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ABSTRACT
A new cosmological model is presented, with characteristics and trends very similar to those of the standard model, but without
dark energy. It differs from the standard one essentially for a constant of integration, which derives from a hypothesis at the
centre of this work, which gives rise to an extra spatial distance and an extra fictitious component of matter. Due to these extra
parts, the density parameter of matter is no longer constant but increases from 0.5 to 1 from the beginning of time to the present
day, although the universe is homogeneous and isotropic, and although the total amount of energy and matter are constant.
Consequently, the new model, which has one less parameter, satisfies all the constraints arising from the current accurate
measurements of the BAO and the angular power spectrum of the CMB with the values of the density parameters of matter
which, according to the theory, apply in each context. Analogously, it solves the Hubble tension and the primordial lithium
problem, although it introduces a deuterium problem. Finally, it shows that it is the pressure of matter due to its variability, not
dark energy, that drives the current acceleration phase of the expansion of the universe started by 𝑧 ' 0.5099, when the universe
was 7.99 billion years old, about 5 billion years ago. On a small scale, the same hypothesis has very similar effects to the MOND
theory and explains the rotational motion of galaxies.

Key words: Cosmology: theory – distance scale – cosmological parameters – primordial nucleosynthesis – dark matter –
Galaxy: kinematics and dynamics

1 INTRODUCTION

The standard Big-Bang model of cosmology provides a successful
framework in which to understand the thermal history of our Uni-
verse and the growth of cosmic structure, but it is essentially in-
complete. It requires very specific initial conditions. It postulates
a uniform cosmological background, described by a spatially-flat,
homogeneous and isotropic Robertson-Walker (RW) metric, with
scale factor 𝑎(𝑡). Within this setting, it also requires an initial al-
most scale-invariant distribution of primordial density perturbations
as seen, for example, in the cosmic microwave background (CMB)
radiation, on scales far larger than the causal horizon at the time the
CMB photons last scattered. To overcome the aforementioned re-
quirements, it is necessary the introduction of the ad hoc hypothesis
of inflation. Furthermore, according to the model, only few percent
of the density in the Universe is provided by normal baryonic mat-
ter. The ΛCDM model requires two additional ad hoc components: a
non-baryonic cold dark matter (CDM) and an even more mysterious
dark energy, which makes up the rest.

The problem is that the crucial function of theories such as dark
matter, dark energy and inflation —each in its own way tied to the
big bang paradigm— is not to describe known empirical phenomena
but rather to maintain the mathematical coherence of the framework
itself while accounting for discrepant observations.
With the increase in experimental sensitivity, observational evidence
for deviations from ΛCDM is, therefore, expected.
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The agreement between the BBN (Big Bang Nucleosynthesis)
and CMB (the angular power spectrum of Cosmological Microwave
Background temperature anisotropies), since both constrain inde-
pendently the cosmological parameters of the Standard model, is
considered the strongest evidence in favour of the correctness of
the standard model. Eg, the observed deuterium abundance (𝐷/𝐻)
which in turn implies Ω𝑏ℎ

2 (𝐵𝐵𝑁) in very good agreement with
Ω𝑏ℎ

2 (𝐶𝑀𝐵) deduced from the analysis of the angular power spec-
trum of the cosmic microwave background in the context of the
standard model. Nevertheless, although, there is a good agreement
between light element abundances (helium-4 and deuterium) de-
duced from observations and calculated in primordial nucleosynthe-
sis, there remains a yet-unexplained discrepancy of 7𝐿𝑖 abundance
higher by a factor of ∼ 3 when calculated theoretically. Recently,
even the measure of the primordial abundance of Deuterium shows
signs of discrepancy with respect to the expected value, giving rise
to a further Deuterium Tension (Pitrou et al. 2021).
On the other hand, the CMB Planck constraints are model depen-
dent, therefore changing the cosmological scenario we can end with
different conclusions, and anomalies and tensions between Planck
and other cosmological probes are present well above the 3 standard
deviations. These discrepancies, as time goes on, have persisted and
strengthened despite several years of accurate analyses. The most
famous and persisting anomalies and tensions of the CMB are:

(i) the Hubble Tension (at 5𝜎) (Riess et al. 2021): In recent years,
new measurements of the Hubble constant, the rate of universal
expansion, suggested major differences between two independent
methods of calculation which have huge implications for the validity
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of cosmology’s current standard model at the extreme scales of the
cosmos.

(ii) the lensing amplitude 𝐴𝐿 internal anomaly (at more than 2𝜎)
(Addison et al. 2016) : although the Planck lensing measurement is
compatible with the theoretical expectation 𝐴𝐿 = 1, the distributions
of 𝐴𝐿 inferred from the CMB power spectra alone indicate a prefer-
ence for 𝐴𝐿 > 1. Tension at more than 2𝜎 level is apparent in Ω𝑐ℎ

2

and derived parameters, including 𝐻0, Ω𝑚, and 𝜎8.
(iii) the 𝑆8 tension with cosmic shear data (at 3.2𝜎) (Di Valentino

et al. 2021): A tension on 𝑆8 = 𝜎8
√︁
Ω𝑚/0.3 between the Planck

data in the ΛCDM scenario and KiDS+VIKING-450 and DES-Y1
combined together.

Furthermore, the model, which is remarkably successful on scales
larger than a few Megaparsecs, faces challenges on smaller scales.
The most difficult ones are related with the rotation in the inner parts
of spiral galaxies.

1.1 Premise to the presentation of the hypothesis

The Schwarzschild’s metric, found by K. Schwarzschild (1916),
is the solution of the Einstein equations for a gravitational field
possessing central symmetry (such a field can be produced by
any centrally symmetric distribution of matter). It completely
determines the gravitational field in vacuum produced by any
centrally-symmetric distribution of masses. The metric gives the
connection between the metric of real space, or proper coor-
dinates, and the metric of the four-dimensional space-time or
Schwarzschild’s coordinates, outside the gravitational radius.

The Friedmann–Lemaître–Robertson–Walker (FLRW) solution
was developed independently by the named authors in the 1920s and
1930s. It too, as well as the Schwarzschild’s solution, requires space
to be spatially isotropic, i.e. no preferred direction. In contrast, it
is obtained using a very different set of additional conditions: that
space is filled with matter that is characterized by its density and
pressure, but nothing else (no stress, no viscosity, etc.; a so-called
"perfect fluid"); and that it is homogeneous, i.e same everywhere,
but it can change as a function of time.

As a consequence, while the Schwarzschild solution is static and
demonstrates the limits placed on a static spherical body before
it must collapse to a black hole (the Schwarzschild limit does not
apply to rapidly expanding matter), the FLRW equations describe
an expanding or contracting cosmos that is uniformly filled with
matter-energy.
While the Schwarzschild’s coordinates are observer dependent and
correspond to an “accelerated” frame, like that of an observer held
at a fixed spatial point in the surrounding spacetime, the FLRW
comoving coordinates (including the cosmic time) are universal and
play the same roles as those of an observer falling freely under the
influence of that object.

Although The FLRW metric is an exact solution of Einstein’s
field equations of general relativity, it doesn’t derive from Einstein’s
field equations: it follows from the geometric properties of homo-
geneity and isotropy, that is from the symmetry properties in the
case of complete isotropy. In this special case of an isotropic space,
the curvature properties are determined by just one constant which
is the scalar curvature.
“To investigate the metric it is convenient to start from geometrical
analogy, by considering the geometry of isotropic three-dimensional
space as the geometry on a hypersurface known to be isotropic, in a

fictitious four-dimensional space (This four-space is understood to
have nothing to do with four-dimensional space-time). Such a space
is a hypersphere; the three-dimensional space corresponding to this
has a positive constant curvature.” (Landau & Lifshitz 1971, pag
334)

It is possible to establish a spherical coordinate system, with in-
clination 𝛾, on the spherical surface of Radius 𝑅0 (𝑅0 is the “radius
of curvature” of the Universe). Usually, these Spherical coordinates
(𝑅0, 𝛾♦) are converted into cylindrical coordinates (𝑟♦, ℎ♦) which
correspond to the cosmic coordinates (𝑑𝑀 , 𝑡). The resulting metric,
that is the FLRW metric:

− 𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑎(𝑡)2

(
𝑑𝑟2

1 − 𝑟2/𝑅2
0

+ 𝑟2d𝜃2 + 𝑟2 sin2 𝜃d𝜙2

)
(1)

or equivalently, since 𝑟 = 𝑅0 sin 𝛾,

− 𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑎(𝑡)2𝑅2
0

(
d𝛾2 + sin2 𝛾

(
d𝜃2 + sin2 𝜃d𝜙2

))
(2)

introduces a scale factor varying with time:

𝑎(𝑡) = 𝜆𝑒𝑚𝑖𝑡𝑡𝑒𝑑

𝜆𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
=

1
1 + 𝑧 (3)

However, since it evolves according to Einstein’s field equations,
the metric has an analytic solution to Einstein’s field equations given
by the Friedmann equations when the energy-momentum tensor is
similarly assumed to be isotropic and homogeneous.

𝐻2 ≡
(
¤𝑎
𝑎

)2
=

8𝜋𝐺
3

𝜌 − 𝑘𝑐2

𝑎2 + Λ𝑐2

3
(4)

¤𝐻 + 𝐻2 ≡ ¥𝑎
𝑎
= −4𝜋𝐺

3

(
𝜌 + 3𝑝

𝑐2

)
+ Λ𝑐2

3
(5)

This metric and these equations are the basis of the standard big
bang cosmological model including the current ΛCDM model and
the proposed model.
The model proposed here, however, assumes that the universe is a
IRPLS spacetime.

1.2 The IRPLS

The IRPLS (Instant Reconstruction of the Path of Light Spacetime)
or (Intention Relationship’s PLS) is only and not other than the re-
construction, starting from the present instant, of the path of the in-
termediaries of the interaction (i.e. the bosons) that takes place be-
tween two individuals in relationship. This is the same path as the
light between two mirroring individuals: each one reflects and is re-
flected by the other recursively.

In fact, if we place a clock on each of the two individuals involved
in the interaction, we can historically reconstruct distances and time
intervals from the sequence of times that appears in the mirror im-
age. If we denote by 𝑠♦𝑛 = 𝑡♦𝑛 − 𝑡♦

𝑛−1 the distance between the two
individuals at time 𝑡𝑛, we discover (see fig. 3) that the historical re-
construction of the distance series forms a geometric progression

𝑡♦ = 𝑠♦0+𝑠
♦
1+𝑠

♦
2+𝑠

♦
3+. . . = 𝑠

♦
0

(
1 + 𝐾♦ + 𝐾♦2 + 𝐾♦3 + . . .

)
=

𝑠♦0
1 − 𝐾♦

where 𝑠♦0 is the scale factor and 𝑘 = cos♦ 𝛾 is the common ratio.
Therefore

Δ𝜆♦ = 𝑡♦ − 𝑡♦−1 = 𝑠♦0 and 𝑉♦ =
Δ𝜆♦

𝑡♦
=
𝐴𝐵

0𝐴
= 1 − 𝐾♦
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Figure 1. Recursive mirroring: two mirrors facing each other are reflected
recursively. If there is a clock on each of them, in the reflected image present
in every instant it is possible to reconstruct distances historically and there-
fore the velocities and accelerations over time, as far as the reflection allows.

Consummative Act: the element of the IRPLS

A B

𝑟♦
𝑑𝑜𝑛𝑎𝑡𝑖𝑛𝑔

= 𝜎♦
𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔

𝑡♦
𝑑𝑜𝑛𝑎𝑡𝑖𝑛𝑔

𝜏♦
𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔

𝑟 ♦
𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 =

𝜎 ♦
𝑑𝑜𝑛𝑎𝑡𝑖𝑛𝑔

𝑡 ♦
𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔

𝜏 ♦
𝑑𝑜𝑛𝑎𝑡𝑖𝑛𝑔

Figure 2. Consummative Act (not the event) is the element of the IRPLS:
light does not have a speed, each segment of the path of light itself constitutes
the space axis and determines the time axis, orthogonal to it, constituting
the frames of the two individuals who oppose each other in the interaction.
Consequently, for each individual, one frame corresponds to the act of giving
and another frame corresponds to the act of receiving. The two frames are
rotated to each other by a real 𝛾 angle. The determination of the 𝛾 angle
is subject to the Uncertainty principle. Indeed, in a measurement, while the
measuring instrument A is necessarily classic and therefore reflective, so we
know 𝑃♦ = 𝑡♦

𝐴𝑖
− 𝑡♦

𝐴𝑖−1
, the measured B could be non-classic, therefore

we would not know the proper time 𝑡♦
𝐵𝑖

and therefore we would not know

cos 𝛾♦ =
𝑡♦
𝐵𝑖

−𝑡♦
𝐴𝑖−1

𝑡♦
𝐴𝑖

−𝑡♦
𝐵𝑖

and vice-versa.

Figure (3) compares the representation of the progression of
events 𝐴, 𝐵, 𝐴′, 𝐵′, . . . in Minkowski’s spacetime with that in
IRPLS.

In contrast with the Minkowski’s spacetime, in the IRPLS

• the individual manifests itself determined (particle) only in the
act, i.e. only in the instant of giving/receiving energy, while it is in
potency (wave function) otherwise. In other words, movement takes
place not in act, but in the continuum of the potency which extends
between one act and the next act of the relationship

• there is not a Time per se, other of space, the only dimension
is the path of light in a relationship. Time is only the measure of the
length of the total path of light. Light therefore does not have a speed
and the metric is linear

• the element of the IRPLS is not the event, but the entire seg-
ment that unites the donor to the recipient (see fig. 2). Since light
does not have a speed, each segment of the path of light itself con-
stitutes the space axis and determines the time axis, orthogonal to
it, constituting the frames of the two individuals who oppose each
other in the interaction.

• Two frames corresponding to two successive acts of giving and
receiving of a relationship form a 𝛾 angle between them. the IR-

�

�

Minkowski spacetime IRPLS (Path of Light Spacetime)
The path of light in the recursive mirroring between A and B

cos 𝛾♦𝑒 = 𝐾♦ sin 𝛾♦𝑒 = 1 − 𝐾♦

cos 𝛾♦𝑖 = −𝐾♦ sin 𝛾♦𝑖 = 1 + 𝐾♦

r 𝜁

𝜁

𝜏 = 𝜏♦
𝑡

A’

A”

0 𝑟2 = 𝑡2 − 𝜏2

A

𝐵′

𝐵

wristwatch of A

wristwatch of B

B
𝜏♦1𝑎

𝛾♦𝑒

𝛾♦
𝑖

𝛾♦
𝑖

𝛾♦
𝑖

𝜎♦
1𝑎 𝑑𝑜𝑛𝑎𝑡𝑖𝑛𝑔

𝑟
♦ 2 𝑎

A

A’

A”
B’

𝑟♦1𝑎 𝑑𝑜𝑛𝑎𝑡𝑖𝑛𝑔

𝑡♦1𝑎

0

𝑉♦ = sin♦ 𝛾 =
𝜆

𝑇
=
𝑥♦𝑛
𝑡♦0𝑛

= 1 − 𝐾♦

𝑥♦𝑛 = 𝑡♦𝑛 − 𝑡♦𝑛−1 or Δ𝑡♦𝑎𝑏 =

𝑏∑︁
𝑛=𝑎+1

𝑥♦𝑛

Figure 3. isomorphism: in comparison the representations of the geometric
progression 𝐴, 𝐵, 𝐴′ , 𝐵′ , 𝐴′′ , 𝐵′′ , . . . with 𝐾♦ (𝛾) as the common ratio,
deriving from the recursive mirroring of individuals A and B (see fig. 1).
The IRPLS diagram emerges from the historical reconstruction that connects
the act of giving with the previous act of receiving and so on. Consequently,
In the IRPLS diagram the homologous frames, and therefore the homolo-
gous axes, face each other forming an angle 𝛾 (the heterologous frames, and
therefore the heterologous axes give-riceive are in fact always parallel to each
other).

PLS represents the historical reconstruction of the relation donating-
receiving of energy between two individuals starting from the cur-
rent Act in the current instant. A reflective individual (i.e. a classic
observer) extracts all the information from the image that reflexively
emerges (i.e. from a sufficient number of concomitant acts) from and
within the energy received.
In other words, it always represents a single instant: the entire space-
time of a relationship photographed in an instant

• the metric is linear Δ𝑡♦ =
∑
𝑠♦
𝑖
+ 𝑅𝑖 . That is, time is the period

of potency that extends between two acts and therefore is equal to
the length of the path of light, which takes place partly in space and
partly in the Radius (here the gravitational one)

• The circulation along a closed path is zero (zero curl). In a
closed path, time is therefore the antilight, in the sense that it is of
equal modulus and opposite sign to the light path.

• distance asymmetry: called 𝐴′𝐵 and 𝐵𝐴 the round trip of a
signal between 𝐴 and 𝐵, we have 𝐴′𝐵 = 𝐾♦𝐵𝐴. Each segment of
the path is 𝐾♦ = cos♦ 𝛾 times the previous one.

• the cipher of the linear geometry of the IRPLS diagram are the
right Triangles 4♦

𝑒 and 4♦
𝑖

, which correspond respectively to the ro-
tation {𝛾𝑒 | sin♦ 𝛾𝑒 + cos♦ 𝛾𝑒 = 1} and {𝛾𝑖 | sin♦ 𝛾𝑖 + cos♦ 𝛾𝑖 = 1}.
In other words, there are two versions of the angle 𝛾♦

cos 𝛾♦𝑒 = 𝐾♦ (𝛾) sin 𝛾♦𝑒 = 1 − 𝐾♦ (𝛾) (6)

cos 𝛾♦𝑖 = −𝐾♦ (𝛾) sin 𝛾♦𝑖 = 1 + 𝐾♦ (𝛾) (7)

It is easy to verify that:

sin
(
𝜑𝑒 ±♦ 𝜓𝑒

)
= sin♦ 𝜑𝑒 ± sin♦ 𝜓𝑒 (8)

cos
(
𝜑𝑒 ±♦ 𝜓𝑒

)
= cos♦ 𝜑𝑒 ∓ sin♦ 𝜓𝑒 (9)

The right Triangles 4♦
𝑒 and 4♦

𝑖
are the atoms and the compounds

of the IRPLS diagram and they unfold recursively from each other
alternating. Indeed, in a IRPLS diagram, each segment arises from a
geometric progression which has as its common ratio cos♦ 𝛾 and as
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scale factor a segment of a more primitive nature. Below the genesis
of the spacetime (fig. 4):

• The genesis of the spacetime: The core of a IRPLS diagram
consists of the radius of the two interacting individuals linked by
the path of light during their interaction. In the interaction, the light
path cyclically connects the head of each radius with the tail of the
opposite radius, crossing the same radii.

𝜑♦ +♦ 𝜓♦ = 𝛾♦

bA

^ A’

b’ 𝑅2𝑎

^
𝑅2𝑏

𝜎♦
2

Line of the present in act

𝑟♦2𝑏

𝑟♦2𝑎

𝜓♦ 𝜑♦

starting from the above schema, indicating with:

𝑅2𝑎 = 2
𝐺

𝑐2 𝑀𝑎 𝑅2𝑡𝑜𝑡 = 𝑅2𝑎 + 𝑅2𝑏

Since for each observer A, its proper mass at rest is opposed to the
remaining masses B placed in their centre of gravity and subjected
to the total gravitational field, the global energy-momentum Radius
of A and B is

𝑅♦2𝐴𝑏
= 𝑅2𝑎 + 𝑅2𝑏 cos♦ 𝛾 𝑅♦2𝐵𝑎

= 𝑅2𝑏 + 𝑅2𝑎 cos♦ 𝛾

and since a round trip route passes through both A and B, it descends
that space and time proceed from mass-energy as follows:

𝑅♦2 =
𝑅♦2𝐴𝑏

+ 𝑅♦2𝐵𝑎

2
=
𝑅2𝑡𝑜𝑡 (1 + cos♦ 𝛾)

2
=
𝑅2𝑡𝑜𝑡 sin♦ 𝛾𝑖

2
(10)

𝑟♦2 =

0∑︁
−∞

𝑅♦2𝑖 = 𝑅
♦
2

(
1 + cos♦ 𝛾 + cos♦2 𝛾 + · · ·

)
=

𝑅♦2
sin♦ 𝛾𝑒

(11)

𝑟♦ =

0∑︁
−∞

𝑟♦2𝑖 = 𝑟
♦
2

(
1 − cos♦ 𝛾 + cos♦2 𝛾 − · · ·

)
=

𝑟♦2
sin♦ 𝛾𝑖

(12)

𝜏♦ =

0∑︁
−∞

𝑟♦𝑖 = 𝑟♦
(
1 + cos♦ 𝛾 + cos♦2 𝛾 + · · ·

)
=

𝑟♦

sin♦ 𝛾𝑒
(13)

where

𝑟♦2 =
𝑟♦2𝑎 + 𝑟♦2𝑏

2
𝑟♦ =

𝑟♦
𝑎
+ 𝑟♦

𝑏

2
𝜏♦ =

𝜏♦
𝑎
+ 𝜏♦

𝑏

2
At last, indicating with

𝑅𝑥 =
𝑅2𝑥

2
𝑅𝑡𝑜𝑡 =

𝑅2𝑡𝑜𝑡
2

=
𝑅2𝑎 + 𝑅2𝑏

2
= 𝑅𝑎+𝑅𝑏 =

𝐺

𝑐2 (𝑀𝑎 + 𝑀𝑏)

from the eq. (10,11, 12, 13) descends the fundamental relation:

𝑉♦ = 𝑅𝑡𝑜𝑡 : 𝑟♦ = 𝑟♦ : 𝜏♦ = sin♦ 𝛾𝑒 = 𝑝♦/𝑚 (14)

• geometry of the relation: in the instant the geometry is linear:
A IRPLS closed polygonal chain corresponds, locally, to a manifold
differential equation valid at that point.

• “principle of equivalence, in the instant, between inertial and
not inertial systems” : from the (14) the potential is equivalent to the
momentum 𝑉♦ ≡ 𝑝♦/𝑚 and both correspond to a rotation, through
a real angle 𝛾 = arcsin

(
𝑉♦) , of the respective reference systems.

The sine of the 𝛾 angle between rotating Radii (or any other pair of
axes) corresponds to the potential or the momentum (𝑉♦ ≡ 𝑝♦/𝑚 ≡
sin♦ 𝛾). In the IRPLS space, therefore, there is no difference, in the
instant, between an inertial and a non-inertial system, since both are

B

0𝑎

A

^
A’

𝑅
2
𝑎 cos ♦

𝛾

^
b’

Line of the present

𝑟♦2𝑎

II

I

𝜎
′′♦
1𝑎

↔ 𝑟 ′♦1𝑎

III

b

𝛾♦𝑒

𝛾♦𝑒

𝛾♦
𝑖

𝑡♦1𝑎 ↔ 𝜏♦1𝑎

𝜏♦1𝑎 ↔ 𝑡♦1𝑎

𝑟♦1𝑎 ↔ 𝜎♦
1𝑎

𝜎′♦
1𝑎

↔ 𝑟♦1𝑎𝑅2𝑎 𝑅2𝑏 cos♦ 𝛾

𝑅
2
𝑏

𝜎♦
1𝑎

↔

𝑟 ′♦1𝑎
↔ 𝜎′♦

1𝑎

𝛾♦
𝑣𝑎𝑟𝑦𝑖𝑛𝑔

↔ 𝛾♦
𝑓 𝑖𝑥𝑒𝑑

Figure 4. The whole relation is enfolded and unfolds from the Radii of the
two conjoined individuals with the dual angles 𝛾𝑒 and 𝛾𝑖 alternating each
other. It is governed by the relation 𝑅 : 𝑟♦ = 𝑟♦ : 𝜏♦ = sin♦ 𝛾. Indeed the
three quadrants represent time, space and Radius and recursively follow one
another. In particular the III-II quadrants represent the internal energy-space
plane, while the II-I quadrants the external space-time plane.
The diagram represents the historical reconstruction of the relationship start-
ing from the current instant. It coincides with real history only when 𝛾 is
constant.

characterized by a rotation angle 𝛾. In an inertial system, in fact, the
two radii are symmetrical and fictitious and translating (approaching
or moving away) they do not rotate (𝑝♦ (𝛾)/𝑚 = 𝑟♦/𝜏♦ = 𝑐𝑜𝑛𝑠𝑡)
but their modulus grows as 𝑅 = 𝑉♦𝑟♦. On the other hand, in the
gravitational or electrical interaction, the two Radii are real and their
modulus is fixed and for both “freely falling” ≡ “rotating” : 𝑉♦ (𝛾) =
𝑅𝑡𝑜𝑡/𝑟♦.
• The genesis of the three spatial dimensions: The genesis re-

ported here, shows that space emerges from matter. In particular,
matter is in three different states, each of the three dimensions
emerges from one of the three states of matter:

(i) 𝑟𝑐 from potency, that is CDM;
(ii) 𝑟𝑟 from energy, that is radiation;
(iii) 𝑟𝑏 from act, that is baryonic matter.

These three states of matter correspond to the three inner dimensions
of space.
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• the reflective birth of Euclidean geometry:

G
(
4♦
𝑖

)
· G

(
4♦
𝑒

)
= G (4𝐸𝑢𝑐𝑙𝑖𝑑) ≡(

cos 𝛾♦𝑖 + sin 𝛾♦𝑖
) (

cos 𝛾♦𝑒 + sin 𝛾♦𝑒
)
=

(
cos 𝛾2 + sin 𝛾2

)
(15)

From the physical point of view, the (15) corresponds to the general
energy-momentum relation both in the linear version and in the usual
quadratic version. Indeed it’s possible to show that for each physical
equation, there are two dual forms, a linear one in the IRPLS plane
and a quadratic one in the manifold.

• the isomorphism between SR, GTR and IRPLS.
From the previous definitions, differentials represent proper coordi-
nates while segments represent reduced circumferences more or less
the Radius.
Indeed, from fig. 4 and since, for the Schwarzschild coordinates,
“by definition, the “time” required by light to travel from A to B
equals the “time” it requires to travel from B to A” (Einstein 1905)
we have:

d𝜏 = d𝜏♦1 d𝜎 = d𝜎♦
1 (16)

𝑟 =
𝜎♦

1 + 𝑟♦1
2

= 𝑟♦ ± 𝑅𝑡𝑜𝑡

2
= 𝑟♦ ± 𝑅 𝑡 =

𝑡♦1 + 𝑡′♦1
2

= 𝑡♦ ± 𝑟 (17)

Since in gravitation

𝐾♦ = 1 − sin 𝛾 (in electricity 𝐾♦ = cos 𝛾) (18)

defining 𝑉♦ = sin 𝛾, we have:

𝐾♦
𝑒 = 𝐾♦ 𝐾♦

𝑖 = −𝐾♦ (19)

𝑉♦
𝑒 = 1 − 𝐾♦ = 𝑉♦ 𝑉♦

𝑖 = 1 + 𝐾♦ = 2 −𝑉♦ (20)

and the (16, 17) become:

d𝜏♦𝑒 = d𝜏 d𝜏♦𝑖 = −d𝜏 d𝜎♦
𝑒 = d𝜎 d𝜎♦

𝑖 = −d𝜎 (21)

𝑡♦𝑒 = 𝑡 + 𝑟 𝑡♦𝑖 = 𝑡 − 𝑟 𝑟♦𝑒 = 𝑟 + 𝑅 𝑟♦𝑖 = 𝑟 − 𝑅 (22)

d𝜏♦𝑥 = d𝑡♦𝑥
(
1 −𝑉♦

𝑥

)𝑘 d𝜎♦
𝑥 =

d𝑟♦𝑥
1 −𝑉♦

𝑥

𝑥 = 𝑒, 𝑖 (23)

where 𝑘 = 1 when d𝛾 = 0, 𝑘 = −1 in a free falling frame (d𝛾 ≠ 0).
Therefore, in a static frame (d𝑟 = 0 and therefore d𝑡♦𝑥 = d𝑡)

d𝜏2 = −d𝜏♦𝑒 d𝜏♦𝑖 = −d𝑡♦𝑒d𝑡♦𝑖
(
1 −𝑉♦

𝑒

) (
1 −𝑉♦

𝑖

)
= 𝑔00 d𝑡2 (24)

in a free falling frame (d𝑟 ≠ 0)

d𝜏♦𝑒 =
d𝑡♦𝑒

1 −𝑉♦
𝑒

=

𝐸 d𝜏
𝑚𝑐2 − d𝑟

𝑐

1 −𝑉♦
𝑒

d𝜏♦𝑖 =
d𝑡♦
𝑖

1 −𝑉♦
𝑖

=

𝐸 d𝜏
𝑚𝑐2 + d𝑟

𝑐

1 −𝑉♦
𝑖

(25)

d𝜏2 = d𝜏♦𝑒 d𝜏♦𝑖 =
d𝑡♦𝑒 d𝑡♦

𝑖(
1 −𝑉♦

𝑒

) (
1 −𝑉♦

𝑖

) =

𝐸2

𝑚2𝑐4 d𝜏2 − d𝑟2

𝑐2

1 − 2𝑉
(26)

(
𝐸2

𝑚2𝑐4 − 1
)
+ 2𝑉 =

d𝑟2

𝑐2d𝜏2 (27)

Since, from the above, it must be:

𝑔00 = 1 − 2𝑉 ≡ −
(
1 −𝑉♦

𝑒

) (
1 −𝑉♦

𝑖

)
=

(
1 −𝑉♦)2

= 𝑉♦
𝑒𝑉

♦
𝑖 (28)

it follows that IRPLS physics is isomorphic to GTR via:

𝑉 ≡
𝑉♦
𝑒𝑉

♦
𝑖

2
= 𝑉♦ 1 + cos♦ 𝛾

2
=

1
2𝑅

♦
2

𝑟♦
= 𝑉♦

(
1 − 𝑉

♦

2

)
(29)

About the mapping between the angles 𝜁 of Special Relativity and
𝛾♦, since, from the (22 )
𝑡♦1 = 𝑡 + 𝑟 = 𝜏♦1 /cos♦𝛾

𝑡′♦1 = 𝑡 − 𝑟 = 𝜏♦1 cos♦ 𝛾
⇒


𝑡♦1 = 𝜏 cosh 𝜁 + 𝜏 sinh 𝜁

𝑡′♦1 = 𝜏 cosh 𝜁 − 𝜏 sinh 𝜁

we find that IRPLS physics is isomorphic to Special Relativity via:

𝑒−𝜁 ≡ cos♦ 𝛾 (30)

IRPLS physics, therefore, subsumes unifying Einstein’s field equa-
tions and special relativity on a new ground.

1.3 The meaning of IRPLS and its relationship with
Minkowski’s spacetime

We saw in the previous paragraph that the physical representation in
Minkowski/Riemannian manifold spacetime and that in the IRPLS,
although completely different, as deriving from two completely
different metaphysics, are isomorphic to each other. Which of the
two is the real one (or the more primitive) is not a matter of taste,
rather of criteria of naturalness, simplicity and generality.

According to the physicist John Wheeler, Einstein’s general the-
ory of relativity can be summed up in just 12 words: “Space-time
tells matter how to move; matter tells space-time how to curve”.
IRPLS removes absolute spacetime: “matter tells matter how to
move in the potency”. More precisely, IRPLS also removes matter.
In fact, the universe is the set of the totality of individuals in relation
to each other where each individual (the elementary individual is the
quantum of matter) is distinguished by its position with respect to
the others.

The IRPLS diagram is only a knowledge representation system,
it emerges reflexively (probabilistically) from the potency by means
of the same theory on which QED is based, when the uncertainty
inherent in IRPLS (see. fig. 2) dissolves. It is therefore the reality
that lies beneath the Riemannian manifold that reflexively (phe-
nomenologically) emerges from it, and the ground that unifies
gravitation with quantum mechanics and inertial systems.

In Cosmology, it introduces a scale factor varying with time:

𝑎(𝑡) = 𝐾♦ = 1 − sin 𝛾 =
𝜆𝑒𝑚𝑖𝑡𝑡𝑒𝑑

𝜆𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
=

1
1 + 𝑧

(
𝛾 = arcsin

𝑧

𝑧 + 1

)
(31)

𝑅
0

𝑟 ♦

ℎ♦
𝛾♦

path of light
cylindrical coordinates

𝑟♦ + ℎ♦ = 𝑅0 𝑎 (𝑡 ) = 1 − sin 𝛾 (32)

𝑟♦ = sin 𝛾𝑅0 ℎ♦ = (1 − sin 𝛾)𝑅0 (33)

d𝑟♦ = −𝑅0 d𝑎 dℎ♦ = 𝑅0 d𝑎 (34)

d𝑑𝑀 = d𝑟♦/𝐴 𝑐d𝑡/𝑎 = dℎ♦/𝐴 (35)

where 𝐴 = d𝑎/d𝛾 is the curvature factor due to the
non-zero energy density. From the definition:

𝐴 =

√︃
1 − 𝑟2/𝑅2

0 in the euclidean geometry (36)

𝐴♦ = 1 − 𝑟♦/𝑅0 = 𝑎 on the path of light. (37)

𝑣 = tanh 𝜁 =
𝑟

𝜏
(
1 −𝑉♦) + 𝑟 =

1 −
(
1 − sin 𝛾♦

)2

1 + (1 − sin 𝛾♦)2 =
1 − 𝐾♦2

1 + 𝐾♦2
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Therefore, we have the equivalence of the three redshifts:

Gravitational redshift
1

1 − 𝑅𝑡𝑜𝑡

𝑟♦

=
1

1 −𝑉♦ =
1

1 − sin 𝛾
= 1 + 𝑧

Doppler redshift

√︂
1 + 𝑣
1 − 𝑣 =

1
𝐾♦ =

1
1 − sin 𝛾

= 1 + 𝑧

FLRW redshift
𝑡♦

𝜏♦
=
𝜎♦

𝑟♦
=
𝑅0
ℎ♦

=
1
𝑎

=
1

1 − sin 𝛾
= 1 + 𝑧

In the next paragraphs we will see that it solves all the difficulties
of current cosmology.

1.4 The hypothesis

The universe is the relationship of the whole with its parts from
which the IRPLS emerges. Nevertheless, thanks to the isomorphism
between the IRPLS and GTR, in the following we use the GTR
by making the necessary additions in the form of hypotheses.
Consequently, the following discussion is based on Einstein’s field
equations and Friedmann equations and FLRW metric with the
addition of a hypothesis, that is: the distance measurements inside
the Universe differ from those predicted by the standard model due
to an integration constant.

Indeed, indicating with:

• 𝑅𝑚 (𝛾) = 𝐺/𝑐2 𝑀 (𝛾) = 𝑟𝑠/2 one half of the Schwarzschild
radius of the matter of the universe at a distance 𝑟 (𝛾)

• 𝑅Ω the constant gravitational Radius of the Universe, i.e. the
constant total amount of matter-energy of the universe

• 𝑅(𝑡 ) = 𝑐/𝐻(𝑡 ) the Radius of curvature of the Universe, i.e. the
positive curvature of the hypersphere corresponding to the Universe
(At the present time, i.e. the current time which corresponds to cos-
mic time 𝑡0 and to the Hubble constant 𝐻0 and curvature Radius
𝑅0 = 𝑐/𝐻0)

and defining “Cosmic Potential” and “Path of light in space” (dis-
tinct from the path of light in the Radius) as follows:

𝑉♦
(𝛾) = 1 − 𝐾♦ = sin 𝛾 “Cosmic Potential” (38)

𝑟♦(𝛾) = 𝑉(𝛾)𝑅0 = sin 𝛾𝑅0 “Path of light in space” (39)

the IRPLC model makes the following general hypothesis:

Hypothesis 1 The radial coordinate r1 between two interacting
(gravitationally) bodies (like the observer and the observed) is equal
not only to the path of light in space 𝑟♦(𝛾) , but also, for each of them,
to the length of their own gravitational radius 𝑅𝑚, and this, in a ho-
mogeneous and isotropic universe, due to the presence of dark mat-
ter as well as ordinary matter and radiation, increase proportion-
ally to the square of the spatial distance ( or as the Cosmic Potential
times the Path of light in space). More precisely, we have:

𝑉♦ = 𝑅𝑚 : 𝑟♦ = 𝑟♦ : 𝜏♦ = 𝑝♦/𝑚 = sin♦ 𝛾 (40)

𝑟 (𝛾) =
∫

d𝑟♦(𝛾) = 𝑟
♦
(𝛾) + 𝐶 = 𝑟♦(𝛾) + 𝑅m(𝛾) = bΓ 𝑟♦(𝛾) (41)

(Cosmology begins when, in the 40, 𝜏♦ = 𝜏♦𝑚𝑎𝑥 = 𝑅0)

1 r is gotten by dividing the measured circumference of a circle by 2𝜋

We introduce, therefore, the cosmological factor2 bΓ ≡(
1 + 𝑅𝑚

𝑟♦

)
=

(
1 + 𝑅Ω

𝑅0
sin 𝛾

)
. Since the actual (or observed) density

is equal to the critical density of the Friedmann universe

𝑅Ω = 𝑅0 =
𝑐

𝐻0
→ bΓ = (1 + sin 𝛾) (42)

It is a parameter dependent only on the Path of light in space between
the observed B and the observer A, and is constant along the entire
path, being the equivalent of an integration constant.
We have, from the hypothesis:

𝑅m(𝛾) = 𝑉(𝛾) 𝑟
♦
(𝛾)

𝑅Ω

𝑅0
= 𝑉(𝛾) 𝑟

♦
(𝛾) (43)

𝑟 (𝛾) =
∫

d𝑟♦(𝛾) = 𝑟
♦
(𝛾) + 𝐶 = 𝑟♦(𝛾) + 𝑅m(𝛾) = bΓ 𝑟♦(𝛾) (44)

Accordingly, for the line element:

𝑑𝑙2 =

(
𝑑𝑟2

1 − 𝑟2/𝑅2
0

+ 𝑟2dΩ2

)
= b2
Γ 𝑅

2
0

(
d𝛾2 + sin2 𝛾dΩ2

)
(45)

At last, for the cosmic matter-energy

𝑅ms(𝛾) = 𝑉(𝛾) 𝑟 (𝛾) = bΓ𝑅m(𝛾) = 𝑅m(𝛾) + 𝑅s(𝛾) (46)

although the average density is equal to the critical one, and there-
fore the universe is flat, the extra radius 𝑅s(𝛾) of eq. 46, behaves like
a vanishing mass that generates a radius of curvature 𝑅0. As a result,
the density of matter is no longer constant but increases from 0.5 to
1 from the beginning of time to the present day, although the uni-
verse is homogeneous and isotropic, and although the total amount
of energy and matter are constant.

In the context of a Friedman-type model, in which the cosmos
expands outward from a singularity, a time-varying scale factor 𝑎(𝑡)
is introduced, as usual:

𝑅Ω = 𝑅Ω 𝑅(𝑡 ) = 𝑎(𝑡) 𝑅0 𝑟 (𝛾,𝑡 ) = 𝑎(𝑡) 𝑟 (𝛾) (47)

It is important to underline that the IRPLC hypothesis, which con-
forms to the law of conservation of energy and to the principle of ho-
mogeneity (no privileged points) and isotropy of the universe, does
not change the FLRW metric, nor the Einstein’s field equations, nor
Friedmann’s equations. Consequently, the cosmic volume must cor-
respond to the wedge of the universe that goes from the singularity
of the Big Bang to the space surface at time t

𝑉𝑜𝑙 (𝑟(𝛾,𝑡 ) ) =
4
3
𝜋 𝑟2

(𝛾,𝑡 ) 𝑎(𝑡) 𝑅0 = sin2 𝛾
4
3
𝜋 (𝑎(𝑡)𝑅0)3 (48)

so that :

𝜌ms(𝑡 ) =
𝑐2

2𝐺

𝑅ms(𝛾)
𝑉𝑜𝑙 (𝑟(𝛾,𝑡 ) )

=
3𝐻2

0
8𝜋𝐺

bΓΩ𝑚
𝑎(𝑡)3 (49)

(note that the different definitions of volume (eq.48) and density
(eq.49) do not alter the Friedmann fluid equation)
where the matter density, together with its radiant component, is
equal to the critical density Ω𝑟 +Ω𝑚 = 1 where Ω𝑚 = Ω𝑏 +Ω𝑐

𝑅Ω = 𝑅Ω𝑟
+ 𝑅Ω𝑏

+ 𝑅Ω𝑐
≡ 1 = Ω𝑟 +Ω𝑏 +Ω𝑐 (50)

Given the relationship between space and mass-energy (see eq.

2 on the small scale, the cosmological factor is negligible: one astronomical
unit corresponds to sin Γ (1𝑎𝑢) ' 1.2 × 10−15.
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46), it is possible to break down the elements of the metric according
to the type of energy

1

𝑅2
0

=
1

𝑅2
0𝑟

+ 1

𝑅2
0𝑏

+ 1

𝑅2
0𝑐

=
Ω𝑟

𝑅2
0

+ Ω𝑏

𝑅2
0

+ Ω𝑐

𝑅2
0

(51)

1
d𝑟2 =

1

d𝑟2
𝑟

+ 1

d𝑟2
𝑏

+ 1

d𝑟2
𝑐

=

(
1

𝑅2
0𝑟

+ 1

𝑅2
0𝑏

+ 1

𝑅2
0𝑐

)
1

(d sin 𝛾)2 (52)

1

d𝑑2
𝑀
(𝑧)

=
1

d𝑑2
𝑀𝑟

(𝑧)
+ 1

d𝑑2
𝑀𝑏

(𝑧)
+ 1

d𝑑2
𝑀𝑐

(𝑧)
=
𝐻2 (𝑧)
𝑐2d𝑧2

(53)

𝐻2 (𝑧) = 𝐻2
𝑟 (𝑧) + 𝐻2

𝑏
(𝑧) + 𝐻2

𝑐 (𝑧) (54)

In details:

Energy FLRW ΛCDM IRPLC
kind coordinates model model

r d𝑑𝑀𝑟
=

d 𝑟𝑟
𝐴𝑟

−𝑅0𝑟 d𝑎 −𝑅0𝑟 d𝑎

b d𝑑𝑀𝑏
=

d 𝑟𝑏
𝐴𝑚

𝑅0𝑏
√︁

1 + sin 𝛾 d𝛾 𝑏Γ𝑅0𝑏d𝛾

c d𝑑𝑀𝑐
=

d 𝑟𝑐
𝐴𝑚

𝑅0𝑐
√︁

1 + sin 𝛾 d𝛾 𝑏Γ𝑅0𝑐d𝛾

Λ d𝑑𝑀Λ
=

d 𝑟♦
Λ

𝐴Λ
𝑅0Λ d𝑧 0

(55)

where 𝐴𝑟 = 1 𝐴𝑚 =

√︃
1 − 𝑟2/𝑅2

0 = cos 𝛾 𝐴Λ = 𝑎2

In the (55), each component d𝑑𝑀𝑥
was deduced: by means of

backward reasoning starting from the Metric (60), for the ΛCDM
model; according to (Landau & Lifshitz 1971, pag. 333-336) and
Hypothesis (1), for the IRPLC model. Since

𝑑𝑀𝑚
(𝛾)/𝑅𝜔𝑚

= 𝑏(Γ)
∫ 𝛾

0
𝑑𝛾 = 𝑏(Γ)𝛾 = (1 + sin 𝛾) 𝛾 (56)

𝑑′𝑀𝑚
(𝛾)/𝑅𝜔𝑚

= 1 + sin 𝛾 + 𝛾 cos 𝛾 (57)

𝑑𝑧 = − 𝑑𝑎
𝑎2 =

cos 𝛾
𝑎2 𝑑𝛾 =

√︃
(1 + sin 𝛾)𝑎−3 𝑑𝛾 (58)

𝑐

𝐻𝑥
= 𝑑′𝑀𝑥

(𝑧) = 1/
√√√√ (1 + sin 𝛾)𝑎−3(

𝑑′
𝑀𝑥

(𝛾)
)2 (59)

we have at last

model Metric

ΛCDM 𝑑𝑀 =

∫ 𝑧

0

𝑐 𝑑𝑧

𝐻0

√︃
Ω𝑟

𝑎4 (𝑡 ) +
Ω𝑚

𝑎3 (𝑡 ) +ΩΛ

IRPLC 𝑑𝑀 =

∫ 𝑧

0

𝑐 𝑑𝑧

𝐻0

√︂
Ω𝑟

𝑎4 (𝑡 ) +
1+sin 𝛾

(1+sin 𝛾+𝛾 cos 𝛾)2
Ω𝑚

𝑎3 (𝑡 )

(60)

As for the IRPLC Hubble parameter, from the eq. (60) we have:

𝐻 (𝑎) = 𝐻0

[
Ω𝑟

𝑎4 (𝑡)
+ Ω𝑚𝑠 (𝛾)

𝑎3 (𝑡)

]
(61)

Ω𝑚𝑠 (𝛾) =
1 + sin 𝛾

(1 + sin 𝛾 + 𝛾 cos 𝛾)2 Ω𝑚 = Ω𝑚 (𝛾) +Ω𝑠 (𝛾) (62)

The denominator of the eq. (62) derives (see eq. 57) from the
extra path of light represented by the cosmological factor 𝑏Γ.
Regarding the numerator of the (62), while the first term represents
the proper mass due to to the path of light in space 𝑟♦, the second
term, characteristic and distinctive of the IRPLC model compared

to the standard one, represents the extra mass due to extra distance
constituted by the length of the Radius (i.e. to the extra path). We
will indicate this second term, i.e. Ω𝑠 , with the name of “shadow
matter”. It is assumed to be a fictitious mass of a different nature
from proper mass.

The cosmological factor 𝑏Γ has important consequences on the
metric and constitutes the original difference compared to the
ΛCDM model. In fact, it implies that, although the total amount of
energy and matter in the Universe remains constant, space varies in-
stead with a law different from the simple cube of distance.
Nevertheless the extra distance and the extra mass given by the cos-
mological factor 𝑏Γ are fictitious and give rise to a fictitious curva-
ture. Consequently, although the universe is locally flat Ω𝑟 +Ω𝑚 = 1
, it is finite and has a positive spatial curvature (spherical). Indeed,
the “shadow matter” breaks down into two components:

Ω𝑠 (𝛾) =
1 − 1 + sin 𝛾

(1 + sin 𝛾 + 𝛾 cos 𝛾)2 Ω𝑚 = Ωℎ (𝛾) +Ω𝑘 (𝛾) 𝑎(𝛾) (63)

We can therefore rewrite the eq. (61) as follows:

𝐻 (𝑎) = 𝐻0

[
Ω𝑟

𝑎4 (𝑡)
+ Ω𝑚 (𝛾)
𝑎3 (𝑡)

+ Ωℎ (𝛾)
𝑎3 (𝑡)

+ Ω𝑘 (𝛾)
𝑎2 (𝑡)

𝑎(𝛾)
𝑎(𝑡)

]
(64)

where

Ω𝑚 (𝛾) =
1

(1 + sin 𝛾 + 𝛾 cos 𝛾)2 Ω𝑚 (65)

Ωℎ (𝛾) =
1

(1 + sin 𝛾 + 𝛾 cos 𝛾)2 Ω𝑚 (66)

Ω𝑘 (𝛾) =
−1

(1 + sin 𝛾 + 𝛾 cos 𝛾)2 Ω𝑚 (67)

Since along the line of sight 𝑎(𝛾) = 𝑎(𝑡), the universe appears en-
dowed with a fictitious positive curvature. Nevertheless, the universe
is flat in itself as cosmological observations reveal.

Analogously, the cosmological factor 𝑏Γ gives rise to a fictitious
matter pressure and therefore to the acceleration in the expansion
of the universe. Indeed, starting from the above density formulas,
since, using the first equation (4), the second equation (5) can be
re-expressed as:

¤𝜌 = −3
¤𝑎
𝑎

(
𝜌 + 𝑝

𝑐2

)
or

𝑝

𝑐2 = −
(

1
3
𝑎

¤𝑎 ¤𝜌 + 𝜌
)

(68)

and since, from the (1), 𝑑𝜏 = 𝑎𝑑′
𝑀
(𝛾)𝑑𝛾 and 𝑑𝑎 = − cos 𝛾𝑑𝛾 =

𝐻0 d𝑟, we have:

¤𝑎
𝑎
= 𝐻0

1
𝑎2

d𝑟
d𝑑𝑀

=

√︂
8𝜋𝐺

3
𝜌 (69)

𝑝𝑟 (𝑡)
𝑐2 = 𝜌𝑐𝑟𝑖𝑡

1
3
Ω𝑟𝑎

−4
(𝑡 ) (70)

𝑝𝑚 (𝑡)
𝑐2 =

2
3

1
cos 𝛾

𝛾 sin 𝛾 − 2 cos 𝛾
1 + sin 𝛾 + 𝛾 cos 𝛾

𝑎 (𝑡 ) 𝜌𝑚 (𝑡) (71)

𝑝𝑠 (𝛾)
𝑐2 =

𝑝𝑚 (𝛾)
𝑐2 (1 − 𝑎(𝛾)) + 1

3
𝑎 (𝛾) 𝜌𝑚 (𝛾) (72)

When 𝑡 → 𝑡0, that is 𝛾 → 0 or 𝑎(𝑡) = 𝑎(𝛾) → 1, we have that the
proper matter pressure becomes negative:

lim
𝑡→𝑡0

𝑝𝑚 (𝑡)
𝑐2 = −𝜌𝑚 (𝑡0)

and, from the (5), the acceleration in the expansion of the universe
becomes positive:

lim
𝑡→𝑡0

¥𝑎 (𝑡 ) =
8𝜋𝐺
3𝑐2 𝜌𝑚 (𝑡0) =

𝑅Ω

𝑅3
0

= (𝑐𝐻0)2
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The purpose of this article is to demonstrate that the IRPLC cos-
mology finally satisfies all constraints deriving from cosmological
observations.

2 IMPACTS OF THE IRPLC HYPOTHESIS ON STANDARD
COSMOLOGY

Since Ω𝑐 = 1 − Ω𝑟 − Ω𝑏 , the IRPLC Model is determined by only
five of the six parameters of the ΛCDM model:

𝜔𝑏0 , ℎ, 𝑛𝑠 , 𝜏, 𝑁𝑒 𝑓 𝑓 (73)

At last, since the radiation density is precisely determined by the
CMB temperature and by the physics of the standard model, the
metric of the IRPLC Model (eq. 60) is determined by a single pa-
rameter:

M(𝐻0)

About the shadow matter, being a fictitious mass, it intervenes in
the IRPLC metric but does not contribute to the speed of sound, nor
does it contribute to the extra inertia in the evolution of the acoustic
wave oscillation.

As densities vary with redshift, it is important to bear in mind that,
unlike the ΛCDM model, in the IRPLC model we must use the ap-
propriate value of the density of matter according to the context.
In order to highlight the actual causal region on a case-by-case
basis, we introduce the functions 𝑓𝑚 (𝑧) = Ω𝑚 (𝑧)/Ω𝑚0 , 𝑓𝑠 (𝑧) =

Ω𝑠 (𝑧)/Ω𝑚0 and 𝑓𝑚𝑠 (𝑧) = 𝑓𝑚 (𝑧) + 𝑓𝑠 (𝑧). Therefore:

• acoustic waves dynamic: CMB temperature and polarization
anisotropies are determined not only by the metric but also by the
speed of acoustic wave and by the Baryon drag which depend only
on the matter component.

𝑐𝑠 (𝑧) ≡ 𝑐

√︄
¤𝑃𝛾 + ¤𝑃𝑏
¤𝜌𝛾 + ¤𝜌𝑏

' 𝑐
√

3

1√︂
1 + 𝑓𝑚 (𝑧)

3Ω𝑏0
4Ω𝛾 (1+𝑧)

(74)

The causal region, however, differs between the two cases:

– speed of acoustic wave 𝑐𝑠 : the causal region is given by the
cosmological redshift

1 + 𝑅(𝑧) = 1 + 𝑓𝑚 (𝑧)
3Ω𝑏0

4Ω𝛾 (1 + 𝑧) (75)

– Baryon Loading: momentum density provides extra inertia
in the joint Euler equation for the evolution of acoustic wave os-
cillation. In this case, the causal region is restricted to the distance
between baryons with respect to their barycentre given by the an-
gle 𝜃𝑧 ≡ 𝑟𝑠 (𝑧)/𝐷𝑀 (𝑧)

𝑚𝑒 𝑓 𝑓 = 1 + 𝑅(𝜃𝑧) = 1 + 𝑓𝑚 (𝜃𝑧)
3Ω𝑏0

4Ω𝛾 (1 + 𝑧) (76)

• BBN: while both the expansion rate of the universe during the
BBN and the baryon-to-photon ratio 𝜂 are the same for ΛCDM and
IRPLC model, the baryon density of IRPLC model is almost exactly
one half with respect to ΛCDM model

𝜌𝑏𝑠 (𝑧𝐵𝐵𝑁 ) = 𝑓𝑚𝑠 (𝑧𝐵𝐵𝑁 )Ω𝑏0 (1 + 𝑧)3 ' 1
2
Ω𝑏0 (1 + 𝑧)3 (77)

consequently, the nuclear reaction rate of the IRPLC model is half
that of the ΛCDM model.
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Figure 5. on the top panel, the density of matter and its two components as
a function of the redshift.
On the bottom panel, the scale ratio between the fiducial ΛCDM model
(𝜔𝑏 = 0.02242, 𝜔𝑚 = 0.3111, 𝐻0 = 67.66) and the IRPLC Model
(𝜔𝑏 = 0.02325, 𝐻0 = 73.48). The two models thus configured give rise
to an almost identical BAO “Hubble diagram”’ (fig. 11)

About the history of the universe, both models basically share the
same phases.
In the Radiation-dominated age, although the nucleosynthesis and
the dynamics of the acoustic oscillation are different, the expansion

rate: 𝐻 (𝑎) ' 𝐻0

√︃
Ω𝑟

𝑎4 is identical for both models.
Unlike the ΛCDM model, in the IRPLC model we can distinguish
between two radiation matter transitions:

(i) The Radiation-MatterShadow transition happened when 𝐻𝑟 =
𝐻𝑚𝑠 , or 𝑑′

𝑀𝑚𝑠
= 𝑑′

𝑀𝑟
, that is Ω𝑚𝑠 (𝑧) = Ω𝑟 (1 + 𝑧) or:(

cos 𝛾
(
𝑧𝑒𝑞𝑚𝑠

)
1 + sin 𝛾(𝑧𝑒𝑞𝑚𝑠

) + 𝛾(𝑧𝑒𝑞𝑚𝑠
) cos 𝛾(𝑧𝑒𝑞𝑚𝑠

)

)2

=
Ω𝑟

1 −Ω𝑟
(78)

(ii) The Radiation-Matter transition happened when 𝐻𝑟 = 𝐻𝑚,
or 𝑑′

𝑀𝑚
= 𝑑′

𝑀𝑟
, that is Ω𝑚 (𝑧) = Ω𝑟 (1 + 𝑧) or:

1 − sin 𝛾
(
𝑧𝑒𝑞𝑚

)(
1 + sin 𝛾(𝑧𝑒𝑞𝑚 ) + 𝛾(𝑧𝑒𝑞𝑚 ) cos 𝛾(𝑧𝑒𝑞𝑚 )

)2 =
Ω𝑟

1 −Ω𝑟
(79)

Contrary to what happens in the radiation dominate era, in the
matter dominated era the expansion rate of the universe is quite dif-
ferent (fig. 5).

Furthermore, since there is no Dark Energy in the IRPLC model,
the matter-dominated era extends to the present and thus encom-
passes the final era of accelerated expansion of the universe.
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3 CONSTRAINTS ON IRPLC COSMOLOGICAL
PARAMETERS

We determine the last three parameters of the IRPLC model and the
radiation density as follows:

• The value of the number of effective relativistic degrees of
freedom is (Mangano et al. 2005; de Salas & Pastor 2016; Grohs
& Fuller 2017; Escudero Abenza 2020; Akita & Yamaguchi 2020;
Froustey et al. 2020; Bennett et al. 2020)

𝑁𝑒 𝑓 𝑓 = 3.044 (80)

for 3 neutrino families, taking into account the neutrino decoupling
physics. This value is very robust and can be understood fully from
the adiabatic transfer of averaged oscillations (ATAO) approxima-
tion (Froustey et al. 2020). This allows one to show that this predic-
tion is insensitive to the type of neutrino mass hierarchy (normal or
inverted) as it depends nearly exclusively on mixing angles. Also,
since mixing angles are currently known with rather good precision,
the propagation of uncertainty affects 𝑁𝑒 𝑓 𝑓 with ±2 × 10−5 only.

• CMB constraints on the scalar spectral index 𝑛𝑠 , which de-
scribes how the density fluctuations from inflation vary with scale
(𝑛𝑠 = 1 corresponding to scale invariant fluctuations) (Planck Col-
laboration et al. 2020)

𝑛𝑠 = 0.9649 ± 0.0042 (81)

• CMB constraints on the reionization optical depth 𝜏 (Planck
Collaboration et al. 2020)

𝜏 = 0.0544 ± 0.0073 (82)

• the 𝑇𝑐𝑚𝑏 constraint: 𝑇𝑐𝑚𝑏 = 2.7255±0.0006 K (Fixsen 2009),
implies that the photon density is Ω𝛾 = 2.469 × 10−5ℎ−2 and there-
fore we can reduce the radiation density Ω𝑟 = Ω𝛾

(
1 + 0.2271𝑁𝑒 𝑓 𝑓

)
and matter density to a function of just the parameter 𝐻0

Ω𝑟 = 2.469 × 10−5ℎ−2 (1 + 0.2271 · 3.044) (83)

Ω𝑚 = 1 −Ω𝑟 (84)

Furthermore, the remaining two parameters of the IRPLC model,
i.e. the baryonic component of the matter density and the Hubble
constant, must satisfy the following additional constraints:

(i) The acoustic angular scale constraint: The acoustic oscilla-
tions in 𝑙 seen in the CMB power spectra correspond to a sharply-
defined acoustic angular scale on the sky, given by:

𝜋

ℓ𝑎
= 𝜃∗ =

𝑟∗𝑠
𝑑𝑀

(85)

where 𝑟∗𝑠 = 𝑟𝑠 (𝑧∗) is the comoving sound horizon at recombination
quantifying the distance the photon-baryon perturbations can influ-
ence, 𝑑𝑀 (𝑧∗) is the comoving angular diameter distance that maps
this distance into an angle on the sky, and 𝑧∗ depends on the ioniza-
tion history and the atomic physics of recombination. It is possible
to determine 𝑧∗ by using the accurate recombination fitting formu-
lae (Hu & Sugiyama 1996). In this article, however, we have used
the CAMB software 3, which provides very similar, but even more
accurate results. Planck measures:

100𝜃∗ = 1.04109 ± 0.00030 (68%, TT,TE,EE+lowE) (86)

a measurement with 0.03% precision.
Because of its simple geometrical interpretation, 𝜃∗ is measured very
robustly and almost independently of the cosmological model.

3 CAMB is available online at the following website:
https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

(ii) The BAO measurement constraint: The transverse baryon
acoustic oscillation scale 𝑟𝑑𝑟𝑎𝑔/𝑑𝑀 measured from galaxy sur-
veys, where 𝑟𝑑𝑟𝑎𝑔 is the comoving sound horizon at the end of the
baryonic-drag epoch, is the analogue of CMB acoustic angular scale.

The BAO measurement constraint can be expressed as a approxi-
mate relation between 𝑟𝑑𝑟𝑎𝑔 = 𝑟𝑠 (𝑧𝑑𝑟𝑎𝑔) and ℎ, where 𝑧𝑑𝑟𝑎𝑔 is the
redshift at the drag epoch, as:(
𝑟𝑑𝑟𝑎𝑔ℎ

Mpc

) (
0.3
Ω𝑚

)0.4
= 101.056 ± 0.036 (87)

for the ΛCDM Metric (Planck Collaboration et al. 2020)(
𝑟𝑑𝑟𝑎𝑔ℎ

Mpc

)
= 101 ± 1 (88)

for the Metric of the present model (fig. 6).
(iii) "Late universe" 𝐻0 measurements constraint: "Late uni-

verse" 𝐻0 measurements using calibrated distance ladder techniques
have converged on a value of approximately 𝐻0 ' 73.4 km/s/Mpc.
In particular, 73.4 ± 1.4 km/s/Mpc (Reid et al. 2019) from standard
distance ladder, 73.3±1.7 km/s/Mpc (Wong et al. 2020) from strong
gravitational lensing effects on quasar systems.

(iv) the angular power spectrum of the CMB. At last, in addition
to the constraints already expressed on the acoustic angular scale and
on the scalar spectral index, the angular power spectrum of the CMB,
within the assumptions underlying the standard model, provides pre-
cise measurements of the baryon density and dark matter density of
the universe at recombination (Hu & Dodelson 2002). In particu-
lar, 2nd/1st peak ratio allows to determine the baryon density, one
of the most robust and best-determined CMB outputs, since it con-
trols the relative amplitudes of the alternating odd and even peaks,
which correspond to modes undergoing maximal compression and
rarefactions at the time of recombination.

The (Planck Collaboration et al. 2020), for the base-ΛCDM model
from Planck CMB power spectra, in combination with CMB lensing
reconstruction, finds, for TT,TE,EE+lowE+lensing 68% limits:

𝜔𝑏 = 0.02237 ± 0.00015 (𝜔𝑐 = 0.1200 ± 0.0012)

(v) BBN predictions and primordial element abundances mea-
surement constraint. In the present article we have used the version
2 of the software AlterBBN 4 suitably modified to adapt it to the
different nuclear reaction rates of the present model which are half
of the standard ones. Indeed, 𝜌𝑏 (𝑧𝐵𝐵𝑁 ) = 0.5 𝜌0𝑏 .

(vi) the acceleration in the expansion of the universe determined
by comparing the brightness or faintness of distant supernovae
relative to the empty Universe model (Riess et al. 1998)

4 TESTING THE IRPLC MODEL

The 𝑧∗ and 𝑧𝑑𝑟𝑎𝑔 depend on the ionization history taking into ac-
count the atomic physics of recombination at the last scattering and
drag epochs respectively. Since it is important to achieve the high-
est level of accuracy, the CAMB software was used to determine 𝑧∗

4 AlterBBN can be downloaded from the website:
https://alterbbn.hepforge.org/ . It is an open public code for the calcu-
lation of the abundance of the elements from Big-Bang nucleosynthesis
in alternative cosmological scenarios, in a fast and reliable way. For the
purpose of the IRPLC model, the bbnrate.c file was modified by adding the
instruction “ f[ie]=0.5*f[ie];” at the end of the loop of the rate_all function
in order to halve all the reaction rates.

https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
https://alterbbn.hepforge.org/
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Figure 6. The top panel shows the rate between the normalized comoving
distance 𝐷𝑀𝐻0 of fiducial IRPLC model and that of fiducial ΛCDM model.
The bottom panel shows BAO “Hubble diagram” . Black dashed lines rep-
resent the fiducial ΛCDM model, coloured solid lines represent the fiducial
IRPLC model for 𝐻0𝑟𝑑𝑟𝑎𝑔 = 100, 101, 102.

and 𝑧𝑑𝑟𝑎𝑔 (table A1), making sure to use the appropriate values of
𝜔𝑏 (𝑧) and 𝜔𝑐 (𝑧) present at the redshift of interest, instead of the
fitting formulas (Hu & Sugiyama 1996). For the same reason, the
exact formula of the acoustic wave speed (74) was used, which also
takes into account the pressure of matter, and not the approximate
one, although the results differ by only a few units on the second
decimal place.
Therefore, given the 𝐼𝑅𝑃𝐿𝐶 metric M𝐼𝑅𝑃𝐿𝐶 (ℎ) and the acoustic
sound speed formula 𝑐𝑠 (𝜔𝑏), for each 𝜔𝑏 we look for the value of
ℎ which satisfies both of the following equations at the same time:

𝑧∗ = 𝑧∗
𝐶𝑎𝑚𝑏

(
𝜔𝑏𝑠 (𝑧∗), 𝜔𝑐𝑠 (𝑧∗)

)
(89)

𝑟𝑠 (𝑧∗)
𝜃∗ = 0.0104109

= 𝑑𝑀 (𝑧∗) (90)

As a result, reaching an approximation of at most a few units on
the second decimal place, we find that the acoustic angular scale
constraint is satisfied by the values of 𝑧 and ℎ in accordance with
the following fitting formulas in the range 𝐻0 = 73.48 ± 1.5 and

Ω𝑏ℎ
2 = 0.02325 ± 0.005 (𝑁𝑒 𝑓 𝑓 = 3.044) (fig. 8, 9)

𝑧∗ = 1134.3 + (𝐻0 − 73.48) 8.85 − 2000
(
Ω𝑏ℎ

2 − 0.02325
)
± 0.05

(91)

𝐻0 = 73.48
( 𝜔0𝑏

0.02325

)−0.0378
± 0.05 𝑀𝑝𝑐−1𝐾𝑚/𝑠𝑒𝑐 (92)

Likewise, taking into account the BAO measurements constraint:

𝑧𝑑𝑟𝑎𝑔 = 𝑧𝑑𝑟𝑎𝑔𝐶𝑎𝑚𝑏

(
𝜔𝑏𝑠 (𝑧𝑑𝑟𝑎𝑔), 𝜔𝑐𝑠 (𝑧𝑑𝑟𝑎𝑔)

)
(93)

𝑟𝑠 (𝑧𝑑𝑟𝑎𝑔)ℎ ' 101 ± 1 (94)

we find the following additional limitations on the 𝜔0𝑏 and 𝐻0 pa-
rameters (table A1 and fig. 6, 11, 8, 9):

𝑟𝑑𝑟𝑎𝑔 ' 101.052
ℎ

( 𝜔𝑏0

0.02325

)−0.0675
± 0.05 Mpc (95)

𝜔𝑏0 = 0.02335 ± 0.00335 𝐻0 = 73.5 ∓ 0.4 (96)

Remarkably, throughout the aforementioned wide range
Ω𝑏ℎ

2 = 0.02325 ± 0.005, the IRPLC metric together with
the acoustic sound speed, having as the only free parameter to be
able to vary the Hubble constant 𝐻0, satisfy simultaneously all the
first three aforementioned constraints. In particular, they satisfy the
(89) and (90) with an accuracy of at most a few units on the second
decimal place.

Regarding the baryon density limitation based on CMB con-
straints, found for the ΛCDM model, the same result can be applied
equally well to the IRPLC model taking into account the appropriate
causal region:

𝜔𝑏 (𝜃∗) =
Ω𝑏0

(1 + sin 𝜃∗ + 𝜃∗ cos 𝜃∗)2 = 0.02237 ± 0.00015 (97)

which gives Ω𝑏0 = 0.023311 ± 0.000156. Therefore

𝑧∗ (Ω𝑏0 ) = 1134.22 ∓ 0.6 𝐻0 (Ω𝑏0 ) = 73.47 ∓ 0.03 (98)

𝜔𝑐 (𝛾∗) =
𝜔𝑐0

(1 + sin 𝛾∗ + 𝛾∗ cos 𝛾∗)2 = 0.1213 ∓ 0.0001 (99)

At last, it is possible to use Camb software (fig. 10 and table A2), to
get a first approximation of the temperature variations of the CMB
within the IRPLC model. In the plot of fig. 10 we can see the Camb
output, where the abscissas are slightly enlarged due to the slower
velocity of 𝑐𝑠 in the ΛCDM model .
Compared to the Λ𝐶𝐷𝑀 model, the IRPLC model solves the
Hubble Tension (at 5𝜎) while having one less parameter to play
with. It may also solve the lensing amplitude 𝐴𝐿 tension (at more
than 2𝜎) and the 𝑆8 tension with cosmic shear data (at 3.2𝜎). A
software system dedicated to IRPLC can check if this promise is
kept.

BBN is one of the pillars of ΛCDM cosmology. The predictions
of the standard BBN theory rest on balance between expansion rate
and on the astrophysical nuclear reaction rates and on three addi-
tional parameters, the number of light neutrino flavours (𝑁𝜈), the
neutron lifetime (𝜏𝑛) and the baryon-to-photon ratio (𝜂 = 𝑛𝐵/𝑛𝛾)
in the universe (Copi et al. 1995). Compared to the ΛCDM model,
with the same baryon-to-photon ratio (𝜂 = 𝑛𝐵/𝑛𝛾), in the IRPLC
model the element densities during the BBN are half, and therefore
the rates of astrophysical nuclear reactions during the BBN must be
halved in the same way.
Table 1 and fig. 7 compare the values calculated by the IRPLC
model with those of the ΛCDM model and with those measured.
Both the abundances of lithium-7 and helium-4 are congruent
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with the measured values. About the primordial 3He abundance,
at present there are no reliable measurements Cooke et al. (2018),
since 3He can be both created and destroyed in stars. At last, IRPLC
BBN (table 1, table A3 and fig. 7) solves the lithium problem but, in
its place, raises a deuterium problem.

About the acceleration in the expansion of the universe, being
𝑑𝜏 = 𝑎𝑑′

𝑀
(𝛾)𝑑𝛾 and 𝑑𝑎 = − cos 𝛾𝑑𝛾, we have :

𝜌 = 𝜌𝑟 + 𝜌𝑚 + 𝜌𝑠 (100)

3𝑝/𝑐2 = 𝜌𝑟 + 𝜌𝑚 − 𝜌𝑠 − 2 cos 𝛾
𝑑′′
𝑀𝑚

(𝛾)
𝑑′
𝑀𝑚

(𝛾) 𝜌𝑚 (101)

¤𝑎 = − cos 𝛾
𝑎𝑑′
𝑀
(𝛾) (102)

¥𝑎 =
−1

𝑎2𝑑′2
𝑀
(𝛾)

+ cos 𝛾
𝑑′′
𝑀
(𝛾)

𝑑′
𝑀
(𝛾)

1

𝑎2𝑑′2
𝑀
(𝛾)

(103)

and therefore we find

2

𝐻2
0

¥𝑎
𝑎
=

−1
𝜌𝑐𝑟𝑖𝑡

(
𝜌 + 3𝑝/𝑐2

)
as required by the Friedmann’s second equation (5).

From the (101, 103), it follows that the accelerated expansion of
the universe (fig. 12) has begun since 𝑧 ' 0.5099 when the universe
was 7.996 billion years old, roughly almost 5 billion years ago,
since the age of the universe is 12.826 billion years.

5 GALAXY ROTATION CURVES

Contrary to what happens in cosmology, where 𝑟 ≤ 𝑅Ω, the gravita-
tional motion of galaxies 5 takes place outside its own Schwarzschild
Radius (𝑟 ≥ 𝑅𝑔𝑎𝑙𝑎𝑥𝑦). The gravitational radius of a galaxy, neglect-
ing the radiation, and since, from the (eq.43), 𝑅𝑐 ' 𝑟2/𝑅0, is :

𝑅 = Ω𝑏 𝑅 +Ω𝑟 𝑅 +Ω𝑐 𝑅 = 𝑅𝑏 + 𝑅𝑐 + 𝑅𝑟 ' 𝑅𝑏 + 𝑟2/𝑅0 + 0 (104)

Similarly to what has been done in cosmology, it is possible to de-
compose the distance according to the type of energy and in par-
ticular it is convenient to impose that the curvature radius, equal to
the inverse of the acceleration, is the same for all the components
everywhere, namely:

𝐴𝑥 =
𝑅𝑥

𝑟2
𝑥

= 𝐴 =
𝑅

𝑟2 =
1
𝜏♦

(𝑅𝑔𝑎𝑙𝑎𝑥𝑦 ≤ 𝜏♦ ≤ 𝑅0) (105)

which is the dual of the (43) for 𝑟 ≥ 𝑅. This condition is satisfied by
𝑟𝑥 =

√
Ω𝑥 𝑟 or, equivalently:

𝑟2 = 𝑟2
𝑏
+ 𝑟2
𝑟 + 𝑟2

𝑐 = Ω𝑏 𝑟
2 +Ω𝑟 𝑟

2 +Ω𝑐 𝑟
2 (106)

which is the dual of the (52) for 𝑟 ≥ 𝑅 (note that, since 𝑅 ' 𝑅𝑏 +𝑅𝑐 ,
we have 𝐴𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ' 𝑅𝑏

𝑟2 + 1
𝑅0

).
If we set

𝐴𝑐𝑒𝑛𝑡𝑟𝑖 𝑓 𝑢𝑔𝑎𝑙 =
𝑣2
𝑐𝑒𝑛𝑡𝑟𝑖 𝑓 𝑢𝑔𝑎𝑙

𝑟𝑏
(107)

5 the 𝑏Γ factor 1 + sin Γ𝐷𝐼𝑀𝑔𝑎𝑙𝑎𝑥𝑦
≤ 1 + sin Γ100 𝑘𝑝𝑐 ≤ 1 + 10−5 is

negligible.

since in the orbital motion 𝐴𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 𝐴𝑐𝑒𝑛𝑡𝑟𝑖 𝑓 𝑢𝑔𝑎𝑙 , it fol-
lows:

𝑣𝑐𝑒𝑛𝑡𝑟𝑖 𝑓 𝑢𝑔𝑎𝑙 =
√︁
𝑉𝑏 =

4

√︂
𝑅

𝑟2 𝑅𝑏 =
4

√︄
𝑅2
𝑏

𝑟2 + 𝑅𝑏

𝑅0
(108)

and the limits

𝑟𝑏∞ = lim
𝑟→𝑅0

√︂
𝑅𝑏

𝑅
𝑟 =

√︁
𝑅𝑏𝑅0 (109)

𝑣∞ = lim
𝑟→𝑅0

4

√︄
𝑅2
𝑏

𝑟2 + 𝑅𝑏

𝑅0
=

4

√︄
𝑅𝑏

𝑅0
(110)

On circular orbit, where 𝑅0 = 2𝜋𝑐𝐻−1
0 , we find (see fig. 13), with the

same mass distribution, that the predictions for the galaxy rotation
curves from present work (eq. 108) and MSTG and Milgrom’s Mond
agree remarkably for all of the 101 galaxies reported in (Brownstein
& Moffat 2006). It is relevant that the Newton velocity, once re-
placed the total distance 𝑟 with the distance 𝑟𝑏 , is consistent with
the experimented values everywhere (see fig. 13).
On radial orbits, stars plunging in and out of the galactic center,
𝑅0 = 𝑐𝐻−1

0 , as in motion of satellite galaxies around normal
galaxies at distances 50-500 kpc (Klypin & Prada 2009), the ro-
tation curves are considerably affected by the radial component of
the motion which gradually decreases as moving away from the host

galaxy. The the maximum speed 𝑣∞ =
4
√︃
𝑅𝑏

𝑅0
consequently decreases

as −4√2𝜋 as the initial radial speed turns into tangential speed mov-
ing away from the host galaxy consistently with the experimental
results.

6 CONCLUSION

Surprisingly, the BBN theory of the IRPLC, which predicts the
halving of the rates of primordial nuclear reactions compared to the
standard model theory, is supported by measurements of primordial
element abundances at least as much as the latter, while predicting
very different results. It is still absolutely remarkable that the
IRPLC model satisfies the cosmological constraints deriving from
the CMB and BAO and from the acceleration of the expansion of
the universe, while being able to count on one less parameter, in an
equally satisfactory way compared to the ΛCDM model. Mostly,
it solves the tension between the direct and the inverse cosmic
distance ladder. At last, the model is successful on both large and
small scales by solving, with the same hypothesis underlying the
IRPLC model, the difficulties related to rotation in the inner parts of
spiral galaxies with results similar to that of the Mond theory.

About the matter density, it does not violate the cosmological
principle of the homogeneity of space because it applies equally in
every place. Furthermore, its dependence on distance implies that
the dimensions of the CDM correspond to the quantum of space,
thus, it is to be expected that it will never be observed directly. More
precisely, if ordinary matter is matter in act, CDM is matter in po-
tency.
In summary, the following points apply to the universe:

• the universe has a curvature radius 𝑅0 equal to its gravitational
radius 𝑅Ω

• the horizon of the present in act has constant surface gravity
equal to 𝐻0

• the change of energy (𝑟𝑠 = 𝑟2/𝑅0 from hypothesis 1) is related
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[h!]

Table 1. Primordial abundances of elements in the big-bang nucleosynthesis (BBN)
For the measured values see: (a) Aver et al. (2021), (b) Cooke et al. (2018) , (c) Bania et al. (2002), (d) Sbordone et al. (2010)
For the ΛCDM calculated values see: Pitrou et al. (2021)
The IRPLC calculated values were produced by the software AlterBBN halving all the rates of nuclear reactions and with 𝜂 = 6.38158 × 10−10, 𝜏𝑛 = 879.4,
𝑁𝑒 𝑓 𝑓 = 3.044

Yp D/H 3He/H 7Li/H
(10−01) (10−05) (10−05) (10−10)

Observations: 2.453 ± 0.034 (a) 2.527 ± 0.030 (b) 1.1 ± 0.2 (c) 1.58 +0.35
−0.28 (d)

ΛCDM (𝜂10 = 6.13792): 2.4721 ± 0.00014 2.439 ± 0.037 1.039 ± 0.014 5.464 ± 0.220
IRPLC (𝜂10 = 6.38158): 2.447 ± 0.0032 6.528 ± 0.063 1.502 ± 0.016 1.568 ± 0.11

[h!]

Table 2. Parameters for the base ΛCDM and IRPLC models compared
Comparison between IRPLC parameters and Parameter 68% intervals for the base-ΛCDM model from Planck CMB power spectra, in combination with CMB
lensing reconstruction (Planck Collaboration et al. 2020).

Parameter ΛCDM IRPLC IRPLC
TT,TE,EE+LowE+lensing special cases
68% limits

𝜔0𝑏 ℎ
2 . . . . . . 0.02237 ± 0.00015 0.02325 ∓ 0.00035 𝜔𝑏 (𝜃∗ ) = 0.02231 ∓ 0.00033

𝜔0𝑐 ℎ
2 . . . . . . 0.1200 ± 0.0012 0.5166 ± 0.001 𝜔𝑐 (𝑧∗ ) = 0.1213 ± 0.0002

100𝜃𝑀𝐶 . . . . . 1.04092 ± 0.00031 idem
𝜏 . . . . . . . . 0.0544 ± 0.0073 idem

𝑙𝑛

(
1010𝐴𝑠

)
. . . 3.044 ± 0.014 idem

𝑛𝑠 . . . . . . . . 0.9649 ± 0.0042 idem
𝐻0 [𝑘𝑚𝑠−1𝑀𝑝𝑐−1 ] 67.36 ± 0.54 73.48 ± 0.04
ΩΛ . . . . . . . . 0.6847 ± 0.0073
Ω𝑚 . . . . . . . 0.3153 ± 0.0073 0.999923 ± 8 × 10−8

Age[Gyr] . . . . . 13.797 ± 0.023 12.815 ∓ 0.07
𝑧∗ . . . . . . . . 1089.92 ± 0.25 1134.3 ± 0.05
𝑟∗ [𝑀𝑝𝑐] . . . . 144.43 ± 0.26 129.44 ∓ 0.05
100𝜃∗ . . . . . . 1.04110 ± 0.00031 1.04101
𝑧𝑑𝑟𝑎𝑔 . . . . . . 1059.94 ± 0.30 1036.45 ∓ 0.7
𝑟𝑑𝑟𝑎𝑔 [𝑀𝑝𝑐] . . 147.09 ± 0.26 137.52 ± 0.7
𝑧𝑒𝑞 . . . . . . . 3402 ± 26 𝑧𝑒𝑞𝑚𝑠

= 6286.95 ± 8.6 𝑧𝑒𝑞𝑚
= 3108.37 ± 4.3

to change of area 𝐴, angular momentum 𝐽, and electric charge 𝑄 by

𝑑𝐸 =
𝜅

8𝜋
𝑑𝐴 +Ω 𝑑𝐽 +Φ 𝑑𝑄 (111)

for 𝑑𝐽 = 𝑑𝑄 = 0, being the surface gravity 𝜅 = 1/𝑟 and where A is
the horizon area.

At last, these evidences suggest an alternative solution to the
causal horizon problem. In fact, the ad hoc hypothesis of inflation
could be replaced by the following more natural and general hy-
pothesis:

Hypothesis 2 The universe is a white/black hole with constant
Schwarzschild Radius 𝑅Ω ≡ 𝑐/𝐻0 where the big bang/big crunch
is not an event of the past but a continuous feedback process, always
in progress, typical of all black holes. It follows that the surface of
the present in act (𝛾 = 0), as well as the big bang in act (𝛾 ± 𝜋/2),
are the frontiers where the approaching future becomes present and
is converted in the past that moves away and vice versa, in an eternal
cycle.

To every observer, on the present in act (which is a special place),
the universe appears to have two special places: the big bang in act
and the big crunch in act. They are dual and symmetrical: each of the
two is the horizon of the present in act and vice versa; both, as well
as the present in act, are on the surface of the hypersphere which is
the Universe.

In other words, the internal volume of the sphere is the seat of po-
tency while the surface is the place of the present in act where the
temporal axis of each individual emerges radially dividing the sur-
face of the black hole into its own receiving hemisphere (0 ≥ 𝛾 ≤
𝜋/2), populated by all other individuals in the act of giving as matter,
where the arrow of time is positive and entropy increases, and in its
opposite giving hemisphere (𝜋/2 ≥ 𝛾 ≤ 𝜋), populated by individu-
als in the act of receiving as antimatter, where the arrow of time is
negative and entropy decreases. In other words, for each individual,
the present, which comes from the continuous Big Bang (as source)
as an approaching future (matter and increasing entropy), as soon as
it surfaces, it submerge as past (antimatter and decreasing entropy)
that move away to go towards the continuous Big Crunch (as well),
and in this descent informs of itself the future that ascend in the op-
posite direction. The past that is moving away is also the future that
is approaching, and it is the possibility of the present. The present is
the realization of a possible history of the past, among the totality of
physically possible histories in accordance with quantum mechan-
ics.
The mechanism that places the same initial conditions everywhere,
therefore, is not to be found in a causal contact occurred in the past
of a linear time, but in the dialogue, with a period 𝑃𝜔 equal to the
apparent age of the universe, between the big bang and the present,
in a cyclical time: each time, the new present in act is the result of
the big bang that took place 𝑃𝜔 years before and is the foundation
of the big bang that will take place 𝑃𝜔 years later.
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Figure 7. Comparison between the primordial abundances expected for the
light nuclei according to the Λ𝐶𝐷𝑀 model, grey lines, and the IRPLC
model, coloured lines. Yellow horizontal rectangles show range of the un-
certainties in the primordial abundances measured values (see table A3). The
orange vertical line indicates the value of 𝜂 = 6.35 ± 0.8 × 10−10 deduced
in the present IRPLC analysis, the grey one 𝜂 = 6.105 ± 0.055 × 10−10 for
the ΛCDM model (Mindari et al. 2018). The values were calculated using
the version 2 of AlterBBN software, an open public code for the calculation
of the abundance of the elements from Big-Bang nucleosynthesis. For the
purpose of the IRPLC model, the bbnrate.c file was modified by adding the
instruction “ f[ie]=0.5*f[ie]; ” at the end of the loop of the rate all function
in order to halve all the reaction rates.

This hypothesis, compared to the correspondent of standard cos-
mology, radically changes the meaning but leaves the entire phe-
nomenology and physics of the universe unchanged.

If this hypothesis is correct, all the parameters of the universe,
such as the temperature of the CMB or Ω𝑏 , Ω𝑐 , Ω𝑟 etc., are not
contingent.

7 DATA AVAILABILITY STATEMENT

The data underlying this article are available in the article and in its
online supplementary material.
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Figure 9. The superimposition of all the constraints on the parameters of the
IRPLC model.

𝐻0 = 73.47 Ω𝑏 (𝜃∗ )ℎ2 = 0.02237 Ω𝑐 (𝑧∗ )ℎ2 = 0.1213

Figure 10. The CMB temperature (E-mode polarization), output of CAMB
with Ω𝑐 (𝑧∗ )ℎ2 = 0.1213, Ω𝑏 (𝜃∗ )ℎ2 = 0.02237 (which corresponds to
Ω0𝑏 ℎ

2 = 0.02331).

z

Figure 11. The BAO “Hubble diagram” (from Aubourg et al. 2014). Blue,
red, and green points show BAO measurements of 𝑑𝑉/𝑟𝑑 , 𝑑𝑀/𝑟𝑑 , and
𝑧𝑑𝐻/𝑟𝑑 , respectively, from the sources indicated in the legend. The scal-
ing by

√
𝑧 is arbitrary, chosen to compress the dynamic range sufficiently

to make error bars visible on the plot. These can be compared to the corre-
spondingly colored lines, which represents predictions of the fiducial Planck
ΛCDM model (with 𝑚 = 0.3183, ℎ = 0.6704) and the prediction of the IR-
PLC model (dotted line) when 𝑟𝑠𝑑𝑟𝑎𝑔 = 101.0/ℎ Mpc.
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On the bottom panel, the brightness or faintness of distant supernovae relative
to the empty Universe model Ω = 0 (the green curve) is plotted vs redshift.

The blue-red curve, Δ(𝑑𝑀 ) = 5 log10
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2

) ) is the difference between

the distance modulus determined from the computed flux 𝑑𝐿 = 𝑑𝑀 (1 + 𝑧)
and the distance modulus computed from the redshift in the empty Universe
model. The Hubble constant used in computing the empty Universe Milne
model which is subtracted off is 73.5 km/sec/Mpc, and not 63.8 as in Riess
et al. (2007).
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Figure 13. On the top panel, the rotation curve for the elliptical galaxy NGC
3379. The red points (with error bars) are the observations. The solid green
line is the rotation curve determined by the present work (eq. 108), the short
dashed blue line is the Newtonian galaxy rotation curve. The same distribu-
tion of the galactic mass reported in (Brownstein & Moffat 2006) has been
adopted, that is 𝑀 = 6.99 1010 𝑀� , and a core radius 𝑟𝑐 = 0.45 kpc and
𝛽 = 1.
On the bottom panel, the trend of 𝑟𝑏 and 𝑟𝑐𝑑𝑚. The rotation curve also cor-
responds to Newton’s velocity once replaced the total distance 𝑟 with the
distance 𝑟𝑏 .
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APPENDIX A: IRPLC PARAMETER TABLES

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Table A1. IRPLC parameters that satisfy the constraints 1,2,3
the table shows, as the baryon density varies, the values assumed by the parameters of the IRPLC model that satisfy the first five constraints. It should be noted
that the redshift 𝑧∗ that satisfies the constraint of the acoustic angular scale coincides with that calculated by CAMB based on the baryon and CDM densities at
𝑧∗

IRPLC values CAMB CAMB
satisfying constraints 1,2,3 input output input output

𝜔0𝑏 𝐻0 𝑧∗ 𝑟∗ 𝑧𝑑 𝑟𝑑𝑟𝑎𝑔 𝜔𝑏𝑠 (𝑧∗ ) 𝜔𝑐𝑠 (𝑧∗ ) 𝑧∗ 𝜔𝑏𝑠 (𝑧𝑑 ) 𝜔𝑐𝑠 (𝑧𝑑 ) 𝑧𝑑

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0.022 73.63 1138.15 1034.0 0.010332 0.244284 1138.03 0.010302 0.243574 1034.03

0.02205 73.63 1138.00 1034.1 0.010355 0.244216 1137.88 0.010325 0.243508 1034.12
0.0221 73.62 1137.84 1034.2 0.010379 0.244148 1137.73 0.010348 0.243441 1034.22
0.02215 73.61 1137.69 1034.3 0.010402 0.244080 1137.58 0.010372 0.243375 1034.32
0.0222 73.61 1137.53 1034.4 0.010425 0.244012 1137.43 0.010395 0.243309 1034.42
0.02225 73.60 1137.38 1034.5 0.010449 0.243945 1137.28 0.010419 0.243243 1034.51
0.0223 73.60 1137.22 1034.6 0.010472 0.243877 1137.13 0.010442 0.243178 1034.61
0.02235 73.59 1137.07 1034.7 0.010496 0.243809 1136.98 0.010466 0.243112 1034.71
0.0224 73.58 1136.91 1034.8 0.010519 0.243742 1136.83 0.010489 0.243047 1034.80
0.02245 73.58 1136.76 1034.9 0.010543 0.243675 1136.68 0.010513 0.242981 1034.90
0.0225 73.56 1136.51 129.3 1035.2 137.67 0.010566 0.243534 1136.51 0.010536 0.242844 1035.27
0.02255 73.56 1136.45 1035.0 0.010589 0.243541 1136.39 0.010559 0.242850 1035.09
0.0226 73.56 1136.29 1035.1 0.010613 0.243474 1136.24 0.010583 0.242785 1035.19
0.02265 73.55 1136.14 1035.2 0.010636 0.243407 1136.09 0.010606 0.242720 1035.28
0.0227 73.55 1135.98 1035.3 0.010660 0.243340 1135.94 0.010630 0.242655 1035.38
0.02275 73.54 1135.83 1035.4 0.010683 0.243273 1135.79 0.010653 0.242590 1035.48
0.0228 73.53 1135.68 1035.57 0.010707 0.243207 1135.64 0.010677 0.242526 1035.58
0.02285 73.53 1135.53 1035.67 0.010731 0.243141 1135.49 0.010701 0.242462 1035.67
0.0229 73.52 1135.37 1035.76 0.010754 0.243074 1135.35 0.010724 0.242397 1035.77
0.02295 73.52 1135.22 1035.86 0.010778 0.243008 1135.2 0.010748 0.242333 1035.86

0.023 73.51 1135.07 1035.95 0.010801 0.242942 1135.05 0.010771 0.242268 1035.95
0.02305 73.5 1134.91 1036.05 0.010824 0.242876 1134.9 0.010794 0.242204 1036.05
0.0231 73.5 1134.76 1036.14 0.010848 0.242810 1134.75 0.010818 0.242140 1036.14
0.02315 73.49 1134.61 1036.24 0.010871 0.242744 1134.6 0.010841 0.242076 1036.24
0.0232 73.49 1134.45 1036.33 0.010895 0.242678 1134.45 0.010865 0.242012 1036.33
0.02325 73.48 1134.3 129.44 1036.43 137.52 0.010918 0.242612 1134.3 0.010888 0.241948 1036.42
0.0233 73.47 1134.15 1036.52 0.010942 0.242547 1134.15 0.010912 0.241884 1036.52
0.02335 73.47 1133.99 1036.61 0.010965 0.242481 1134 0.010935 0.241820 1036.61
0.0234 73.46 1133.84 1036.71 0.010988 0.242416 1133.85 0.010959 0.241757 1036.71
0.02345 73.46 1133.69 1036.8 0.011012 0.242350 1133.7 0.010982 0.241693 1036.8
0.0235 73.45 1133.54 1036.89 0.011035 0.242285 1133.55 0.011005 0.241630 1036.89
0.02355 73.44 1133.38 1036.99 0.011059 0.242220 1133.4 0.011029 0.241566 1036.99
0.0236 73.44 1133.23 1037.08 0.011082 0.242155 1133.25 0.011052 0.241503 1037.08
0.02365 73.43 1133.08 1037.17 0.011106 0.242090 1133.11 0.011076 0.241440 1037.17
0.0237 73.43 1132.93 1037.26 0.011129 0.242025 1132.96 0.011099 0.241377 1037.26
0.02375 73.42 1132.78 1037.36 0.011152 0.241960 1132.81 0.011123 0.241314 1037.36
0.0238 73.42 1132.63 1037.45 0.011176 0.241896 1132.66 0.011146 0.241251 1037.45
0.02385 73.41 1132.47 1037.54 0.011199 0.241831 1132.51 0.011170 0.241188 1037.54
0.0239 73.4 1132.32 1037.63 0.011223 0.241767 1132.36 0.011193 0.241126 1037.63
0.02395 73.4 1132.17 1037.72 0.011246 0.241702 1132.21 0.011216 0.241063 1037.72

0.024 73.39 1132.02 1037.82 0.011270 0.241638 1132.06 0.011240 0.241000 1037.81
0.02405 73.39 1131.87 1037.91 0.011293 0.241574 1131.91 0.011263 0.240938 1037.91
0.0241 73.38 1131.72 1038 0.011317 0.241510 1131.76 0.011287 0.240876 1038
0.02415 73.37 1131.57 1038.09 0.011340 0.241446 1131.61 0.011310 0.240813 1038.09
0.0242 73.37 1131.42 1038.18 0.011363 0.241382 1131.46 0.011334 0.240751 1038.18
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Table A2. (Vonlanthen et al. 2010) find that every model which satisfies 100𝜔𝑏 = 2.13 ± 0.05, 𝜔𝑐 = 0.124 ± 0.007, 𝑛𝑠 = 0.93 ± 0.02, 𝜃∗ = 0.593◦ ± 0.001◦

will automatically be in agreement with the CMB data for ℓ ≥ 40. Only lower ℓ CMB data, large scale structure, lensing and other observations can distinguish
between models which have the above values for 𝜔𝑏 , 𝜔𝑐 , 𝑛𝑠 and 𝜃∗

CAMB input parameters for TT, TE and EE power spectra
𝜔0𝑏 𝜂 𝑧∗ 𝐻0 𝜔𝑏 (𝜃∗ = 0.0104109) 𝜔𝑏 (𝑧∗ ) 𝜔𝑐 (𝑧∗ ) 𝜔𝑚 (𝑧∗ ) He/H
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0.02195 6.00925×10−10 1138.3 73.63 0.02106 0.00516 0.12221 0.12737
0.022 6.02294×10−10 1138.1 73.63 0.02111 0.00517 0.122175 0.12734

0.02205 6.03663×10−10 1138.0 73.62 0.02116 0.00518 0.122141 0.12732
0.0221 6.05032×10−10 1137.8 73.62 0.02121 0.00519 0.122107 0.1273

0.02215 6.06401×10−10 1137.6 73.61 0.02126 0.00520 0.122073 0.12728
0.0222 6.07769×10−10 1137.5 73.6 0.0213 0.00522 0.122039 0.12725

0.02225 6.09138×10−10 1137.3 73.6 0.02135 0.00523 0.122006 0.12723 0,2442
0.0223 6.10507×10−10 1137.2 73.59 0.0214 0.00524 0.121972 0.12721

0.02235 6.11876×10−10 1137.0 73.58 0.02145 0.00525 0.121938 0.12719
0.0224 6.13245×10−10 1136.9 73.58 0.0215 0.00526 0.121904 0.12717

0.02245 6.14614×10−10 1136.6 73.56 0.02154 0.00527 0.121833 0.12711
0.0225 6.15983×10−10 1136.6 73.57 0.02159 0.00529 0.121837 0.12712

0.02255 6.17351×10−10 1136.4 73.56 0.02164 0.00530 0.121803 0.1271
0.0226 6.18720×10−10 1136.2 73.55 0.02169 0.00531 0.12177 0.12708 0,2444

0.02265 6.20089×10−10 1136.1 73.55 0.02174 0.00532 0.121736 0.12706
0.0227 6.21458×10−10 1135.9 73.54 0.02178 0.00533 0.121703 0.12704

0.02275 6.22827×10−10 1135.8 73.53 0.02183 0.00534 0.12167 0.12701
0.0228 6.24196×10−10 1135.6 73.53 0.02188 0.00536 0.121636 0.12699

0.02285 6.25564×10−10 1135.5 73.52 0.02193 0.00537 0.121603 0.12697
0.0229 6.26933×10−10 1135.3 73.52 0.02198 0.00538 0.12157 0.12695

0.02295 6.28302×10−10 1135.2 73.51 0.02202 0.00539 0.121537 0.12693
0.023 6.29671×10−10 1135.0 73.5 0.02207 0.00540 0.121504 0.12691 0,2446

0.02305 6.31040×10−10 1134.9 73.5 0.02212 0.00541 0.121471 0.12689
0.0231 6.32409×10−10 1134.7 73.49 0.02217 0.00543 0.121438 0.12686

0.02315 6.33778×10−10 1134.6 73.49 0.02222 0.00544 0.121405 0.12684
0.0232 6.35146×10−10 1134.4 73.48 0.02226 0.00545 0.121372 0.12682

0.02325 6.36515×10−10 1134.3 73.48 0.02231 0.00546 0.121342 0.1268
0.0233 6.37884×10−10 1134.1 73.47 0.02236 0.00547 0.121306 0.12678

0.02335 6.39253×10−10 1133.9 73.46 0.02241 0.00548 0.121273 0.12676
0.0234 6.40622×10−10 1133.8 73.46 0.02246 0.00550 0.12124 0.12674 0,2448

0.02345 6.41991×10−10 1133.6 73.45 0.0225 0.00551 0.121208 0.12672
0.0235 6.43360×10−10 1133.5 73.44 0.02255 0.00552 0.121175 0.1267

0.02355 6.44728×10−10 1133.3 73.44 0.0226 0.00553 0.121143 0.12667
0.0236 6.46097×10−10 1133.2 73.43 0.02265 0.00554 0.12111 0.12665

0.02365 6.47466×10−10 1133.0 73.43 0.0227 0.00556 0.121078 0.12663
0.0237 6.48835×10−10 1132.9 73.42 0.02274 0.00557 0.121045 0.12661

0.02375 6.50204×10−10 1132.7 73.41 0.02279 0.00558 0.121013 0.12659 0,2449
0.0238 6.51573×10−10 1132.6 73.41 0.02284 0.00559 0.12098 0.12657

0.02385 6.52941×10−10 1132.4 73.4 0.02289 0.00560 0.120948 0.12655
0.0239 6.54310×10−10 1132.3 73.4 0.02293 0.00561 0.120916 0.12653

0.02395 6.55679×10−10 1132.1 73.39 0.02298 0.00563 0.120884 0.12651
0.024 6.57048×10−10 1132.0 73.39 0.02303 0.00564 0.120851 0.12649

0.02405 6.58417×10−10 1131.8 73.38 0.02308 0.00565 0.120819 0.12647
0.0241 6.59786×10−10 1131.7 73.37 0.02313 0.00566 0.120787 0.12645

0.02415 6.61155×10−10 1131.5 73.37 0.02317 0.00567 0.120755 0.12643 0,2451
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Table A3. Primordial abundances of elements in the big-bang nucleosynthesis (BBN)
For the measured values see: (a) Aver et al. (2021), (b) Cooke et al. (2018) , (c) Bania et al. (2002), (d) Sbordone et al. (2010)
The calculated values were produced by the software AlterBBN halving all the rates of nuclear reactions and with 𝜂 = 6.36515 × 10−10, 𝜏𝑛 = 879.4,
𝑁𝑒 𝑓 𝑓 = 3.044

Yp D/H 3He/H 7Li/H
(10−01) (10−05) (10−05) (10−10)

measured values: 2.453 ± 0.034 (a) 2.527 ± 0.030 (b) 1.1 ± 0.2 (c) 1.58 +0.35
−0.28 (d)

· · · · · · · · · · · · · · ·
calculated values (𝜂10 = 5.5): 2.430 ± 0.0032 8.283 ± 0.074 1.666 ± 0.016 1.290 ± 0.11
calculated values (𝜂10 = 5.6): 2.432 ± 0.0032 8.046 ± 0.072 1.645 ± 0.016 1.312 ± 0.11
calculated values (𝜂10 = 5.7): 2.435 ± 0.0032 7.821 ± 0.071 1.624 ± 0.016 1.337 ± 0.11
calculated values (𝜂10 = 5.8): 2.437 ± 0.0032 7.606 ± 0.069 1.605 ± 0.016 1.365 ± 0.11
calculated values (𝜂10 = 5.9): 2.438 ± 0.0032 7.400 ± 0.068 1.586 ± 0.016 1.395 ± 0.11
calculated values (𝜂10 = 6.0): 2.440 ± 0.0032 7.204 ± 0.067 1.567 ± 0.016 1.427 ± 0.11
calculated values (𝜂10 = 6.1): 2.442 ± 0.0032 7.015 ± 0.065 1.549 ± 0.016 1.461 ± 0.11
calculated values (𝜂10 = 6.2): 2.444 ± 0.0032 6.836 ± 0.065 1.532 ± 0.016 1.497 ± 0.11
calculated values (𝜂10 = 6.3): 2.446 ± 0.0032 6.663 ± 0.063 1.515 ± 0.016 1.535 ± 0.11

calculated values (𝜂10 = 6.36515): 2.447 ± 0.0032 6.555 ± 0.063 1.504 ± 0.016 1.562 ± 0.11
calculated values (𝜂10 = 6.4): 2.448 ± 0.0032 6.497 ± 0.062 1.499 ± 0.016 1.576 ± 0.11
calculated values (𝜂10 = 6.5): 2.449 ± 0.0032 6.339 ± 0.061 1.483 ± 0.016 1.618 ± 0.11
calculated values (𝜂10 = 6.6): 2.451 ± 0.0032 6.186 ± 0.060 1.468 ± 0.016 1.662 ± 0.11
calculated values (𝜂10 = 6.7): 2.453 ± 0.0032 6.040 ± 0.060 1.453 ± 0.016 1.708 ± 0.11
calculated values (𝜂10 = 6.8): 2.454 ± 0.0032 5.899 ± 0.059 1.438 ± 0.016 1.756 ± 0.12
calculated values (𝜂10 = 6.9): 2.456 ± 0.0032 5.763 ± 0.058 1.424 ± 0.016 1.806 ± 0.12
calculated values (𝜂10 = 7.0): 2.458 ± 0.0032 5.633 ± 0.056 1.410 ± 0.016 1.857 ± 0.12
calculated values (𝜂10 = 7.1): 2.459 ± 0.0032 5.507 ± 0.056 1.397 ± 0.016 1.910 ± 0.12
calculated values (𝜂10 = 7.2): 2.461 ± 0.0032 5.386 ± 0.055 1.383 ± 0.016 1.965 ± 0.13

· · · · · · · · · · · · · · ·


	 Introduction
	Premise to the presentation of the hypothesis
	 The IRPLS
	 The meaning of IRPLS and its relationship with Minkowski's spacetime
	 The hypothesis

	Impacts of the IRPLC hypothesis on standard cosmology
	Constraints on IRPLC Cosmological parameters
	Testing the IRPLC model
	Galaxy rotation curves
	Conclusion
	Data availability statement
	IRPLC parameter tables

