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ABSTRACT
A mathematical model for the slit-experiments in the heart of quantum mechanics, is developed to 
gain insight in quantum theory.
The proposed system-theoretical approach of the mathematical model takes a different route 
compared to matrix mechanics in complex vector spaces: it is entirely based on commutative 
mathematics, eg. convolution, integral transformations and starts with spacetime functions with 
inherent energy based cause and effect relations of the statefunction Ѱ in the complex Hilbert 
space.
The benefits of his approach are 1. invariance in time reversal, 2. deterministic result functions in 
the model in line with the outcome of slit-experiments, 3. separation of causality and fi. cross-
correlations of attained states, 4. disappearance of (a posteriori added) probability of quantum 
states and 5. quantum a priori fixed states after causality interactions have ended, (even) when 
quanta are lightyears separated. 
The model predicts the patterns in the experiments with mathematical functions of the energy 
distributions. The quantum mechanical description of physical reality of slit experiments thus may
be considered complete in the sense of [10], and requires the thought experiment of reality still, 
which is not contradictory with the exact results. 

At quantum slit-experiment energy level, the patterns found in double slit experiments actually are
found to be an effect of energy (amplitude-) modulation. An equivalent double-slit pattern can be 
retrieved from an input modulated 1-slit experiment; two distributions in the (k-space) energy 
frequency domain appear mathematically as if produced by two slits, ánd the relation between k0 
and the physical slits is unambiguous. Due to the absence of multiple slits this excludes 
interference interpretations (of particles, waves). In principle it may be possible to experimentally 
verify the effect with a modulated input function of a one-slit experiment.

The system-theoretical method uses well known generic properties of quanta and evolves into 
determinism in quantum mechanics slit experiments, without a direct observation/measurement or 
direct description with variables of the individual quanta at the heart of the state-function Ѱ. 
The mathematics in the system theoretical approach handles beables [9,10] by treatment of 
momentum p in system theoretical I/O relations of the transformed functions and allows the 
proposed description by the avoidance of a direct addressing of the individual quanta through 
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variables. The followed method yields exact, non-probabilistic results. 

INTRODUCTION
Results of quantum slit experiments are usually explained with wave-theory aiming for diffraction 
and interference [e.g. 6] with constructive and destructive interference of waves in analogy with 
waves in fluids and gases. At energy levels in quantum slit-experiments, no direct interference 
between photons has ever been observed or predicted, and when reduced to one photon/electron 
experiments without possible interaction and with in time separated detections, repeated 
experiments also yield the pattern, indicating that interaction of particles does not play a 
significant role. Wave theory leads to interpretations to explain the observed patterns with 
interference, in violation with conservation of quantum energy and experiment practices, while in 
case of a source delivering electrons, similar dark-light distribution patterns are being found, and 
interpretations of particle-wave duality [5] are being put forward.

The purpose of models of nature, and consequently of physics, is to provide insight into what 
happens in reality, i.e. with quanta which although invisible, are as messenger an ubiquitous part 
of our reality and leave tracks, by which we may (indeed) indirectly observe them. 
The result of this study is straightforward and indicates that ‘Herr Gott nicht wuerfelt’ with the 
consequence that determinism is ruling our world. This impacts many interpretions that seemingly
use an inverse way to construct ‘reality’ from a framework of interpreted explanations. 
The process of finding determinism avoids directly tracing/addressing  quanta in mathematical 
treatment by using a system theoretical approach of input-output relations. 
Quanta stay invis-ables on individual basis in the heart of the state function Ѱ, cannot be observed
or measured and can’t individually be traced by virtual/mathematical descriptions directly without 
violation of the Heisenberg relation. This invisibility appears to be the paradox of the found 
determinism, leading to the proposal of a system-theoretical approach using I/O relations instead 
of matrix mechanics and direct variables. The approach excludes all non-commutative operators 
that affect time reversal invariance (or symmetry).

This doesn`t make research in determinism any easier, although quanta actually are being manifest
indirectly. The proposed descriptions in a different virtual reality of mathematics, avoiding 
treatment as observables, may be a glimpse of light at the end of this tunnel.

QUANTUM EXPERIMENTS

1.   The mathematics  
This paper takes a system-theoretical approach of the quantum-mechanical description of the slit 
experiments instead of the usual matrix mechanics.
Why? One of the reasons certainly is that it is not possible to directly address quanta with 
variables and simply start calculating. Many attempts were made, but eg. only one of the 
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properties p or r of a photon/quantum can be known exactly (Heisenberg) while both are required 
in calculations when trying to predict exact behaviour. In general, when the information i.e. 
(minimum required) energy to arrive at exact values is approaching the energy of the particle 
under study, it has to change properties when its energy is significantly changed, usually indicated 
as a ‘collaps’ of the describing function. This is the principal reason to describe behaviour from a 
different domain where one determines the characteristics of the frequencies (of occurrence) of 
energy or quanta per location r, with exact frequencies and amplitudes but without knowledge 
which individual quantum arrives at a certain exact location i.e. mathematically, the quanta are not
‘tagged’ by variables for calculations.
The introduction of the system theoretical approach ‘links’ the causal interactions by input/output 
relations in the domain of the integral transformations of eg. LaPlace, Fourier, Hilbert etc. which 
can be chosen to suit the particular properties of the study (phase-, stability-, intensity-, 
amplitude-, etc.).
Matrix mechanics yields eigenvalues and necessitated introduction of probabilities as ‘a posteriori’
addition (Born) of the mathematical result. Not an exact solution but a very clever breakthrough to
proceed and to advance with the acceptance of the theory at the time. Nonetheless as it seems also 
one of the reasons by which probability became poured in concrete in the theory and 
interpretations became paramount due to lacking mathematical progress.

The complex Hilbert space and the principle of superposition stay fully intact in this proposal for 
all of the states and superpositions attained in the experiment. 
The system approach (developed in the 60’s – 70’s) uses input/output relations starting from linear
spacetime (r, t) functions developed in accordance with the entities of reality (beables) and the 
physical setup of the experiment. 
To calculate the energy distributions, the Fourier transformation is suitable and follows with 
spatial frequency ξ = 1/λ, and wavenumber k = 2πξ.

2. The one slit experiment model
The experiment model consists of a source i as input for the system s (manipulation in the 
experiment), with result g of the output, in which all functions are spacetime-functions: e.g. the 
momentum of a photon is h.ν/c, in which h and value of c are contants. The momentum value is 
constant for certain λ (monochromatic source), and the functions of source and system introduce a 
local causality relation.

In case of separate i(r) and s(r), g(r) may be calculated by the convolution i(r) * s(r)

g(r) = i(r) * s(r) = - ∞∫+∞ i(ρ). s(r-ρ)dρ (1)

The result of the convolution is considered to be the weighted average outcome of the interactive 
effect between i(r) and s(r) over certain (limited) r. The convolution is commutative i.e. i(r) * s(r) 
= s(r) * i(r).
A local causal relation is thus introduced between the functions: g(r) obviously is a direct effect of 

Page 3/12



 The Netherlands -  January 2022  Version 1.06b
 

i(r) and s(r) ; g(r) must be absolutely integrable on the interval -∞ < r < ∞ to apply integral 
transformations. 

Since we know the approximate results of the experiments, focus is on i and s.
In the slit-experiment the system experiment setup is well known and a description of the process 
with the quanta is to be found because of the system interaction (manipulation) i.e. with the 
energy on quantum level in the experiment. Therefore, for the application in quantum mechanics, 
the Fourier transform is suitable also when multiple slits are to be considered. The Fourier 
transformation - abbreviated <=F=>  - is unambiguous in both directions, commutative and 
suitable for our purpose.
The Fourier transformed functions [8, 11] in the k-space frequency domain then are 

g(r), i(r), s(r) <=F=> G(k), I(k), S(k) and

G(k) = I(k) . S(k) (2)

The following step deviates from the usual approach: instead of turning to vector space matrix 
mechanics and linear algebra, systems-theory [11, 12, 14] with its roots in commutative 
mathematics is applied to derive the spatial location-frequency i.e. in the (k, r) space domain to 
arrive at k-space frequency functions in the detection plane.

2.1 System functions in the (k, r) -space
The start is the input i for the system i.e. the source of quanta with a spatial momentum 
distribution that is uniform and all frequencies (m-1) have the same amplitude. This source is 
considered ideal for the experiments, as all spatial locations at a distance r from the source at t = t0 
have the same energy amplitude. 
Because of the patterns found in the experiments, therefore the deviation from the ideal uniform  
distribution of quanta in space may provide a model that describes the actual manipulation in the 
experiment.

The source and the slit manipulate the quanta in momentum p in the interaction and also the 
uncertainty in momentum Δp is reduced to p-components in the direction of the z-axis of the slit. 
When quanta are being captured in the slit, the assumption is made that the energy inside the slit 
remains unchanged i.e. there are no processes that require external energy and the boundaries of 
the slit do not absorb/emit energy in interaction with quanta.

The slit geometry reduces uncertainty Δr in spatial location r, however the Heisenberg relation [2] 
is to remain valid in the experiment with a lower boundary ΔrΔp > h/4π.
The manipulation is in the internal energy states (degrees of freedom) of the photons.

The source is supplying the surface of the slit(s) with a uniform distribution in momentum1 of N 
photons that may be repeated for a continuous input, to arrive at the result in detection (when 

1 Obviously, a non-ideal source would influence as well the frequency slit output (the frequency domain product) and thereby the (2D) graphics 
projected detection result.
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required for clear detection). In principle the model thus is capable to fit a single photon 
experiment when provided by such a source repeatedly.
The energy distribution of an ideal source in terms of momentum is the normalised uniform 
distribution of quanta on the sphere around the point source. For quanta (photons) this represents 
the amount of quanta at a certain frequency i.e. the energy amplitude at the particular location. 
The uniform distribution Dp(k) determines the distribution of amplitudes of energy at the spatial 
frequencies and is by definition the Fourier transformed complex function of the ideal impuls 
function of momentum in the r-domain

Dp(k) < =F= > δp(r) . (3)

Actually δp(r) is the generalised equivalent of a Dirac pulse of the momentum function p(r) with 
availability of all (!) momenta at t = t0  and represents the ideal source2. In practice, this is quite 
demanding for a source, however repeating the pulse until all momenta are present is acceptable as
the patterns may be built in time.
During the formation of the quantum pulse inside the slit, at the input of the slit ideally all spatial 
angles of the momentum vectors are captured with identical amplitude of all frequencies in the slit
surface. 
For a normalised amplitude, Dp(k) = 1 in the k-space domain i.e. all frequencies have the same 
normalized value ‘1’ and in principle the entire spectrum of frequencies is covered in Dp(k). The 
detection is a summation of all quanta in time in the frequencies, therefore the phase  behaviour of
quanta in the process (i.e. source and manipulation) does not play a significant role. 
Typical for the point source is the decreasing density of the radiation as a function of r in free 
space. In contrast, in the confinement of the slit, the energy inside the slit (i.e. in each ‘pulse’ 
filling the slit) does not change, until the quanta start emanating from the slit. The values of 
momentum of the quanta do not change as internal energy state values are conserved.
To find the ideal system function δp(r) of the momentum function p(r), the system-theoretical 
approach is followed with the convolution property2 

δp(r) * p(r) = p(r) (4)

and the requirement that Dp(k) = 1.

The function normalising the momentum function p(r) is introduced as pn( r) with Fourier 
transform Pn(k).  Pn(k) is the inverse Fourier transform function of P(k) to arrive at the uniform 
distribution Dp(k)3 :

δp(r) = p(r) * pn(r) with  < =F= >  Dp(k) = P(k) . Pn(k) = 1, => or 

Pn(k) = 1/P(k) (5)

2 In systems theory, the measured result r of the system s(r) with input δp(r) actually is s(r):  δp(r)*s(r) = s(r). The description is by I/O relations.
3
      It is not directly needed in this modelling to derive the function pn( r), only the Fourier transform 1/P(k) is required.
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δp(r) represents the ideal momentum pulse: all quanta having momentum with components in the 
positive z-axis direction that are captured by the slit opening are present, propagate and start 
building the pulse.

In practice, 1. the source s, 2. distance ds of the source to the slit , and 3. geometry of the slit, 
influence the result function g(r) to a large extent in the sense that the frequency content of g(r) is 
facing three low-pass momentum filters, shaping G(k) into mainly low frequency content around 
r = 0.

The photon energy is E = h ν = h c/λ of photons arriving at the surface O until the slit is filled with
N quanta. When slit length is l, and the time t = l/c for the first components to emanate, the total 
energy Ep of each pulse inside the slit becomes

Ep = N.h.l/λ (J)  (6 )

After the pulse leaves the slit, the process may be repeated to capture all of the momenta of the 
source until the source momentum distribution consists of all frequencies and the re-distribution is
clearly observable at detection. 

The model of the slit filled with quanta follows as a rectangular function s(r) of passing the 
emanating pulse through the slit output surface O , i.e. as the rectangular s(r) function of the pulse 
Π (r, t=l/c), building the pulse in surface layers of emanating quanta with their unique momentum 
created by the slit interaction. 

Each pulse of constant energy emanating from the slit can be described by a convolution of the 
Dirac momentum pulse δp( r) and s(r), because i(r) * s( r) yield the result function g( r); 

with i(r) = δp( r),  then g( r) = δp( r) * s( r)  with transformed function < =F= >

 G(k) = Dp(k).S(k) = 1 .S(k) = S(k) (7)

with S(k) < =F= > s( r) 

The transformed result of g( r) <=F=> G(k) = S(k) is the frequency distribution function of the 
energy in case of the ideal source. 
With the Fourier transform of a rectangular spatial pulse of quanta s(r), G(k) then is a sinc (k.r) 
with amplitude N.h.l/λ, and

G(k) = (N.h.l/λ). (sinc k.r) = (N.h.l/λ). (sin k.r)/k.r (8)

with Planck’s constant h, slitlength l, wavenumber k = 2πξ ,  ξ = 1/λ and λ the wavelength of the 
used source.

The result (8) shows that a generic 1 slit experiment model yields sinc (k.r) function type patterns 
at detection in the (x,y | z=0) plane, which in the experiment directly depend on 
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1. the momentum distribution and wavelength of the source and 
2. the actual geometry used in the experiment: slit length l, slit in- and output surface O (capture, 
confinement) and source distance ds

4 .

2.2. Experiment & practical system functions
The source at distance ds from the slit supplies it with quanta covering all spatial angles with a 
momentum component in the positive direction of the z-axis, all other quanta are blocked i.e. the 
slit acts effectively as a momentum filter for the quanta. With ds = 0, and the source in the centre of
the input surface of the slit, all quanta with a momentum component in the positive z- direction are
present and the frequencies/locations are symmetric in x and y. A uniform distribution at slit 
entrance is possible however depends on the used source’s capability to emit all momenta and 
therefore in practice acts as a momentum filter as well.

Although the model is based upon an ideal source containing all momenta within +/- 90 degrees 
spatially with the positive z-axis, the distance of the source has a huge impact. The angle captured 
by the slit is governed by sin φm/2, where +arctan φm/2 is the angle caused by slit geometry and ds.
The angle φm is highly depending on the source distance ds and geometry of the slit, and thus 
increasing ds acts as an additional momentum filter by restricting φm in the higher values and 
therefore functions as a potential low-pass  filter. The pulse then is built of momenta with a 

maximum in sin φm and thus substantially shapes the result function g(r) by restricting the 
frequency content in G(k), thereby creating a narrowed sinc shape around r = (x,y =0 | z=0). This 
may be modelled in i(r) by taking instead of the Dirac generalised δp( r) function, a rectangular 
filter function that restricts the higher frequency location components of the source.

The source, distance to the slit  and slit-geometry therefore influence the pattern directly by 
sensitivity for higher momentum frequencies: when the momentum distribution is far off the ideal 
situation, creating little interaction with the boundaries inside the slit, a less broad pulse of small 
divergence and less frequency content emanates and vice versa, an ideal source δp( r) creates 
maximum interaction inside the slit and shows a broad diverging pulse of much higher frequency 
content.

3. Double-slit experiment
The result for two slits follows the one slit result. For this extension, one considers the one-slit 
result with an additional distribution of energy in the k-spatial frequency domain: the detection 
plane (x,y | z=0) of the experiments is a graphical representation of the quanta per location r i.e. an
amplitude.  The transformed function in the frequency domain represents the amplitude of energy 
in y of the frequencies locations in x, the spatial locations.
The double slit manipulation consists of addition of a identical second slit with therefore an 
identical distribution of quanta with shift in x. With the origin O in the middle between the slits, 
then 

4 Not integrated in the model as the purpose of the paper is to show (exact) predictability of the found patterns.
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+ xslit = n.λ = 2π/k0 on the x-axis, which is represented by a frequency shift in the Fourier 
transform G(k) of g(r) and the two distributions are

G(k + k0) = G(k + 2π/xslit) and  G(k – k0) = G(k - 2π/xslit) . (9)

With spatial frequency ξ = 1/λ, wavenumber k = 2πξ = 2π/λ  and k0 = 2π/ xslit .

Two slits thus produce 2 distributions G(k - k0) and G(k + k0), that seem to show a pattern with 
‘interference’. At levels of energy in the experiment, photon interference however has never been 
reported or theoretically predicted.

Two shifted distributions can be explained more clearly by calculating a modulated g(r) for one 
slit by the product 

g(r) . cos k0.r  = m(r) (10)

with the Fourier transform M(k), resulting in the shifts in the k space domain by convolution:

 m(r) <=F=>  M(k) =  ½ G(k + k0) + ½ G(k - ko) (12)

which shows the 2 distributions due to modulation of the 1 slit g(r) in the amplitude of the 
frequencies. 
The product in (10) yields in the k-domain the convolution G(k)* F<cos k0.r>. For a limited r (i.e. 
possibly large but not unlimited, to be integrable  -∞ < r < ∞ ), f(r) = Π(r / δ).cos k0.r and one finds
the addition of the two (limited by Π(r / δ) filter function) expected sinc functions in the frequency
k – domain.
The k0 relation in the 2 distributions of M(k) is unambiguously related to the modulation cos k0.r ; 
the two slit identical result and an identical k0 relation between slits, therefore is related 
unambiguously to the modulating function cosk0r as well, obviously with double energy amplitude
because of two slits:

from (9) and (12) one finds G(k) = G(k + k0) + G(k – k0) = 2.M(k) (13)

The foregoing is known in Fourier transformation theory as the modulation theorem, in which the 
modulated g(r) may be considered an envelope function with k0 the wavenumber of the carrier 
frequency k5.
From this theorem, one may conclude that one slit with modulated g(r) i.e. m(r), yields 2  k0 
shifted distributions, showing an identical re-distribution of quanta by the modulation effect as a 
two-slit experiment, creating an identical pattern, however by the absence of a second slit without 
possibility of interference.
This rules out interference caused by a separated physical second slit, and consequently this 
renders interpretations of a quantum partially being in two states at the same time [1] (by splitting 

5 From the (k, r) domain, by substitution into the (ω, t) pair domain for ω,t >0 (of information transmission and signal theory), likewise this 
property of the Fourier transformation has firm roots in radio technology deployments in which frequency sideband, envelope function and 
carrier wave frequency f0 = ω0 /2π have (had) a prominent role in communication and broadcasting.
The sideband contains all transformed information (obviously the main reason for radio transmission), which information may fully (or 
partially) be recovered by de-modulation. Thus the input information contained in the frequency domain is preserved to re-build the time 
functions (directly in e.g. broadcast, reception, de-modulation) but also any time when the data is conserved for this purpose.
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up energy or other interpretations) and entering two slits leading to some kind of interference, 
unlikely.

The modulation effect paves the way for explanation of the experiment when performed with mass
particles e.g. electrons and single particles with randomized momentum in repeated experiments, 
that are modulated equally into a pattern by manipulation of their momentum inside the slit and 
thus by yielding identical patterns in the final distribution when emanating, without (any) 
reverting to wave properties of mass particles and interference in general.
The model is suitable for single particle experiments with many repetitions, all other things equal 
including sources that emit (ideally) a randomized but full spectrum in momentum of the single 
particles.

In the practice of the photon experiments, due to slits of say 0.1 mm distance apart (different in 
experiments depending on used wavelengths) then k0=0.05 mm, thus two distributions are present 
in reality with a tiny x-shift between distributions; due to this small value between slits, these are 
projected seemingly as one distribution with identical shape at the detection plane.

At detection of the resulting function, information in the frequency domain (sinc kr and k0)  can be
preserved and may be used to reconstruct the momentum function g(r) as all mathematical 
operators (c.q. operations) are commutative; this means that the causality relations are invariant 
for time reversal [7].

The preservation of information in the modulation operation becomes more obvious in the (ω, t) 
pair frequency domain5 of information transmission where all types of modulation including 
amplitude modulation as is the case here, are well known and widely deployed for the purpose of 
recovering the information e.g. of a radio broadcast locally elswhere. This example shows as well 
that causality not necessarily is ‘local’ and may exist anywhere in space-time.

Note that the arrow of time cannot be reversed in case of de- or con-structive interference, as 
information is lost and cannot be retrieved. This is as well the case in attemps where correlations 
exist between results of calculations or experiments, as the correlation operations are not 

commutative (Φ12 ≠ Φ21) . This in principle separates (Bell, 1964) correlation functions as well as 
cross vector products of matrix multiplications in vector spaces from causality eg. for invariance 
of time reversal in this system theoretical approach. A cross correlation  operation is a ‘one way 
street’ by definition and is separated from causality even despite a statistical relation in datasets6 
anywhere in spacetime. 

This result shows that the quanta in the frequencies of the re-distribution of energy as detected in 
double-slit experiments, therefore become manifest because of an amplitude modulation  effect in 
the k-space frequencies, which is fundamentally different from interference7. 
This result is useful to abandon  - on these quantum experiments energy level - wave 

6 The existence of statistical relations is not excluded nor denied; the consequence mathematically is merely that from the ‘result’ function no 
reconstruction of the ‘cause’ function is possible as the original mathematical causality relation is reserved for commutative operators only.

7 Hence author’s preference for state-function instead of wave-function.
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interpretations with interference and consequently, further interpretations thereof. Wave-particle 
dualism [5] and related interpretations8 [6]) need not to be assumed nor are required to explain 
quantum slit experiments. 

INTERPRETATION

A thought experiment of reality
In entering the slit a pulse of constant energy is created by the captured quanta i.e. the energy of 
the pulse does not change during the confinement in space, in contrast with the momentum 
functions which are heavily affected inside the slit. The interaction of the quanta with the slit is in 
internal energy (therefore re-active9 or inter-re-active and requires time) and causes the re-
distribution in momentum by creating a myriad of trajectories in the slit with equally different 
phases until finally emanating from the slit. When emanating layers of quanta of the pulse, the 
layers thus contain sets of quanta with a momentum distribution that differs in each layer, i.e. the 
sets of momentum in the layers are unique in composition due to inter-re-action of the quanta with
the boundaries of the confinement: quanta with the largest momentum components in z-direction 
emanate first, the ones with the smallest components and most inter-re-action with the slit last, 
indicating that the phase of the emanating quanta does not play a significant role in the 
redistribution for pattern detection.

As result, the momentum distribution is re-arranged during the entire propagation of the pulse in 
the slit, until the layers reach the free space and momenta are ‘frozen’. During propagation, the 
momentum vectors of quanta are in transition of their internal energy state (almost continuously, 
depending on momentum distribution) i.e. are in a new superposition after each inter-re-action 
with the slit, and attained states are deterministic however not observable, while their vector 
values of energy h.ν stay preserved. The latter strongly indicates that observation/measurement  
will destroy quanta and convert their energy to results in eigenvalues with consequences both in 
virtual treatment mathematically (i.e. by ‘collapse’ of a state-function) and in reality by a full 
transition of energy when being observed/detected 10.

8 The result indicates that the de Broglie duality relation e.g. [5] in principle explains the energy equivalence formula, relating different 
properties of photon field-energy and matter energy of mass particles.

9 Inter-re-active and re-active is in the sense of local and temporal exchange of internal energy / ‘degrees of freedom’. 
10 This provides support to change the way of mathematical treatment for quantum processes and gives ground to failing descriptions with e.g. 

hidden variables. When quanta are associated with variables, calculations and mathematical operators require e.g. momentum p and location r 
+ related variables as exact values, thereby violating the Heisenberg relation. This leads to results in eigenvalues with passed on probability as 
encountered in the probability result functions from vector space matrix mechanics. For exact results, the quanta cannot be addressed 
individually nor be subjected to operators as for observables, and one has to rely on indirect descriptions.
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CONCLUSIONS

This paper started by embedding cause and effect relations in the system model and continued 
with the introduction of system-theory, based upon commutative mathematics allowing 
reversibility in time, to derive the ideal system response in terms of k-space energy distribution. 
The practice of the experiments is treated by inclusion of the (low-pass) restrictions in the 
frequency content of the resulting functions (10).
It demonstrates that quantum slit experiments are deterministic in the resulting (and 
experimentally found) functions of patterns when accepting the deviation of the usual matrix 
mechanics in the vector space by the system-theoretical approach in commutative mathematics, 
including the in-/output relations and the modulation effect. This approach excludes interference 
and correlations in the description or treatment as they cannot support time reversal invariance.

The exact results may seem ‘ímpossible’ as one cannot observe the indiviual quanta exactly in the 
heart of the statefunction Ѱ without destroying their state, and therefore remain ‘hidden’ from 
observation in reality’s classical sense and as well in the virtual reality of mathematics. This led 
the author to the system theoretical approach11 in the transformed domain instead of complex 
vector space mechanics following Schrödinger’s approach; it is emphasized that the system is 
described with input-output relations based on commutative convolution & transformation 
(solely12) and in principle may not be unique for the described subject by system theory (i.e. 
physics, experiment). The latter however is often the case e.g. in equivalent behaviour and 
description of eg. mechanical and electrical systems (apart from the variables) with identical 
transformed system functions.

The functions in the results seem to rule out any form of quantum state probability in the quantum 
experiments, whereas all quantum state complex energy-vectors in the experiments are part of the 
Hilbert space and the state function Ѱ has no restrictions in evolving into any and all of the states. 
This includes all possible linear combinations of state superpositions required to represent the 
quantum experiment (or any other manipulation or operation with quanta) - the result stays 
deterministic by applying mathematics in an indirect system approach thus excluding the direct 
description of individual quanta using exact values of any variables eg. related to r and p at the 
same time. This appears to support the expectation that all state functions Ѱn in the complex 
orthonormal Hilbert space can have a deterministic result: with the consequence that exact 
solutions actually exist for all Ѱn.

The determinism found in the model has substantial impact on current views and interpretations 
when extrapolation of the result in quantum mechanics can be verified into further aspects of the 
theory: from mathematical treatment to quantum computing (e.g. qubits) in subjects related to 
probability and interference.
When this verification can be established, probability including interpretations of quanta being 
“partly in each of two or more states” [1] apparently then disappear from stage, whereas the 

11 Also named ‘black-box’  [11, 14]
12 Excluding the correlation function (-operator), being not commutative. 
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principle of quantum superposition of states in a complex Hilbert space holds, be it with the 
restriction of application of cross -vector and -correlation operators.

To date, mathematics including use of hidden variables and complex state-vector space matrix  
mechanics of linear algebra, are attempts requiring a direct description of quanta (and quantum-
processes) leading to eigenvalues that do not exactly describe the actual states apparently due to a 
direct violation of the Heisenberg relation or implicit use of cross- operators. At the same time the 
introduced probability interpretation (Born) has been a blessing in proceeding with the heavily 
attacked [10] theory, rendering it one of the most successful theories in physics.

The proposed method gives an indirect description leading to exact results of what one actually 
expects physics to describe in almost a classical way; the difference is that it does not attempt to 
trace individual quanta or to reveal individual quantum behaviour in the heart of the state function 
(for which one must rely on the thought experiment13) due to the transformations into the different 
domain. We cannot calculate directly with or acquire information on the exact (p, r) of individual 
quanta, as W. Heisenberg already predicted.

13 A.Einstein would have liked this.
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