
Why the JWST won’t see the first galaxiesTom Fuchstomfuchs@gmail.comThis  paper  explains  why the  JWST won’t  see  the  first  galaxies.  Among thefarthest galaxies it sees will be ones that look much older than expected. Thecase is made that, rather than assume that galaxies can mature faster than wethought, we should adopt a model of the universe in which space itself doesn’texpand. The new model is based on a new, experimentally confirmed metric forSchwarzschild geometry. Unlike the Schwarzschild metric, the new metric obeysthe equivalence principle, so it can explain our observations when space itselfdoesn’t  expand.  In  the  new  model:  space  expands  relatively,  so  that  theexpansion depends on the observer; an object thrown upward can accelerate up;black holes aren’t predicted, so there’s no black hole information paradox; andthere’s no flatness problem, horizon problem, or need for dark energy. Code isgiven  to  numerically  integrate  the  relativistic  motion  of  an  object  thrownupward. The code shows that equations of special relativity approximate the newmetric locally, as required for the metric to obey the equivalence principle.
1 An object thrown upward can accelerate upA formal statement of the Einstein equivalence principle (EP) isIn any and every locally Lorentz (inertial) frame, the laws of special relativitymust hold.See the  equations of special relativity (SR) at  The Relativistic Rocket, for a rocket having aconstant proper acceleration 𝑎 > 0. For example: (1)This equation returns the velocity of a rocket after the time 𝑡, both as measured in the localinertial frame (LIF) in which the rocket launched. The speed of light is 𝑐.Equations for a falling body has the  velocity of a free-falling object that  was dropped in auniform gravitational field (ignoring air resistance) as (2)where 𝑎 is the acceleration of gravity and 𝑡 is the elapsed time. We call this  since it can be≥ 𝑐.The EP shows that The Relativistic Rocket’s (1) supplants (2):

https://www.npl.washington.edu/eotwash/equivalence-principle
https://en.wikipedia.org/wiki/Equations_for_a_falling_body
https://math.ucr.edu/home/baez/physics/Relativity/SR/Rocket/rocket.html
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Figure 1: Ball falling to the floor in an accelerating rocket (left) and on Earth (right). ByPbroks13     / Markus Poessel (Mapos)  , CC     BY-SA 3.0  , via Wikimedia Commons.According to the EP, the laws of SR hold in both scenarios in Fig. 1. The Relativistic Rocketequations describe the ball’s motion  relative to the rocket. Then  those  equations describe theball’s motion relative to the room on Earth as well, where 𝑎 is the acceleration of gravity. Thetime 𝑡 in (1) is measured in the ball’s LIF, which momentarily co-moves with the rocket or roomwhen the ball is dropped at 𝑡 = 0 (as if the rocket or room blasts off then).Experiment #1: A ball  is  thrown upward from the ground to a maximum height  𝐻 = 10kilometers in a hypothetical 1 𝑔 uniform gravitational field.Let’s plot the ball’s rise and fall in the ground’s frame, using the following Relativistic Rocketequations: (3)
(4)
(5)The thrower is like the person in the rocket in Fig. 1. The elapsed time in their frame (i.e. howmuch they age) is 𝑇. Do a one-time calculation to get the time taken for the ball to fall from itsapex to the ground, using (3): (6)Use 𝑐 = 299,792,458 m/s, 𝑎 = 9.80665 , and 𝐻 = 10,000 m. The ground accelerates like arocket to reach the ball after the time , which is also the time for the ball to rise from theground to its apex. So you need many values of 𝑇 that range from 0 to .Calculate the gamma factor 𝛾 for each value of 𝑇, using (4) with an offset to the time:

https://en.wikipedia.org/wiki/Lorentz_factor
https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Elevator_gravity.svg


3(7)Calculate 𝑑 for each value of 𝑇, using (5) with an offset to the distance, and the 𝛾 from (7): (8)We’ll plot , the ball’s height in the ground’s frame, versus 𝑇. The distance 𝑑 is measured in theball’s frame; in the ground’s/rocket’s frame it’s length contracted by the gamma factor 𝛾, so (9)Now we can make the plot, where  is in kilometers:

Figure 2: Ball thrown upward from the ground to a maximum height 𝐻 = 10 km in a 1 𝑔uniform gravitational field.Compare Fig. 2 to a plot drawn by a projectile motion calculator that uses Newton’s equationsfor a uniform gravitational field. They look alike, because Newton’s equations approximate theRelativistic Rocket equations when the object is thrown upward at a speed less enough than 𝑐.Experiment #2: A ball is thrown upward from the ground to a maximum height 𝐻 = 10 lightyears in a hypothetical 1 𝑔 uniform gravitational field.We’ll again plot the ball’s rise and fall in the ground’s frame. Use 𝑐 = 1 ly/yr, 𝑎 = 1.03 𝑔, and 𝐻 = 10 ly.
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Figure 3: Ball thrown upward from the ground to a maximum height 𝐻 = 10 ly in a 1 𝑔uniform gravitational field.See that Fig. 3 looks similar to the plot in the section “The Equivalence Principle and a StoneThrown Upwards” at The Relativistic Rocket. (The site uses 𝑎 = 1  there. It also negatesthe distance 𝑑 since initially the ground is like a rocket decelerating past the ball; we needn’tfollow that convention.)  A projectile  motion calculator that  uses  Newton’s  equations wouldinvalidly plot a parabola.Fig. 3 shows that the ball accelerates up initially, and decelerates down as it nears the ground.
2 Space expands and contracts relativelyThe ball accelerates up in Fig. 3 due to the reverse of length contraction (hereafter called lengthexpansion) of the space between  the ground and the ball,  that occurs  in the ground’s frame.Throw  a ball upward, while imagining that a string  dangles down  from it.  The string  movesrelative to you, so it’s length contracted in your frame, however  slightly.  The string expandstoward its proper length while passing you, so some of the ball’s movement away from you isdue to the length expansion of the string. As this length expansion still  happens when youremove the string from the picture,  it’s  simpler  seen as  an expansion of  space  that  occursbetween you and a free-falling object that rises away from you. It’s a relative expansion thatcauses the object to accelerate up when the expansion is large enough. The reverse happensbetween you and a free-falling object that falls toward you. In that case the space between youand the object relatively contracts due to length contraction. This causes the ball to deceleratedown in Fig. 3.In Fig. 3 the ball reaches a height of 10 light years in a little over 3 years. So the ball moves atan average speed > 3𝑐 in the ground’s non-inertial frame. In the ball’s LIF the ground’s speed 𝑣is always < 𝑐; the Relativistic Rocket equations can’t return a value to the contrary. The speedof light is guaranteed to be 𝑐 in, and only in, a perfect inertial frame. This means that in our
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5real, gravity-endowed universe, light’s speed is guaranteed to be  𝑐  only when measured rightnext to it. However, we treat LIFs as perfect inertial frames, so the speed of light in a LIF is(treated to be) 𝑐. In a non-inertial frame it can be arbitrarily high in principle, and therefore socan an object’s speed. (See also Is the Speed of Light Everywhere the Same?)The  Relativistic  Rocket  has  an  equation  to  predict  when  an  object  will  accelerate  up  ordecelerate down (in which case its plot of  vs. 𝑇 will be bell-shaped, if only slightly): (10)and says “This means that if you want to perform such an experiment, either [𝑎] or 𝐻 will haveto be very large.” Note that the minimum 𝑎 is inversely proportional to 𝐻.

Figure 4: This is Fig. 3 with extended tails.Shine light upward. Then the maximum height 𝐻  in (10) is infinite, so the light acceleratesaway in your frame (a ball thrown upward at close to 𝑐 is initially a proxy for the light thatrecedes faster). The right tail of Fig. 4 shows that light shone downward decelerates away. (Thelight  asymptotes  to  your  Rindler  horizon.  See  Fig.  1,  and  the  section  “Below  the  rocket,something strange is happening” at The Relativistic Rocket.) Measure the height of a buildingusing a laser rangefinder, from both the top and bottom of the building. This measures the timetaken by a laser pulse to reflect off a target and return to the device. Whether the height ismeasured from the top or bottom, the same set of one-way pulses are used; only their orderdiffers. The height measures taller from the top when the rangefinder is precise enough. Weknow this because clocks run faster there due to gravitational time dilation, hence more timeelapses between the emission and reception of the same set of one-way pulses (see the section“And inside the rocket, something strange is also happening” at The Relativistic Rocket). Fig. 4shows what happens to the light. When the height is measured from the bottom, the lightaccelerates up and decelerates down, its speed averaging > 𝑐. When the height is measured fromthe top, the light decelerates down and accelerates up, its speed averaging <  𝑐.  The properheight of the building is between the two heights reported by the rangefinder.
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6
3 Numerical integration for a non-uniform gravitational fieldThe Relativistic Rocket equations apply only to uniform gravitational fields.  Here is code tonumerically integrate the relativistic motion of a ball thrown upward in a real (non-uniform)gravitational field. Click the Run button to get the output:

The ball apexes at 1.0000e+01 ly after 3.0230e+00 yr
Its velocity v = 0.3559% of c at the apexThis result approximates the expected result for experiment #2, as depicted by Fig. 3. Theprogram stops when the ball apexes. You can change the inputs at the top of the program, asexplained therein. The closer the reported velocity  𝑣 at the apex is to the expected zero, thebetter the approximation. To get closer to 𝑣 = 0 increase the stepCount, the number of steps inthe numerical integration. At a high enough stepCount the program times out when run online.You can install  the  Go language to run the program on your own machine.  The programoutputs data points for 𝑇 and  when outputCount > 0.

Figure 5: This is Fig. 3, except that the left half of the plot uses the data output by thenumerical integration program, for a gravitational field where the acceleration of gravitystays close to 1 𝑔.Here is code for a helper program to get inputs for the numerical integration program. Click the Run button to get the output:
Use these inputs for the numerical integration program:

M = 1.0300e+12 ly
rMin = 1e+06 ly
rDiff = 6.1500e+01 ly

Acceleration of gravity at
rMin = 1.0300e+00 ly/yr^2
rMax = 1.0299e+00 ly/yr^2

The ball apexes at 1.0000e+01 ly after 3.0252e+00 yr
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7This program helps especially for getting inputs for a gravitational field that’s close to uniform.The output above is for experiment #2, using  geometric units. See that the acceleration ofgravity at rMin is about the same as at rMax (= rMin + rDiff). Increase the uniformityLevel tomake the gravitational field more uniform. Decrease the  uniformityLevel, even to a negativevalue, for a less uniform field. But then don’t expect the results at “The ball apexes...”, whichare  for  a  perfectly  uniform  gravitational  field,  to  approximate  those  from  the  numericalintegration program.Let’s use the helper program to get inputs for the numerical integration program for experiment#1. Change the inputs at the top to a = 9.80665,  H = 10000,  Mlabel = "kg",  dLabel = "m",
tLabel =  "s",  G =  6.67430e-11,  and  c =  299792458.  Set  uniformityLevel =  5.  Run  theprogram. The output includes

Use these inputs for the numerical integration program:
M = 1.4693e+27 kg
rMin = 1e+08 m
rDiff = 1.0000e+04 m

The ball apexes at 1.0000e+04 m after 4.5160e+01 sInput those values into the numerical integration program, along with the values above for
dLabel, tLabel, G, and c. Set stepCount = 1e+7. Run the program. The output is

The ball apexes at 1.0000e+04 m after 4.5154e+01 s
Its velocity v = 0.0000% of c at the apexWhen the following values for Earth are input:
M = 5.9724e+24 kg
rMin = 6.3781e+06 mthe output is
The ball apexes at 1.0000e+04 m after 4.5227e+01 s
Its velocity v = 0.0000% of c at the apexHere are finer points of the numerical integration program:The rDiff, the 𝑟-coordinate (radial coordinate or reduced circumference) distance, doesn’t meanthe same as the maximum height H that’s input into the helper program. The height H is thedistance  𝑑 covered by the ground in the ball’s frame. The helper program finds  rDiff for auniform gravitational field by using the Relativistic Rocket equation (11)The inputted H is plugged in for 𝑑. This gives the elapsed time in the ball’s frame. Then thatvalue for 𝑡 is plugged into (12)

https://en.wikipedia.org/wiki/Geometrized_unit_system


8from Equations for a falling body. This gives the 𝑟-coordinate distance, or rDiff. This distanceis  length  contracted  in  the  ball’s  frame  until  the  ball  apexes  (as  shown  by  the  muonexperiments), so rDiff > H.The code is similar to that in How the twins each age less than the other for a twin paradoxexperiment. The thrower is a traveling twin, as if decelerating away from the ball in a rocket.The ball is a stationary twin, at rest relative to the starting and ending points between whichthe rocket/ground moves. The ground’s speed 𝑣 in the ball’s frame is given by (13)from Equations for a falling body, described therein as the “Instantaneous velocity  of a fallingobject that has travelled distance 𝑑 on a planet with mass 𝑀 and radius 𝑟.” We can use thisspeed as well for the ball that rises, since an object’s fall reverses its rise. Except that this speedisn’t relativistic/valid because it can be ≥ 𝑐. So it’s converted to a relativistic speed using (14)This equation derives by substituting the two terms 𝑎𝑡 in (1) with the  from (2). This is thesame as dividing  by its gamma factor 𝛾, as shown by (15)from The Relativistic Rocket. That is, a Newtonian speed  converts to a relativistic speed 𝑣by  dividing  it  by  its  gamma  factor,  using  (15),  which  accepts  a  Newtonian  speed.  Thisconversion effectively changes general relativity’s (GR’s) equation for escape velocity (which is(13) when 𝑑 is infinite) such that it returns a value < 𝑐 for an 𝑟-coordinate 𝑟 > 0. So black holesaren’t predicted. More on this below. See also the corresponding new metric for Schwarzschildgeometry at A solution to the black hole information paradox.The message “Reduce the stepCount” means that division by zero would otherwise occur, dueto limited precision.
4 Space itself expanding is superfluousThe gamma factor equation shows that all objects have a gamma factor 𝛾 as a function of theirvelocity. As we on Earth measure, a radially moving free-falling object is length contracted byits current factor of  𝛾 along that axis of motion, and so is its proper distance from us. Forexample, both the Andromeda galaxy (which approaches us) and its proper distance from us aresomewhat length contracted as we measure, by the same gamma factor. Imagine that a string ofunconnected beads, that are all momentarily at rest relative to Andromeda, extends from it allthe way to you. See that the string is length contracted. (The tidal force is ignorable, hence thegravitational field needn’t be uniform, since we’re using only the instantaneous values 𝛾 and the

https://en.wikipedia.org/wiki/Lorentz_factor
https://vixra.org/abs/2006.0231
https://en.wikipedia.org/wiki/Escape_velocity
https://en.wikipedia.org/wiki/Equations_for_a_falling_body
https://vixra.org/abs/2204.0035
https://en.wikipedia.org/wiki/Experimental_testing_of_time_dilation
https://en.wikipedia.org/wiki/Experimental_testing_of_time_dilation
https://en.wikipedia.org/wiki/Equations_for_a_falling_body


9speed 𝑣—it takes time for the tidal force to distort a measurement. By using unconnected beads,the  string  isn’t  stretched  by  the  tidal  force  either.) The  space  (or  string  of  momentarilyco-moving beads) between you and the object either further contracts as the object approachesand its speed  𝑣 increases, due to gravity, or expands as the object recedes and its speed  𝑣decreases.Let a rocket launch from Earth and accelerate and decelerate at 1 𝑔 to arrive at the center ofour galaxy, 30,000 light years away from us, at relative rest. The Relativistic Rocket shows thatits crew ages just ~20 years (see “Here are some of the times you will age when journeying to afew well known space marks”). At the midpoint of the trip, 15,000 light years away from thecenter as we measure, the rocket is < 10 light years away from the center as the crew measures,due to length contraction; that’s how they’ll have aged just ~10 more years by when they reachthe  center,  despite  moving  at  < 𝑐 relative  to  stars  passing  by.  The  whole  Milky  Way iscontracted by the same gamma factor, lest it be physically deformed. Let a ball be free-floatingat  the  midpoint.  A  plot  of  the  ball’s  height  over  time,  in  the  rocket’s  frame  during  thedeceleration half of the trip, is the left half of the plot given by (6)-(9).

Figure 6: Ball passed by a rocket at the midpoint of a trip from Earth to the center ofour galaxy, arriving at relative rest. The rocket decelerates at 1 𝑔.Fig. 6 shows that the ball accelerates up initially. This is due to length expansion of the spacebetween the rocket and the ball. The whole Milky Way length expands by the same change inthe gamma factor. When the rocket arrives at the center of the galaxy at relative rest, thegalaxy is no longer length contracted. If the rocket kept its engines running and acceleratedback to the ball, then the plot would be the full bell-shaped plot given by (6)-(9). This is as ifthe crew had thrown the ball (or Milky Way) upward to a maximum height 𝐻 = 15,000 lightyears, and then it fell back to the rocket/“ground”, all in a time 𝑇 ≈ 20 years.Since a whole galaxy length contracts when a rocket accelerates across it, why isn’t a wholeblack hole contracted to zero length when an observer reaches its event horizon at the speed oflight? That’s an illogical discrepancy. When the whole galaxy contracts, so must any black holes
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10in it,  lest the galaxy physically deform. If  the numerical integration program didn’t do theconversion  described  above  using  (14),  which  effectively  changes  GR’s  equation  for  escapevelocity such that black holes aren’t predicted, then it couldn’t predict that an object thrownupward can accelerate up,  and otherwise wouldn’t always approximate (6)-(9) in a uniformgravitational field (i.e. locally, where the ground accelerates in a LIF). This shows that theSchwarzschild metric’s prediction of black holes violates the EP. More on this below.Our cosmology is illogical  without incorporating the idea that space expands and contractsrelatively at cosmic scales. For the rocket that travels to the center of our galaxy, our  LocalGroup, and so on outward, must length contract in the crew’s frame during the acceleration halfof the trip, or else there’d be a physical deformity somewhere. Reversely, the Local Group, andso on outward, must length expand in their  frame during the deceleration half  of  the trip.Below, the idea that space itself expands is rejected as superfluous. Then only our decreasingspeed 𝑣 relative to receding galaxies, due to gravity, explains the (relative) expansion of spaceand concomitant stretching of light that we observe. This eliminates the flatness problem, whichdepends on the assumption that space itself is expanding. The Relativistic Rocket says “Fordistances  greater  than  about  a  thousand  million  light  years,  the  formulae  given  here  areinadequate  because  the  universe  is  expanding.”  When  space  expands  only  relatively  thenspacetime can be asymptotically flat for any distance in principle, thus SR can apply at anyscale. Parallel light rays can remain parallel for any distance. The new metric for Schwarzschildgeometry can also apply at any scale.Space itself needn’t expand in order for most or all galaxies to recede from one another. Sprinklean infinite universe, in which space itself neither expands nor contracts, with countless galaxies.Nothing in principle prevents all of the galaxies from coalescing under gravity. “Run the filmbackward” to see that nothing in principle prevents all of the galaxies from receding from oneanother as well.*
5 An object thrown upward in a highly non-uniform gravitational fieldLet’s use the numerical integration program to plot a ball thrown upward to a great height in ahighly non-uniform gravitational  field.  Change  the  inputs  at  the  top to  M = 1e+14,  rMin =
1e+10, rDiff = 1e+12, dLabel = "ly", tLabel = "yr", G = 1, and c = 1. Set stepCount = 1e+7.Run the program. The output is

The ball apexes at 1.0328e+11 ly after 2.9044e+10 yr
Its velocity v = 0.4428% of c at the apexIncreasing the stepCount to 2e+10 (on one’s own machine) improves the results to
The ball apexes at 1.0328e+11 ly after 2.9077e+10 yr
Its velocity v = 0.0099% of c at the apex

* For an informative description of an expanding flat universe, see the chapter “The Big Bang” in thebook Relativity Visualized, by Lewis Carroll Epstein.

https://en.wikipedia.org/wiki/Lewis_Carroll_Epstein
https://en.wikipedia.org/wiki/Flatness_problem
https://en.wikipedia.org/wiki/Local_Group
https://en.wikipedia.org/wiki/Local_Group


11which gives the plot:

Figure 7:  Ball thrown upward to a great height in a highly non-uniform gravitationalfield.The ball apexes at ~103 billion light years after ~29 billion years. The acceleration of gravityranges from ~1 one-millionth of  𝑔 at  rMin (the ground, if only the “surface” of a sphere thatcontains the mass  M) to ~1 ten-billionth of  𝑔 at the ball’s  apex. So see that an object canaccelerate up (due to a large relative expansion of space) even when the acceleration of gravityis small, as predicted locally by (10).
6 More on the Schwarzschild metric’s violation of the equivalence principleThe Relativistic Rocket says about the EP:Einstein  postulated  that  any  experiment  done  in  a  real  gravitational  field—provided that experiment has a “small” extent in space and time—will give aresult indistinguishable from the same experiment done in the above “uniformlyaccelerating” rocket.For example, an experiment done in either scenario in Fig. 1.For experiment #2 for a uniformly accelerating rocket (the result for which is depicted by Fig.3), we got an indistinguishable result (depicted by Fig. 5) in a real gravitational field with anegligible tidal force only by effectively changing GR’s equation for escape velocity using (14),to convert the speed it returns to a relativistic speed. Without that change, an object thrownupward (or light shone upward) can’t accelerate up. Eq. (10) shows that the Schwarzschildmetric, or equations derived from it, approximate (6)-(9) in a LIF (to obey the EP) only whenboth the acceleration of gravity  𝑎 and the maximum height  𝐻 are small enough, so that theinitial or final speed 𝑣 is less enough than 𝑐. This means that the Schwarzschild metric violatesthe EP in every LIF.
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7 Why the JWST won’t see the first galaxiesEqs. (6)-(9) and the numerical integration program show that

• An object can in principle be thrown upward to any height and fall back to the ground,all in an arbitrarily short time 𝑇. Then an object or light can in principle rise from theground to any height, or fall from any height to the ground, in an arbitrarily short time𝑇. This eliminates the horizon problem. A region of space that’s any distance from us canhave been in causal contact with a region of space that’s any distance from us in theopposite direction, since any age > 0 of our length-expanding universe as we measure.The observable universe can now be arbitrarily large.
• Galaxies  that  recede from us  at  a  speed 𝑣 close  enough to 𝑐 accelerate  away as wemeasure. This obviates the need for dark energy. The evidence for dark energy includeshigh-redshift supernovae that are accelerating away from us. They can simply be recedingfrom us fast enough, rather than dark energy needed. (Space expands only relatively inthe new model of the universe, so recession is in no way due to space itself expanding.)It follows that the first galaxies can in principle be much farther away or much more redshiftedthan the current model predicts. For this reason, and because we’ve already seen galaxies thatlook much older than expected, such as ALESS 073.1, likely the JWST won’t be able to imagethe first galaxies.By changing the Schwarzschild metric to obey the EP, and changing cosmology so that spaceexpands only relatively, thereby letting SR and the new metric apply at any scale,  we canpredict the anomalous observations of the JWST and solve several problems in cosmology.

Appendix A – Code for the programsBelow is the Go language code for the numerical integration program that’s referenced in section3, in case the link to the code is broken. You can run the code at the Go Playground after fixingthe formatting.
package main

import (
"fmt"
"math"

)

const (
// The mass of the massive body
M = 1.0300e+12

// The ground's radial coordinate (r-coordinate)
rMin = 1e+06

// The ball is thrown upward from rMin and apexes at rMin + rDiff

https://go.dev/play/
https://go.dev/
https://en.wikipedia.org/wiki/ALESS_073.1
https://www.nasa.gov/feature/goddard/2021/back-to-the-beginning-probing-the-first-galaxies-with-webb
https://en.wikipedia.org/wiki/Dark_energy
https://en.wikipedia.org/wiki/Observable_universe
https://en.wikipedia.org/wiki/Horizon_problem
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rDiff = 6.1500e+01

// The number of steps in the numerical integration below. More 
steps gives greater accuracy

stepCount = 1e+7

// The distance label used for output
dLabel = "ly"

// The time label used for output
tLabel = "yr"

// The gravitational constant
G = 1

// The speed of light
c = 1

// The number of data points to output
outputCount = 0

// End of user input

// The maximum r-coordinate
rMax = rMin + rDiff

// The r-coordinate distance the ball covers in each step
rStep = rDiff / stepCount

)

func main() {
// Test whether "+Inf" would be output, due to limited precision
if rMin + (float64(stepCount - 1) * rStep) == rMax {

fmt.Println("Reduce the stepCount")
return

}

outputEvery := 0
if outputCount > 0 {

// Output data every outputEvery-th iteration
// Adjust for: The origin and last data points are always 

output
outputCount2 := math.Max(1, float64(outputCount) - 2)
outputEvery = int(math.Ceil(stepCount / outputCount2))
fmt.Printf("T, h = d/γ\r\n") // Print data header
fmt.Printf("%0.4e, %0.4e\r\n", 0.0, 0.0) // Print origin 

data point
}

// The twins in this twin paradox experiment are the ball and the 
thrower

// The thrower is like the crew of a rocket, which in this case is
the ground

d := 0.0 // The distance the ground covers in the ball's frame
T := 0.0 // The thrower's aging
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var v float64 // Their velocity relative to each other
var gamma float64 // The gamma factor

for i := 0; i < stepCount; i++ {
r := rMin + (float64(i) * rStep)

// From 
https://en.wikipedia.org/wiki/Equations_for_a_falling_body

vOld := math.Sqrt((2 * G * M) * ((1 / r) - (1 / rMax)))

// From the Relativistic Rocket site
gamma = math.Sqrt(1 + math.Pow(vOld / c, 2))

// Convert vOld to a relativistic velocity, as explained in 
the paper

v = vOld / gamma

// Get the distance the ground covers in the ball's frame 
during this step

// rStep is divided by gamma because r-coordinate distances 
are length contracted in the ball's frame

// As the ball rises, r-coordinate distances length expand 
in its frame

// For example, see the muon experiment at 
https://en.wikipedia.org/wiki/Experimental_testing_of_time_dilation

// As the muon falls, r-coordinate distances further length 
contract in its frame

dStep := rStep / gamma

d += dStep

// During this step:
// dStep / v is the elapsed time in the ball's frame
// dStep / gamma is the distance the ball covers in the 

ground's frame
// dStep / (v * gamma) is the thrower's aging
T += dStep / (v * gamma)

if outputCount > 0 {
if i % outputEvery == 0 || i == (stepCount - 1) {

fmt.Printf("%0.4e, %0.4e\r\n", T, d / gamma)
}

}
}

fmt.Printf("The ball apexes at %0.4e %s after %0.4e %s\r\n", d / 
gamma, dLabel, T, tLabel)

fmt.Printf("Its velocity v = %0.4f%% of c at the apex\r\n", (v / 
c) * 100)
}Below is the Go language code for the helper program that’s referenced in section 3.
package main
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import (

"fmt"
"math"

)

const (
// The acceleration of gravity at rMin
a = 1.03

// The ball's maximum height
H = 10

// The mass label used for output
MLabel = "ly"

// The distance label used for output
dLabel = "ly"

// The time label used for output
tLabel = "yr"

// The gravitational constant
G = 1

// The speed of light
c = 1

// Increase this number to make the gravitational field more 
uniform, at the expense of larger numbers output for "Use these inputs"

// Decrease this number (even to a negative value) to make the 
gravitational field less uniform

uniformityLevel = 5

// End of user input

aLabel = dLabel + "/" + tLabel + "^2"
)

func main() {
// These equations are from the Relativistic Rocket site
// The ball's aging
tExpected := math.Sqrt(math.Pow(H / c, 2) + 2 * H / a)
// The thrower's aging
TExpected := (c / a) * math.Acosh(a * H / math.Pow(c, 2) + 1)

// Calculate the difference d between rMin and rMax, given t
// This equation is from 

https://en.wikipedia.org/wiki/Equations_for_a_falling_body
rDiff := a * math.Pow(tExpected, 2) / 2

// Let the acceleration of gravity at rMin be the acceleration a
// Calculate an rMin where the acceleration of gravity at rMax 

won't differ much
rMin := math.Pow(10, math.Floor(math.Log10(rDiff)) + 

uniformityLevel)
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M := math.Pow(rMin, 2) * a / G

rMax := rMin + rDiff

fmt.Printf("Use these inputs for the numerical integration 
program:\n")

fmt.Printf("\tM = %0.4e %s\n", M, MLabel)
fmt.Printf("\trMin = %0.0e %s\n", rMin, dLabel)
fmt.Printf("\trDiff = %0.4e %s\n", rDiff, dLabel)
fmt.Printf("Acceleration of gravity at\n")
fmt.Printf("\trMin = %0.4e %s\n", a, aLabel)
fmt.Printf("\trMax = %0.4e %s\n", G * M / math.Pow(rMax, 2), 

aLabel)
fmt.Printf("The ball apexes at %0.4e %s after %0.4e %s\n", 

float64(H), dLabel, TExpected, tLabel)
}

Except where otherwise noted, content is available under the CC BY 4.0 license.
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