A statistical test of gravitational wave events
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Abstract

Here I show some statistics of all the 93 gravitational wave (GW) events observed by LIGO in 3 phases
during the last 6 years, with 3, 8 and 82 GW events for each phase. The detection sensitivity in O3 phase
was increased by 40% than that in O2 phase. The co-working ratio of the two LIGO observatories was 0.42
(02 phase) and 0.60 (O3 phase), respectively. The product of sensitive volume and time (VT) was thus
increased by a factor of 1.4 x (0.60/0.42) ~ 4. Statistical analyses of all the 93 GW events suggest that the
observations so far do not meet an intuitive expectation, say, with higher detection sensitivity and longer
observation time, we should observe more GW events.

A Chinese version of this paper is included in the appendix.
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Since the observation of the GW 150914 gravitational wave event', the Laser Interferometric
Gravitational Wave Observatory (LIGO)>? has not only validated the general relativity* proposed
by Einstein 100 years ago, thus opening a new era of for gravitational wave (GW) multi-messenger

astronomy observations>°, but also won the 2017 Nobel Prize in Physics’”

. Here I give some
statistical analyses of all the observed GW events, using the public information published online
by the LIGO scientific team (LIGO Scientific Collaboration, LSC)'%-'2,

LIGO Scientific Collaboration (LSC) has gone through three phases of observation, O1, O2
and O3 (0O3a & O3b). Their analysis in 2016 showed'? that the product of sensitive volume and
time (VT) of O2 was between 7 and 20 (with respect to a reference value, VTO0), and O3 had
a VT between 30 and 70. LSC has found 93 certified gravitational wave events (GW events),
with 3, 8 and 82 GW events for each phase'*!>. At first glance, it seems to meet nicely the
intuitive expectation that we should observe more gravitational wave events with higher detection
sensitivity and longer observation time. However, my analysis suggests the contrary.

As shown in Fig.1(a), as the accumulated days of observation increase, there comes a knee
point beyond which the rate of the detection of GW events increases dramatically. Two indicators
measure the detection sensitivity of the LIGO, the angular averaged range for dual neutron star
fusion events (Fig.1(b)) and the amplitude density of detectable gravitational wave (Fig .1(c)).
Between the O2 and O3 phases (around day 400), the detection sensitivity was increased by 40%
or more, thus leading a triple increase of the detection volume. However, the rate of the detection
of gravitational events remained almost constant, or even slightly decreased, far away from the
expected triple increase. Fig.1(d) shows the daily average working ratio of each LIGO/Virgo
observatories during the O2 and O3 phases. As shown in Fig.1(b-d), the knee point in Fig.1(a)
appeared around the time when Virgo was put into work (about a month before O2 phase ended),
although its detection sensitivity was much worse than the two LIGO observatories.

Observation of a GW event demands at least two observatories to work in the “observation
mode” simultaneously. For sake of simplicity, Figure 2(a) shows the ratio of two LIGO observato-
ries operating simultaneously (co-working ratio): in the 24 hours of a day (UTC time), the chance
of both observatories work properly at the same time. The co-working ratio varies at each moment
of the day, as shown in Fig.2(a), probably due to the fact that trouble-shooting is more likely to
be made at daytime, while detection is more likely to be made at night. The averaged co-working
ratio of a day was 0.42 (O2 phase) and 0.60 (O3 phase), respectively.

The detection rate of the GW events may be expected to be proportional to the co-working
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FIG. 1: Over the past 6 years, LIGO went through three observation phases and found 93 gravitational wave
events. Colorful zones represent different observation phases. (a) Number of gravitational wave events. (b)
Angle-averaged range of gravitational wave events due to binary neutron stars; (c) Amplitude density of
detectable gravitational waves (data at 80 Hz). (d) Averaged daily working ratio for three stations (For sake
of clarity, base-lines are raised by 2 (red) and 4(green), respectively.). All of the horizontal coordinates
are cumulative detection days.The red dash line indicates the turning point (a GW evnet was observed on
Jul. 29th, and Virgo officially announced cooperation with LIGO on Aug. 1st). And in (b-d), Blue: LIGO

Livingston; Red: LIGO Hanford; Green: Virgo.

ratio, however, it is not the case, as shown in Fig.2(b). Probability distribution 1 (PDI1, red sym-
bols) is the reduced probability, via dividing the co-working ratio of one day in the O3 phase
into 12 equal periods (2 hours each), probability distribution 2 ( PD2, green symbol) is an equal
probability distribution, and 82 GW events in the O3 phase give the observed rate (blue symbol).
The cross variance of the observed rate with respect to PD1 (PD2) is 0.0076 (0.0044). Thus,
the rate of the detection of GW events is closer to the equal probability distribution, instead of
what one may expect from the co-working ratio. The cross variance is defined as the following,

2
Zle (pf - pf) , where i represents the k types of stochastic event that may occur (k = 12 here ),



p) is the actual occurrence rate of the i-th type of stochastic events, and p! is the corresponding
theoretical probability (here are two kinds of theoretical probabilities, corresponding to PD1 and

PD2, respectively).
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FIG. 2: Expected and actual results of the occurrence rate of gravitational wave events observed by LIGO.
(a) The co-working ratio of the two LIGO stations operating properly at the same time. Blue: O2 phase;
Red: O3 phase. (b)Expected and actual results of the occurrence rate of gravitational wave events. Red
(probability distribution 1): the expected occurrence rate according to the co-working ratio of the two LIGO
stations. Blue: the actual occurrence rate of gravitational wave events. Green (probability distribution 2):

an equal probability distribution. Horizontal axis is UTC time.

This is in contrast to numerical simulations. Among 10,000 simulations generated with prob-
ability PD2, about 19% have the results whose cross variance with respect to PD1 is smaller than
that with respect to PD2. On the other hand, among 10,000 simulations generated with probability
1, about 82% have the results whose cross variance with respect to PD1 is smaller than that with
respect to probability 2. In other words, for the simulation results with one kind of probability, its
cross variance with respect to this probability has a significant chance (~ 4 : 1) to be smaller than
the cross variance with respect to the other probability.

It is also worth noting that, in the last month of the O2 (Jul. 26th - Aug. 25th), there appeared
6 GW events, 5 of which are in August (9th - 23rd). LSC thought!*!¢ that it is not unusual to
see 5 GW events in August. Taking into account the different efficiency of detection and observa-
tion time in O1 and O2, these two periods can be divided into non-overlapping 10 months. The
probability of observing at least 5 GW events in a month is 5.3%. However, the real question is,
how likely it is to see 6 GW events (one in Jul. 29th, five in August) in a month while the total

number is no more than 11 in ten months? With the same assumptions and data from LSC, the



0.030{0.033(0.037/0.040|0.043]0.047|0.050

11 15 | 16 | 21 16 | 13 | 11 15

12) 22 | 34 | 42 | 33 | 29 | 26 | 22

13| 33 | 46 | 62 | 66 | 60 | 57 | 53

14| 47 | 64 | 93 | 108 | 108 | 105 | 98

15| 63 | 89 | 134 | 151 | 156 | 165 | 170

TABLE I: Results of computer simulations. There is a probability of about 0.2% to observe 11 GW events
in 10 with 6 and more times occurring within 30 consecutive days. The first row is the odds per day to
observe at least one gravitational wave event, the first column is the number of gravitational wave events
within 10 months, and the corresponding position in the table gives the number of 6 and more GW events

over 30 consecutive days (for 10,000 runs of simulation).

probability is 1% or less. Numerical simulation (Table 1.) gives a probability of 0.2%. This may
not be ascribed to luck.

Note that the GW events discussed here are those with probability of astrophysical origin (Pago)
greater than 0.5. Recently, LSC announced some marginal events!’, and some groups used inde-
pendent algorithms to find new GW events'8. The ”August anomaly” discussed here may be less
unusual. However, it is not yet suitable for discussion.

Apart from the occurrence time of the GW events, all the data presented here are extracted
from the pictures published online by LSC. I think the inaccuracy of the retrieved data would not
affect our analysis. More accurate and convenient data and possibly more detection results in the
future will further test the preliminary statistical analysis given here. Obviously, such a statistical
test can be applied to more data analysis, say, the location of GW events on the celestial sphere,
their distance to the earth, the mass and spin of the corresponding massive bodies (black holes or

neutron stars), and so on. However, the public pictures are not suitable for further analysis.
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