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Abstract In this paper it is going to be proved that strong Goldbach's conjecture can not hold. The proof is based on

fundamental theorem of arithmetic.

1 Introduction

The  fundamental  theorem  of  arithmetic  states  that  every  integer  greater  than  1  can  be  uniquely

represented by a product of powers of prime numbers, up to the order of the factors [1].  Here, we are

going to mark infinite vector that contains all prime numbers with p. So, p(1) = 2, p(2) = 3, p(3) = 5,

and so on. Now every natural number n can be defined by the following equation (i
1
, i

2
, i

3
, … are

positive integers; it can be noticed that number 1 is obtained when all  exponents i
1
, i

2
, i

3
, … are equal

to 1):

n=p (1)i 1− 1 p(2)i 2− 1 p(3)i3− 1... .

It can be seen that every natural number can be uniquely represented by infinite vector that contains

exponents i
1
, i

2
, i

3
, … (in that case order of factors has to be fixed).

The Goldbach's conjecture (strong version) states that every even natural number bigger than 4 can be

expressed as a sum of two odd prime numbers [2]. (Original formulation includes number 4 too –

however, it is clear that 4 can only be expressed as the sum of 2 and 2, or as the sum of only even

prime number by itself, and that is a special, and only, case when the even prime is used).  Now it is



going to be proved that strong Goldbach's  conjecture cannot hold. 

2  A proof that strong Goldbach's conjecture cannot hold

In  order  to  prove  that  strong  Goldbach's  conjecture  cannot  hold,  we  are  going  to  analyze  a

multiplication (Table 1) and an addition table (Table 2). Since we are going to focus on the number of

numbers presented in the tables, the tables will not contain numbers themselves. Vector p is previously

defined as vector that contains all prime numbers with elements  p(1) = 2, p(2) = 3, p(3) = 5, and so on.

Table 1. Simple multiplication table for odd prime numbers

● p(2) p(3) p(4) p(5) ...

p(2) p(2)2 p(2)·p(3) p(2)·p(4) p(2)·p(5) ...

p(3) x p(3)2 p(3)·p(4) p(3)·p(5) ...

p(4) x x p(4)2 p(4)·p(5) ...

p(5) x x x p(5)2 ...

... ... ... ... ... ...

  

Table 2. Simple addition table for odd prime numbers

+ p(2) p(3) p(4) p(5) ...

p(2) p(2)+p(2) p(2)+p(3) p(2)+p(4) p(2)+p(5) ...

p(3) x p(3)+p(3) p(3)+p(4) p(3)+p(5) ...

p(4) x x p(4)+p(4) p(4)+p(5) ...

p(5) x x x p(5)+p(5) ...

... ... ... ... ... ...

It can be seen that lower triangular part of Table 1 and Table 2 is filled with x (we are ignoring them),

since it would contain the values already contained in the upper triangular part of the tables due to the



commutative nature of operations of addition and multiplication.  From Table 1 and Table 2 it can be

easily concluded that  both  tables  contain the  same number of  elements  (not  marked by x).  From

fundamental theorem of arithmetic, it is known that all products in Table 1 have unique values (that is

not the case with the sums in the Table 2, but it has no influence on the final conclusion, since it means

that the number of unique numbers presented in Table 2 is smaller than the number of all numbers

presented in Table 2). From fundamental theorem of arithmetic it is known that all odd numbers can be

uniquely expressed in the following form 

nodd=p (2)i1− 1 p (3)i 2− 1... , 

where i
1
, i

2
, i

3
, … are positive integers. Having this in mind, it can be seen that the unique products in

Table 1 represent the odd natural numbers whose all exponents of the prime factors are smaller than 3,

it can be concluded that exists infinitely many odd numbers that are not presented by the numbers in

Table 1 (all odd numbers that are defined by the odd prime factors, where at least one prime factor

exponent is bigger than 2). It is well know fact that the number of odd natural numbers is equal to the

number of even natural numbers. Since the number of sums in the Table 2 is equal to the number of

products  in the Table 1 we can conclude that  exists infinitely many even numbers  that  cannot be

expressed by the sums presented in Table 2 and then it  is easy to conclude that  strong version of

Goldbach's conjecture cannot hold. It concludes the proof.
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