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Abstract

We examine the concept of K−continuity of a functor from two perspectives: one considering

K−continuity as given in some formulations of Shape theory and the other as a restriction of

the usual definition of the continuity of a functor. We show that under a certain condition the

concept of K−continuity from Shape theory includes the concept of K−continuity arising from

the usual definition of continuity.

1 Introduction

Given functors K : B → C and T : C → D the K−continuity of the functor T is a concept developed

in the categorical formulation of Shape theory given in the works of Bacon [B75] and Cordier and

Porter [CP08]. Their construction is quite general in scope and has its place even when the limits of

the functors K and TK don’t exist.

A similar concept of K−continuity arises as a particular case of the standard concept of the

continuity of a functor, for example, as presented by Hofmann [Hf76] and, contrarily to the Shape

theoretical construction, it demands the existence of the limits of K and TK.

It is the purpose of our study to examine how the concept of K−continuity arising from these

two perspectives are related. We start by reviewing some aspects of both definitions.

The limit of a functor T : C → D may be seen as the cone {lim T , TC}C∈Obj C with lim T ∈ Obj D

and TC ∈ Morf D(lim T , TC) morphisms satisfying the universal property: ∀{D,ΦC}C∈Obj C (cone of
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D ∈ Obj D over T ), ∃!η : D
D→ lim T such that ∀f : C

C→ C ′ we have the diagram below commutative

D

ΦC

��

η
��

ΦC′

��

lim T

TC{{ TC′ ##
TC

T (f)
// TC ′

(1)

with the relation ΦC = TC η being a factorization for ΦC .

Following Hofmann [Hf76] we may also conceive the limit of a functor T : C → D as a pair

lim T = (lim T , T ) with T : (lim T )C
·→ T being a natural transformation. This definition is

equivalent to the one given previously in terms of the cone {lim T , TC}C∈Obj C with the family of

morphisms TC being all grouped in T . The fact that T is a natural transformation summarizes all

relations between the morphisms TC given in the commutative diagram of (1).

With this notion of limit let us consider a class of functors Ω. We say that T is Ω−continuous

if ∀K ∈ Ω (K : B → C) it exists lim K = (lim K,K), lim TK = (lim TK, TK) and an invertible

morphism TK : T lim K
D→ lim TK satisfying (see theorem 2.7)

TK = TK T−1
KB . (2)

We define T as continuous if we take Ω to be the class of all functors with small domain. We define

T as continuous for inverse systems if we restrict the class Ω to include inverse systems. Then, since

inverse systems are functors defined over domains that are directed sets they belong to the class Ω

of all functors with small domain and, as a result, we see that the definition of continuity includes

naturally the case of continuity for inverse systems.

Another particular case of Ω−continuity, which we call K−continuity, appears if we take Ω = {K}
for a fixed functor K. Then, due to this restriction, K−continuity of T doesn’t imply necessarily the

continuity of T for inverse systems.

In the Shape theory developed by Bacon [B75], and also by Cordier and Porter [CP08], the

K−continuity of a functor T : C → D is developed without using the concept of the limit of a

functor and relies on a class of functors belonging to Func(C ↓ K,D ↓ TK), which is defined in

terms of the comma categories C ↓ K and D ↓ TK. The main motivation for this Shape theoretical

formulation is to replace the limiting cone by the comma categories in cases where neither C nor D
have small limits (see remark on pg. 29 in [CP08]). As we will see, the K−continuity of T : C → D
is defined by the condition

V = g∗δT (3)

for certain functors δT : C ↓ K → TC ↓ TK and g∗ : TC ↓ TK → D ↓ TK where g∗ is induced by a

unique morphism g : D
D→ TC.

Conditions (2) and (3) are the main elements on the two definitions given for the K−continuity of

T and they exhibit a certain similarity provided we can associate V ↔ TK, δT ↔ TK and g∗ ↔ T−1
KB.
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This suggests us to investigate if there is a connection between these two definitions. In particular,

we show that K−continuity in the sense of Bacon-Cordier-Porter garantees the K−continuity in the

sense of Hofmann if we have g : lim TK
D→ T lim K invertible (see theorem 4.12). Another purpose

of our study is to examine if in the perspective of the Shape theory of Bacon-Cordier-Porter we can

redefine g∗ and δT in such a way as to incorporate the limits of K and TK in cases those both limits

exist.

Our work is organized as follows. In section 2 we review the standard definition of continuity

as presented by Hofmann [Hf76]. In section 3 we review the concept of continuity for inverse sys-

tems where we consider inverse systems as functors. In section 4 we analyze the construction of

K−continuity in the sense of Bacon, Cordier and Porter and show how it implies continuity for

inverse systems. We also show how it includes the K−continuity in the sense of Hofmann provided

we add one further restriction on the morphism g that induces g∗ appearing in (3). In section 5 we

establish a relation associating to each morphism used in the K−continuity definition of Hofmann

a corresponding morphism used in the K−continuity definition of Bacon, Cordier, Porter. We show

that under a certain condition we obtain a closer similarity of these two perspectives of K−continuity

in the sense that the corresponding morphisms satisfy conditions having the same form. Section 6 is

devoted to search if we can redefine the Bacon, Cordier, Porter construction in terms of the limits

of K and TK, in case they both exist.

A word about notation. Given a functor F : B → C sometimes we write Fob and Fmo to

denote its action on the objects and morphisms of B. A morphism u ∈ Morf B(B,B′) is written as

u : B
B→ B′. Whenever we treat with inverses systems {Xα, pαβ}Λ, Λ is a pre-ordered set where the

indexes run. When we write relations like pα = pαβ pβ, uα = pαh etc. it is assumed they are valid

∀α ∈ Λ, ∀β ∈ Λ, observing that α ≤ β whenever it appears in pαβ, therefore, for ease of notation

we omit this information. We follow the convention of writing natural transformations putting a dot

over the arrow, e.g. Ψ : F
·→ G denotes a natural transformation between functors F and G. We use

BCP as a shorthand for Bacon-Cordier-Porter. Even though Hofmann doesn’t explore the concept

of K−continuity in his work [Hf76], we will say “K−continuity in the sense of Hofmann” to refer

to this particular case of Ω-continuity when we take Ω = {K} and also to distinguish it from the

concept of K−continuity in the sense of BCP.

2 The standard definition of the continuity of a functor

We analyze the concept of limit and continuity of a functor as presented by Hofmann and prove some

results that were stated without proof in [Hf76]. The concept of K−continuity is established relative

to a functor previously fixed and employs the standard definition of limit.

First we introduce the concept of a constant functor induced by an object.

Def. 2.1. Let C and D be categories and D ∈ Obj D. We define a constant functor DC : C → D as

follows

DCob : Obj C → Obj D DCmo : Morf C → Morf D
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C → DCob(C) := D h : C
C→ C ′ → DCmo(h) := 1D

Given a morphism it induces a natural transformation as follows:

Def. 2.2. Given categories C and D and a morphism F : D
D→ D′ we define the natural transforma-

tion FC : DC
·→ D′C as

FC : Obj C → Morf D

C → FC(C) := F .

Now, we recall the standard definition of the limit of a functor, which is equivalent to the one

given in terms of cones that we reviewed in the introduction.

Def. 2.3. Let K : B → C be a functor. The limit of K consists of a pair (lim K,K) with lim K ∈
Obj C and K : (lim K)B

·→ K such that ∀C ∈ Obj C, ∀u : CB
·→ K, ∃!u : C

C→ lim K such that

K uB = u.

It is helpfull to see the condition K uB = u expressed in terms of the commutative diagram below

(∀B ∈ Obj B):

C
u

||

u(B)

!!
lim K

K(B) // KB

(4)

We say that K is the limit morphism and lim K is the limit object. As a notation, we write lim K

as a shorthand for the pair (lim K,K).

Def. 2.4. Let C,D be categories. We define the category DC as follows. Obj DC is the class having

for elements functors F : C → D. For functors F,G : C → D we define Morf DC(F,G) as the set

having for elements natural transformations u : F
·→ G with the composition being defined in terms

of the composition of natural transformations. Given F ∈ Obj DC the identity 1F : F
·→ F satisfies

1F (C) = 1F (C),∀C ∈ Obj C.

We will show that the association u↔ u given in definition 2.3 is a bijection.

Theorem 2.5. Let K : B → C be a functor with lim K = (lim K,K). The map : Morf CB(CB, K)→
Morf C(C, lim K) given by u→ u with u(B) = K(B)u is a bijection.

Proof. Given u, v : CB
·→ K we have associated u and v such that u(B) = K(B)u and v(B) = K(B)v,

∀B ∈ B, then u = v ⇒ u = v and is injective.

Let us now take ϕ ∈ Morf C(C, lim K) and consider ϕB : CB
·→ (lim K)B. Then K ◦ ϕB ∈

Morf CB(CB, K) and we have a uniqueK ◦ ϕB ∈ Morf C(C, lim K) satisfying (K◦ϕB)(B) = K(B)K ◦ ϕB
∴ K(B)ϕ = K(B)K ◦ ϕB and the uniqueness of K ◦ ϕB gives that K ◦ ϕB = ϕ, therefore is sur-

jective.

Then, is bijective.

4



We need a preliminary result.

Theorem 2.6. Let K : B → C and T : C → D be functors and let us assume that ∃ lim K. Then,

T ◦ (lim K)B = [T lim K]B.

Proof. It follows directly from definition 2.1.

The next result garantees the existence of a unique funtor TK provided it exists the limits of K

and TK.

Theorem 2.7. Let K : B → C and T : C → D be functors. If ∃ lim K, ∃ lim TK then ∃!TK :

T lim K
D→ lim TK such that TKTKB = TK, i.e. the diagram below is commutative

[T lim K]B

TK %%

TKB // (lim TK)B

TKyy
TK

(5)

Proof. Since it exists lim K it follows that there is a natural transformation K : (lim K)B
·→ K.

Using theorem 2.6 we consider the natural transformation TK : [T lim K]B
·→ TK. Since it also

exists lim TK there is a natural transformation TK : (lim TK)B
·→ TK satisfying:

∀v : DB
·→ TK, ∃!v : D

D→ lim TK such that TK vB = v . (6)

Identifying in (6): D ≡ T lim K and v ≡ TK we have that ∃!v : T lim K
D→ lim TK such that

TK vB = TK. We identify the morphism TK with v and this ends our proof.

We are now equipped to define K−continuity in the sense of Hofmann.

Def. 2.8. Let K : B → C be a functor. The functor T : C → D is K-continuous iff

i. ∃ lim K ⇒ ∃ lim TK

ii. TK : T lim K
D→ lim TK is invertible.

Remark 2.9. If T : C → D is K−continuous we denote T lim K ' lim TK to indicate that

T lim K ' lim TK and TK ' TK, which are understood as follows.

By T lim K ' lim TK we mean there is an invertible morphism TK : T lim K
D→ lim TK, and

by TK ' TK we mean that TK and TK are related through TK = TKTKB.

3 Continuity for inverse systems

We recall that a partial ordered set (Λ,≤) may be seen as a category with the identification:

Obj Λ := Λ , Morf Λ(α, β) :=

 {α
Λ→ β} if α ≤ β

∅ if α /≤ β .
(7)

Then an inverse system in a category C indexed by Λ is a contravariant functor X : Λ→ C.
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With this interpretation, the inverse limit of the inverse system X becomes the limit of the

functor X : Λ → C i.e. lim X = (lim X,X) where lim X ∈ Obj C and X : (lim X)Λ
·→ X is a

natural transformation such that ∀C ∈ Obj C, ∀u : CΛ
·→ X, ∃!u : C

C→ lim X such that X uΛ = u.

Remark 3.1. Given an inverse system X : Λ→ C we denote Xα := Xob(α) and pαβ := Xmo(α
Λ→ β).

Then the inverse system X : Λ→ C may be seen as a family of objects and morphisms that we write

as {Xα, pαβ}Λ. If there is the inverse limit lim X = (lim X,X) we denote X∞ := lim X and

pα := X(α) : X∞
C→ Xα, then we identify the inverse limit with the limit cone {X∞, pα}Λ. With this

notation we write (lim X,X) = lim X as {X∞, pα}Λ = lim←−{Xα, pαβ}Λ.

Def. 3.2. Let Ω be the class of inverse systems on C. T : C → D is continuous for inverse systems

iff T is X−continuous for any X ∈ Ω.

Remark 3.3. From definition 2.8 if T : C → D is X−continuous then it exists: lim X = (lim X,X),

lim TX = (lim TX, TX) and an invertible morphism TX : T lim X
D→ lim TX. Then, existing

lim X by definition we have the commutative diagram below ∀α Λ→ β

C

u(β)

��

u
��

u(α)

��

lim X

X(β){{ X(α) ##
Xβ pαβ

// Xα

(8)

which is transformed by the functor T into a diagram

TC

T (u(β))

��

T (u)
��

T (u(α))

��

T lim X

T (X(β))xx T (X(α)) &&
TXβ

T (pαβ)
// TXα

(9)

Likewise, existing lim TX we have that for all w : DΛ
·→ TX, ∃!w : D

D→ lim TX such that ∀α Λ→ β

the diagram below is commutative

D

w(β)

��

w
��

w(α)

��

lim TX

TX(β)zz TX(α) $$
TXβ

T (pαβ)
// TXα

(10)
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Since TX is invertible we use T−1
X : lim TX

D→ T lim X to insert part of the diagram (9) into the

diagram (10), which gives

D

w(β)

��

T−1
X w
��

w(α)

��

T lim X

T (X(β))yy T (X(α)) %%
TXβ

T (pαβ)
// TXα

(11)

Comparing (10) and (11) we have that (T lim X,TX) ' (lim TX, TX), i.e. T lim X ' lim TX

where ' is the same identification established in remark 2.9 as follows: T lim X ' lim TX is given

by the functor TX : T lim X
D→ lim TX given in theorem 2.7, and TX ' TX is given by the relation

TX(α) = TX(α)TX , ∀α ∈ Λ.

Using the notation of Holsztynski introduced in remark 3.1, where inverses systems are seen as

{Xα, pαβ}Λ and the inverse limit as {X∞, pα}Λ = lim←−{Xα, pαβ}Λ, we obtain an equivalent definition

for the continuity for inverse systems:

Def. 3.4. T : C → D is continuous for inverse systems iff

T lim←−{Xα, pαβ}Λ ' lim←−T{Xα, pαβ}Λ (12)

∀{Xα, pαβ}Λ inverse system on C.

Diagram (11) allow us to state condition (12) in the form:

T : C → D is continuous for inverse systems iff ∀{Xα, pαβ}Λ, inverse system in C with {lim X,X(α)}Λ =

lim←−{Xα, pαβ}Λ, we have that {TXα, T (pαβ)}Λ is an inverse system in D satisfying:

∀wα : D
D→ TXα with wα = T (pαβ)wβ,∃!η : D

D→ T lim X with

wα = T (X(α))η . (13)

For further use we write down Holsztynski’s definition of projection [H71].

Def. 3.5. Let B and C be categories with Obj B = Obj C. A functor K : B → C is called a projection

iff K(B) = B, ∀B ∈ Obj B, and K : Morf B(B,B′)→ Morf C(B,B
′) is surjective ∀B,B′ ∈ Obj B.

Then, when K : B → C is a projection it becomes implicit that we are dealing with categories B
and C with Obj B = Obj C.

4 The Bacon-Cordier-Porter’s (BCP) definition of continu-

ity

We review the concept of K−continuity developed by BCP. First, we need to introduce some pre-

liminary concepts (see also [CP08]).
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Def. 4.1. Let K : B → C be a functor and C ∈ Obj C. The comma category of K−objects under C

is the category C ↓ K defined as follows:

Obj C↓K := {(f,B) | B ∈ Obj B, f ∈ Morf C(C,KB)}

Morf C↓K
(
(f,B), (f ′, B′)

)
:= {h : B

B→ B′ | f ′ = K(h)f}.

Then, Morf C↓K
(
(f,B), (f ′, B′)

)
⊂ Morf B(B,B′) and what we concretely define as h : (f,B)

C↓K→
(f ′, B′) is in fact a morphism h : B

B→ B′.

Def. 4.2. Let K : B → C be a functor, C ∈ Obj C and consider C ↓ K. We define the codomain

functor δC↓K : C ↓ K → B as follows

δC↓Kob : Obj C↓K → Obj B

(f,B)→ δC↓Kob (f,B) := B

δC↓Kmo : Morf C↓K
(
(f,B), (f ′, B′)

)
→ Morf B(B,B′)

h→ δC↓Kmo (h) := h.

Def. 4.3. Let K : B → C and T : C → D be functors and C ∈ Obj C, D ∈ Obj D. We define

Func(C ↓ K,D ↓ TK) as the class having for elements functors V : C ↓ K → D ↓ TK such that

δD↓TK ◦ V = δC↓K.

From this condition, Func (C ↓ K,D ↓ TK) may be characterized in terms of a map V ∗ as we

see in the next result.

Theorem 4.4. The condition δD↓TK ◦ V = δC↓K fixes the form of V ∈ Func (C ↓ K,D ↓ TK) as

follows

Vob : Obj C↓K → ObjD↓TK

(f,B)→ Vob(f,B) := (V ∗(f), B)

Vmo : Morf C↓K
(
(f,B), (f ′, B′)

)
→ MorfD↓TK

(
(V ∗(f), B), (V ∗(f ′), B′)

)
h→ Vmo(h) = h

where

V ∗ : ∪
B∈ObjBMorf C(C,KB)→ ∪

B∈ObjBMorf D(D,TKB)

f : C
C→ KB → V ∗(f) : D

D→ TKB

satisfies

V ∗(f ′) = TK(h)V ∗(f) (14)

∀f : C
C→ KB, ∀f ′ : C C→ KB′, ∀h : B

B→ B′ ∈ Morf C↓K
(
(f,B), (f ′, B′)

)
Proof. It follows straightforwardly from the condition δD↓TK ◦ V = δC↓K .

Remark 4.5. Given f, f ′ the condition f ′ = K(h)f imposes a restriction on the form of h : B
B→ B′.

The other condition V ∗(f ′) = TK(h)V ∗(f) imposes a restriction on the form of V ∗. In some cases,

it may happen the latter condition follows from the former, but this is not a general case.
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Def. 4.6. Let K : B → C and T : C → D be functors. We define the functor δT : C ↓ K → TC ↓ TK
as

δT ob : Obj C↓K → Obj TC↓TK

(f,B)→ δT ob(f,B) := (T (f), B)

δTmo : Morf C↓K
(
(f,B), (f ′, B′)

)
→ Morf TC↓TK

(
(T (f), B), (T (f ′), B′)

)
h→ δTmo(h) := h.

Our next definition associates to every morphism g : D
D→ TC an induced functor between comma

categories.

Def. 4.7. Let K : B → C and T : C → D be functors. Given a morphism g : D
D→ TC with

D ∈ Obj D and C ∈ Obj C, it induces a functor between comma categories g∗ : TC ↓ TK → D ↓ TK
defined as follows

g∗ob : Obj TC↓TK → ObjD↓TK

(w,B)→ g∗ob(w,B) := (wg,B)

g∗mo : Morf TC↓TK
(
(w,B), (w′, B′)

)
→ MorfD↓TK

(
(wg,B), (w′g,B′)

)
u→ g∗mo(u) := u.

We are now equipped to define K−continuity of a functor according to BCP.

Def. 4.8. Let K : B → C and T : C → D be functors. We say that T is K−continuous at C ∈ Obj C

iff ∀D ∈ Obj D, ∀V ∈ Func(C ↓ K,D ↓ TK), ∃!g : D
D→ TC such that V = g∗ δT .

The condition on V is equivalent to the form given below:

∀D ∈ Obj D, ∀V ∗ : ∪
B∈ObjBMorf C(C,KB)→ ∪

B∈ObjBMorf D(D,TKB)

satisfying V ∗(f ′) = TK(h)V ∗(f), ∀f : C
C→ KB, ∀f ′ : C C→ KB′, ∀h : B

B→ B′ ∈ Morf C↓K
(
(f,B), (f ′, B′)

)
,

∃!g : D
D→ TC such that ∀f : C

C→ KB

V ∗(f) = T (f)g, (15)

The last relation is summarized in the commutative diagram

D
g

}}

V ∗(f)

##
TC

T (f) // TKB

We say that T is K−continuous if T is K−continuous ∀C ∈ Obj C.

Remark 4.9. We observe the consistency of (15). In fact, for any f ′ : C
C→ KB′ with f ′ = K(h)f

we expect to have V ∗(f ′) = T (f ′)g. But T (f ′) = T (K(h))T (f) and then T (f ′)g = TK(h)T (f)g ∴

V ∗(f ′) = TK(h)V ∗(f), which is relation (14).

Next we examine how the concept of K−continuity implies continuity relative to inverse systems

as stated in definition 3.4. We use the notation for inverse system introduced in remark 3.1.

9



Theorem 4.10. Let K : B → C be a projection satisfying the condition: ∀{Xα, pαβ}Λ inverse system

in C with {X∞, pα}Λ = lim←−{Xα, pαβ}Λ we have K
(
Morf C↓K

(
(pβ, Xβ), (pα, Xα)

))
= {pαβ : Xβ

C→ Xα}.
If T : C → D is K−continuous then T is continuous for inverse systems.

Proof. Let {Xα, pαβ}Λ be an inverse system in C and let us assume there is defined the inverse limit

{X∞, pα}Λ = lim←−{Xα, pαβ}Λ. Given the covariant functor T : C → D we have that {TXα, T (pαβ)}Λ

is an inverse system in D and {T X∞, T (pα)}Λ satisfies

T (pα) = T (pαβ)T (pβ) . (16)

Let {wα : D
D→ TXα}Λ be such that

wα = T (pαβ)wβ . (17)

For X∞ ∈ Obj C and D ∈ Obj D let us consider Func(X∞ ↓ K,D ↓ TK). Every V ∈ Func(X∞ ↓
K,D ↓ TK) is characterized by a map V ∗ : ∪

B∈ObjBMorf C(X∞, B) → ∪
B∈ObjBMorf D(D,TB) 1

satisfying (14), which reads as

∀f : X∞
C→ B, ∀f ′ : X∞

C→ B′, ∀h : B
B→ B′ ∈ MorfX∞↓K

(
(f,B), (f ′, B′)

)
we have V ∗(f ′) =

TK(h)V ∗(f).

Consider now a particular choice for V ∗ such that V ∗(pγ) = wγ. That this choice exists it is

readily seen for if we take f = pβ : X∞
C→ Xβ, f ′ = pα : X∞

C→ Xα and h : Xβ
B→ Xα ∈

MorfX∞↓K
(
(pβ, Xβ), (pα, Xα)

)
then for the projection we are considering we have K(h) = pαβ and

V ∗(pα) = T (K(h))V ∗(pβ), where this last condition is garanteed by (17).

Since T is continuous, from (15) we have that ∃!g : D
D→ TX∞ such that for pα : X∞

C→ Xα we have

V ∗(pα) = T (pα)g i.e.

wα = T (pα)g . (18)

From (16), (17) and (18) we have fulfilled condition (12)

{TX∞, T (pα)}Λ = lim←−{TXα, T (pαβ)}Λ

i.e. T : C → D is continuous for inverse systems.

Remark 4.11. In definition 4.8 the definition of K-continuity for T : C → D assumes the existence

of a unique morphism g, but does not specify the conditions for this morphism to exist. However, for

the projection K given in theorem 4.10, the morphism g is identified with the morphism η appearing

in (13), then here we may infer that the conditions for the existence and uniqueness of η associated

to the inverse limit of {TXα, T (pαβ)}Λ are sufficient for the existence of g.

Theorem 4.12. Let K : B → C and T : C → D be functors such that ∃ lim K, ∃ lim TK and T is

K−continuous in the sense of BCP. For V ∈ Func (lim K ↓ K, lim TK ↓ TK) with V ∗(K(B)) =

TK(B) if g : lim TK
D→ T lim K is invertible then T is K−continuous in the sense of Hofmann.

1Since K is a projection we have Obj B = Obj C and KB = B and TKB = TB.
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Proof. First, we observe the consistency in considering V ∗(K(B)) = TK(B). In fact, if it exists

lim K and lim TK then ∀h : B
B→ B′ we have K(B′) = K(h)K(B), and TK(B′) = TK(h)TK(B).

Then the identification

V ∗(K(B)) = TK(B) satisfies V ∗(K(B′)) = TK(h)V ∗(K(B)),

∀h ∈ Morf lim K↓K
(
(K(B), B), (K(B′), B′)

)
.

Since T is K−continuous in the sense of BCP for this V ∗ there is a unique g : lim TK → T lim K

such that V ∗(K(B)) = T (K(B))g. By assumption g is invertible then we have

V ∗(K(B))g−1 = T (K(B)) . (19)

If it exists lim K and lim TK then ∃!TK : T lim K
D→ lim TK with

TK(B)TK = T (K(B)). Then we have

V ∗(K(B))TK = T (K(B)) . (20)

Since g is the unique morphism satisfying (19) we conclude from (20) that TK is identified with g−1.

Then, since g is invertible it follows that TK is also invertible, i.e. T is K−continuous in the sense

of Hofmann.

5 A condition making the K−continuity definition of Hof-

mann and BCP equivalent in form

We compare the definitions of K−continuity given by Hofmann and by BCP noticing that we can

associate to some morphisms in the Hofmann construction a counterpart in the BCP construction

with the conditions satisfied by these morphisms having the same form.

Reexamining the Hofmann construction

The main elements of the definition of K−continuity given by Hofmann are the existence of the

limits of K, TK and the existence of an isomorphism TK : T lim K
D→ lim TK.

In what concerns the existence of lim K = (lim K,K), we have the conditions:

i. ∀h : B
B→ B′ we have K(B′) = K(h)K(B).

ii. ∀u : CB
·→ K, ∀h : B

B→ B′ we have u(B′) = K(h)u(B).

iii. ∃!u : C
C→ lim K such that ∀B ∈ Obj B we have u(B) = K(B)u.

In what concerns the existence of lim TK = (lim TK, TK), we have the following conditions:

iv. ∀h : B
B→ B′ we have TK(B′) = TK(h)TK(B).

v. ∀v : DC
·→ TK, ∀h : B

B→ B′ we have v(B′) = TK(h)v(B).

vi. ∃!v : D
D→ lim TK such that ∀B ∈ Obj B we have v(B) = TK(B)v.

And for the isomorphism TK : T lim K
D→ lim TK we have:
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vii. TK TKB = TK

From (vii) we have TK(B) = T (K(B))T−1
K and we rewrite the condition (vi) as

vi′. ∃!v : D
D→ lim TK such that ∀B ∈ Obj B we have v(B) = T (K(B))T−1

K v.

Then we characterize the Hofmann construction in terms of the conditions i, ii, iii, iv, v, vi′.

Reexamining the BCP construction

The main elements of the definition of K−continuity given by BCP are the comma categories C ↓ K,

D ↓ TK and the space Func (C ↓ K,D ↓ TK).

As we have seen T : C → D isK-continuous at C ∈ Obj C iff ∀D ∈ Obj D, ∀V ∗ : ∪
B∈ObjBMorf C(C,KB)→

∪
B∈ObjBMorf D(D,TKB) we have satisfied the following conditions:

viii. ∀f : C
C→ KB, ∀f ′ : C

C→ KB′, ∀h : B
B→ B′ with h satisfying f ′ = K(h)f we have

V ∗(f ′) = TK(h)V ∗(f).

ix. ∃!g : D
D→ TC such that ∀f : C

C→ KB we have V ∗(f) = T (f)g.

Comparing both constructions

Examining conditions (ii), (v) and (viii) they suggest us to relate:

f ↔ u(B), f ′ ↔ u(B′), V ∗(f)↔ v(B), V ∗(f ′)↔ v(B′) (21)

and then we identify a similarity between the equations satisfied between these elements in the sense

that we have

f ′ = K(h)f ↔ u(B′) = K(h)u(B) (22)

V ∗(f ′) = TK(h)V ∗(f) ↔ v(B′) = TK(h)v(B) (23)

Examining conditions (iii), (vi′) and (ix) it seems in the Hofmann construction we lack a morphism

D
D→ TC that has g : D

D→ TC as a counterpart in the BCP construction. In order to obtain this

let us conjecture:

∀v : D
D→ lim TK,∃!χ : D

D→ TC such that ∀u : C
C→ lim K

T−1
K v = T (u)χ . (24)

Using that T−1
K v = T (u)χ we obtain from (vi′) that

v(B) = T (K(B))T (u)χ = T (K(B)u)χ = T (u(B))χ i.e. v(B) = T (u(B))χ. Then since there is a

bijection between u and u and between v and v, we get a condition that becomes the counterpart in

Hofmann’s development of the condition (ix) of BCP:

∀v : DC
·→ TK, ∃!χ : D

D→ TC such that ∀u : CB
·→ K we have ∀B ∈ Obj B, v(B) = T (u(B))χ

Then, completing the scheme shown in (21), (22) and (23) we have
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BCP Hofmann

(f, f ′) ↔ (u(B), u(B′))

f ′ = K(h)f ↔ u(B′) = K(h)u(B)

(V ∗(f), V ∗(f ′)) ↔ (v(B), v(B′))

V ∗(f ′) = TK(h)V ∗(f) ↔ v(B′) = TK(h)v(B)

g : D
D→ TC ↔ χ : D

D→ TC

V ∗(f) = T (f)g ↔ v(B) = T (u(B))χ

(25)

with

u(B) = K(B)u, u(B′) = K(B′)u

v(B) = TK(B)v, v(B′) = TK(B′)v

TK−1v = T (u)χ.

Remark 5.1. ∀h ∈ Morf C↓K
(
(f,B), (f ′, B′)

)
we have f ′ = K(h)f . Then, if we identify u(B) = f

since we have u(B′) = K(h)u(B), ∀h : B
B→ B′ we have that u(B′) = f ′ and Morf C↓K

(
(f,B), (f ′, B′)

)
=

Morf B(B,B′) that is a strong requirement. The same happens if we try to identify v(B) = V ∗(f).

Then, the associations

f ↔ u(B), f ′ ↔ u(B′), V ∗(f)↔ v(B), V ∗(f ′)↔ v(B′), g ↔ χ

showed in (25) are not equalities, but work at the same level of what we see in the representation of

groups where the equations these quantities satisfy have the same form despite the representation we

are using.

6 A modification of the BCP construction in cases we have

defined lim K and lim TK

We search for an alternative formulation of the BCP construction presented in section 4 that takes

into account the limits of K and TK.

Let us assume that

∀B ∈ Obj B, ∃GB : lim K
C→ KB such that

i. ∀h : B
B→ B′, T (GB′) = TK(h)T (GB)

ii. ∀f : C
C→ KB, ∃!ηf : C

C→ lim K with f = GB ηf .

We start keeping definitions 4.1, 4.2, 4.3 and replacing definition 4.6 by the following one:

Def. 6.1. Let K : B → C be a functor such that ∃ lim K = (lim K,K). We define the functor

δT : C ↓ K → TC ↓ T (lim K)B as
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δT ob : Obj C↓K → Obj TC↓T◦(lim K)B

(f,B)→ δT ob(f,B) := (T (ηf ), B)

with f = GB ηf : C
C→ KB

δTmo : Morf C↓K((f,B), (f ′, B′))→ Morf TC↓T◦(lim K)B

(
(T (ηf ), B), (T (ηf ′), B

′)
)

h→ δTmo(h) := h

with h, Tηf and Tηf ′ satisfying

f ′ = K(h)f T (ηf ′) = T ◦ (lim K)B(δTmo(h))T (ηf )

∴ GB′ ηf ′ = K(h)GB ηf ∴ T (ηf ′) = T (ηf ).

We also replace definition 4.7 by

Def. 6.2. Given a morphism g : D
D→ TC it induces a functor g∗ : TC ↓ T ◦ (lim K)B → D ↓ TK

given by

g∗ob : Obj TC↓T◦(lim K)B
→ ObjD↓TK

(w,B)→ g∗ob(w,B) :=
(
T (GB)wg,B

)
with w : TC

D→ T lim K.

g∗mo : Morf TC↓T◦(lim K)B

(
(w,B), (w′, B′)

)
→ MorfD↓TK

((
T (GB)wg,B

)
,
(
T (GB′)w

′g,B′
))

h→ g∗mo(h) := h

Then given (f,B) ∈ Obj C↓K with f = GB ηf we obtain

(g∗obδT ob)(f,B) = (T (f)g,B).

Also, given h ∈ Morf C↓K
(
(f,B), (f ′, B′)

)
we obtain

(g∗moδTmo)(h) = h.

Therefore defining K−continuity in the same way as given in definition 4.8 but with δT and g∗

replaced by definitions 6.1 and 6.2 we also obtain that V = g∗δT ⇒ V ∗(f,B) = (T (f)g,B).

7 Conclusion

The K−continuity of a functor T : C → D was presented from two perspectives. One conceive

K−continuity as a particular case of the definition of Ω−continuity when we restrict Ω = {K}, and

the other as developed in the formulation of the Shape theories of Bacon, Cordier and Porter, which

considers the space Func(C ↓ K,D ↓ TK).

In the first perspective, arising from Hofmann development, it is assumed there is defined lim K

and lim TK. The K−continuity of T corresponds to have T lim K ' lim TK, which is estab-

lished through a unique morphism TK : T lim K
D→ lim TK assumed to be invertible (which means

T lim K ' lim TK) and to satisfy TK = TKTKB (which means TK ' TK).

In the second perspective, that is borrowed from Shape theory, there is no requirement on the

existence of the limits of K and TK. Here the K−continuity of T is expressed in terms of functors
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V ∈ Func (C ↓ K,D ↓ TK) and δT : C ↓ K → TC ↓ TK through the relation V = g∗δT with

g∗ being induced by a unique morphism g : D
D→ TC. In theorem 4.12 we have shown that this

K−continuity definition from Shape theory includes the K−continuity definition arising from the

Hofmann development if we take g : limTK
D→ T lim K to be invertible. Then we have shown

that the K−continuity concept defined by BCP is more general than the K−continuity concept that

arises as a particular case of the Ω−continuity for Ω = {K}.
In [B75], [CP08] there is no discussion on the conditions garanteeing the existence of the morphism

g. Here, a clue is given in (24) if we consider χ : D
D→ TC as being the morphism equivalent to g.

In this case, if we can prove that the existence of χ garantees the existence of g then the condition

TK−1v = T (u)χ that determines χ becomes by means of the association g ↔ χ a sufficient condition

for the existence of g. However, we are not sure what restrictions on K and T will ensure the validity

of this condition.
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