obviously  does  not  contain  all  natural

numbers and we can conclude that exists infinitely many natural numbers that are not contained in sub-

tensor  M
N
(1:C+1, 1:C+1, 1:C+1,  …) - it  is not  difficult to be seen, that  if  it  is  not the case then

fundamental  theorem  of  arithmetic  cannot  hold.  Now,  it  is  not  difficult  to  be  understood  that

Schnirelmann's theorem cannot hold, since there will be infinitely many natural numbers that are not

contained in sub-tensor A
N
(1:C+1, 1:C+1, 1:C+1, …) and cannot be represented as the sum of at most

C prime numbers. 

This completes this paper and creates a paradox that theorem can be proved and disproved at the same

time. 
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