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Abstract

Starting with a brief review of our prior construction of n-ary algebras,
based on the relation among the n-ary commutators of noncommuting
spacetime coordinates [X1, X2, ......, Xn] with the polyvector valued coor-
dinates X123...n in noncommutative Clifford spaces, [X1, X2, ......, Xn] =
n! X123...n, we proceed to construct generalized brane actions in noncom-
mutative matrix coordinates backgrounds in Clifford-spaces (C-spaces).
An instrumental role is played by the Clifford-valued field Φ(σA) = ΦM (σA)ΓM

which allows to construct a matrix realization of the n-ary algebra of the
form XM ≡ Φ−1(σA)ΓMΦ(σA), and that is given in terms of the world
manifold’s σA polyvector-valued coordinates of the generalized brane, and
which by construction, satisfy the n-ary algebra. One then learns that is
the presence of matter which endows the spacetime points with a noncom-
mutative algebraic structure. We finalize with an extension of coherent
states in C-spaces and provide a preliminary study of strings in target
C-space backgrounds.

Keywords : Strings; Branes; Clifford algebras; n-ary algebras; Noncommu-
tative Geometry.

1 Introduction : Noncommutative Clifford Space
Coordinates and n-ary Algebras

After decades of string theory research its physical foundation is still unknown
and the question what is string theory remains unanswered. General relativity
is based on the principle of equivalence and general coordinate covariance. It
is desirable to decipher the principle governing string theory. We have learned
that string theory not only involves one-dimensional extended objects but higher
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dimensional ones, p and D-branes. Furthemore, the quantization of membranes
and higher dimensional extended objects has been extremely difficult due to
the intrinsic nonlinearity. The aim of this work is an attempt to bridge these
conceptual obstacles by introducing Clifford spaces (C-spaces) [1].

Clifford algebras are deeply related and essential tools in many aspects in
Physics. The Extended Relativity theory in Clifford-spaces ( C-spaces ) is a nat-
ural extension of the ordinary Relativity theory [1] whose generalized polyvector-
valued coordinates are Clifford-valued quantities which incorporate lines, areas,
volumes, hyper-volumes.... degrees of freedom associated with the collective
particle, string, membrane, p-brane,... dynamics of p-loops (closed p-branes)
in D-dimensional target spacetime backgrounds. Namely, C-space Relativity
permits to study the dynamics of all (closed) p-branes, for different values of p,
on a unified footing [1].

Given X = XMΓM , a Clifford-valued coordinate associated to Clifford space
(C-space), it admits the following expansion in terms of the Clifford algebra
generators in D-dimensions : 1, γµ, γµ1 ∧ γµ2 , · · · , γµ1 ∧ γµ2 ∧ · · · ∧ γµD

X = s 1 + xµ γ
µ + xµ1µ2

γµ1 ∧ γµ2 + xµ1µ2µ3
γµ1 ∧ γµ2 ∧ γµ3 + ...... +

xµ1µ2µ3......µD
γµ1 ∧ γµ2 ∧ γµ3 ....... ∧ γµD (1.1)

The numerical combinatorial factors can be omitted by imposing the ordering
prescription µ1 < µ2 < µ3 · · · < µD. In order to match physical units in
each term of (1.1) a length scale parameter must be suitably introduced in the
expansion in eq-(1.1). In [1] we introduced the Planck scale as the expansion
parameter in (1.1), and which was set to unity, when one adopts the units
h̄ = c = G = 1.

The commuting scalar, vectorial, antisymmetric coordinates s, xµ, xµ1µ2
=

−xµ2µ1
, · · · , xµ1µ2···µD

are the scalar, vector, bivector, trivector, · · · components
of the polyvector-valued coordinates in C-space. A noncommutative extension
of these polyvector-valued coordinates was developed in [3]. In this introduction,
we briefly review such construction to prepare the groundwork for the study of
branes in noncommutative flat target C-space backgrounds.

We begin firstly by writing the commutators [ΓA,ΓB ]. For pq = odd one has
[2]

[ γb1b2.....bp , γ
a1a2......aq ] = 2γ

a1a2......aq

b1b2.....bp
−

2p!q!

2!(p− 2)!(q − 2)!
δ
[a1a2

[b1b2
γ
a3....aq ]

b3.....bp]
+

2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4

[b1....b4
γ
a5....aq ]

b5.....bp]
− ......

(1.2)
for pq = even one has

[ γb1b2.....bp , γ
a1a2......aq ] = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1

[b1
γ
a2a3....aq ]

b2b3.....bp]
−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[a1....a3

[b1....b3
γ
a4....aq ]

b4.....bp]
+ ...... (1.3)
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The anti-commutators for pq = even are

{ γb1b2.....bp , γa1a2......aq } = 2γ
a1a2......aq

b1b2.....bp
−

2p!q!

2!(p− 2)!(q − 2)!
δ
[a1a2

[b1b2
γ
a3....aq ]

b3.....bp]
+

2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4

[b1....b4
γ
a5....aq ]

b5.....bp]
− ......

(1.4)
and the anti-commutators for pq = odd are

{ γb1b2.....bp , γa1a2......aq } = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1

[b1
γ
a2a3....aq ]

b2b3.....bp]
−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[a1....a3

[b1....b3
γ
a4....aq ]

b4.....bp]
+ ...... (1.5)

The second step is to write down the noncommutative algebra associated
with the noncommuting polyvector-valued coordinates in D = 4 and which can
be obtained from the Clifford algebra by performing the following replacements
(and relabeling indices)

γµ ↔ Xµ, γµ1µ2 ↔ Xµ1µ2 , ........ γµ1µ2.....µn ↔ Xµ1µ2....µn . (1.6)

When the spacetime metric components gµν are constant, from the replacements
(1.6), and using the Clifford algebraic relations (1.2-1.5) (after one relabels in-
dices), one can then construct the following noncommutative algebra among
the polyvector-valued coordinates in D = 4, and obeying the Jacobi identities,
given by the relations

[ Xµ1 , Xµ2 ] = Xµ1 Xµ2 − Xµ2 Xµ1 = 2 Xµ1µ2 . (1.7)

As mentioned above, in most of the remaining commutators a suitable length
scale parameter must be introduced in order to match units. We shall set this
length scale (let us say the Planck scale) to unity. Secondly, by choosing the
C-space coordinates to behave like anti-Hermitian operators we avoid the need
to introduce i factors in the right hand side of (1.7), since the commutator of
two anti-Hermitian operators is anti-Hermitian.

The other commutators are

[ Xµ1µ2 , Xν ] = 4 ( gµ2ν Xµ1 − gµ1ν Xµ2 ) . (1.8)

[ Xµ1µ2µ3 , Xν ] = 2 Xµ1µ2µ3ν , [ Xµ1µ2µ3µ4 , Xν ] = −8 gµ1ν Xµ2µ3µ4 ±......
(1.9)

[ Xµ1µ2 , Xν1ν2 ] = − 8 gµ1ν1 Xµ2ν2 + 8 gµ1ν2 Xµ2ν1 +

8 gµ2ν1 Xµ1ν2 − 8 gµ2ν2 Xµ1ν1 . (1.10)
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[ Xµ1µ2µ3 , Xν1ν2 ] = 12 gµ1ν1 Xµ2µ3ν2 ± ......... (1.11)

[ Xµ1µ2µ3 , Xν1ν2ν3 ] = − 36 Gµ1µ2 ν1ν2 Xµ3ν3 ± ...... (1.12)

[ Xµ1µ2µ3µ4 , Xν1ν2 ] = − 16 gµ1ν1 Xµ2µ3µ4ν2 ± ...... (1.13)

[ Xµ1µ2µ3µ4 , Xν1ν2 ] = − 16 gµ1ν1 Xµ2µ3µ4ν2 + 16 gµ1ν2 Xµ2µ3µ4ν1 − .........
(1.14)

[Xµ1µ2µ3µ4 , Xν1ν2ν3 ] = 48 Gµ1µ2µ3 ν1ν2ν3 Xµ4 − 48 Gµ1µ2µ4 ν1ν2ν3 Xµ3 + .....
(1.15)

[ Xµ1µ2µ3µ4 , Xν1ν2ν3ν4 ] = 192 Gµ1µ2µ3 ν1ν2ν3 Xµ4ν4 − .......... (1.16)

where

Gµ1µ2......µn ν1ν2......νn = gµ1ν1 gµ2ν2 ....... gµnνn + signed permutations
(1.17a)

etc......The metric componentsGµ1µ2......µn ν1ν2......νn in C-space can also be writ-
ten as a determinant of the n× n matrix G whose entries are gµIνJ

det Gn×n =
1

n!
ϵi1i2.....in ϵj1j2....jn g

µi1νj1 gµi2νj2 ....... gµinνjn . (1.17b)

i1, i2, ....., in ⊂ I = 1, 2, ....., D and j1, j2, ....., jn ⊂ J = 1, 2, ....., D. One must
also include in the C-space metric GMN the (Clifford) scalar-scalar component
G00 (that could be related to the dilaton field) and the pseudo-scalar/pseudo-
scalar componentGµ1µ2.....µD ν1ν2......νD (that could be related to the axion field).

One must emphasize that when the spacetime metric components gµν are
no longer constant, the noncommutative algebra among the polyvector-valued
coordinates in D = 4, does not longer obey the Jacobi identities. For this reason
we restrict our construction to a flat spacetime background gµν = ηµν .

N -ary algebras have been known for some time [8] since Nambu introduced
his bracket (a Jacobian) in the study of branes and the generalizations of Hamil-
tonian mechanics based on Poisson brackets. In this section we shall show how
polyvector valued coordinates admit a very natural interpretation in terms of
n−ary commutators of vector-valued coordinates.

The ternary commutator for noncommuting coordinates is defined as

[X1, X2, X3] = X1 [X2, X3] + X2 [X3, X1] + X3 [X1, X2] =

1

2
{ X1, [X2, X3] } +

1

2
[ X1, [X2, X3] ] + cyclic permutations (1.18)
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Due to the Jacobi identities, the terms

1

2
[ X1, [X2, X3] ] + cyclic permutations = 0. (1.19)

so that the ternary commutators become

[X1, X2, X3] =
1

2
{ X1, [X2, X3] } + cyclic permutations. (1.20)

After using the relations

[X2, X3] = 2 X23, { X1, X23 } = 2 X123. (1.21)

one gets finally

[X1, X2, X3] = 2 X123 + cyclic permutations = 6 X123. (1.22)

since X123 = X231 = X312 = −X132 = ......
After using the above noncommutative algebraic relations, after some labo-

rious but straightforward algebra, one arrives by recursion at the most general
n-ary commutator given by

[ X1, X2, ......., Xn ] = n! X123.....n. (1.23)

for all n = 2, 3, · · · , D [3].
The immediate consequence of the n-ary algebra of the noncommutative

polyvector-valued coordinates, associated with a quantum extension of the clas-
sical C-space, is that one must extend the usual formulation of Quantum Me-
chanics involving ordinary commutators of operators to one requiring n-ary
commutators. In other words, quantizing the classical Nambu-Poisson mechan-
ics [8]. The findings of this introductory section will allow to construct gener-
alized p-brane actions in noncommutative matrix coordinates backgrounds in
Clifford-spaces (C-spaces) in section 2. We then proceed with an analysis of the
deformation quantization of p-branes in C-spaces. And in section 3 we describe
an extension of coherent states in C-spaces, and provide a study of strings in
target C-space backgrounds. We conclude with some final remarks.

2 Generalized Branes in Noncommutative C-spaces

2.1 Matrix Coordinates in C-space

Given a fermionic field Ψ = Ψ(xµ), one could interpret the informal “inverse”
operation xµ = xµ(Ψ), relating xµ to the value of the fermionic field at that
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point, from the correspondence given by xµ ↔ Ψ̄γµΨ. Based on this correspon-
dence we shall define the following matrices

X,Xµ,Xµ1µ2 , · · · ,Xµ1µ2···µn (2.1)

that have a one-to-one correspondence with the polyvector-valued coordinates
x, xµ, xµ1µ2 , · · · , xµ1µ2···µn , in terms of Φ, as follows

Xµ = Φ−1 γµ Φ, Xµ1µ2 = Φ−1 γµ1µ2 Φ

Xµ1µ2µ3 = Φ−1 γµ1µ2µ3 Φ, · · · Xµ1µ2···µD = Φ−1 γµ1µ2···µD Φ (2.2)

where Φ = Φ(x, xµ, xµ1µ2 , · · · , xµ1µ2···µD ) is a Clifford-valued auxiliary field

Φ ≡ ΦMΓM = ϕ + ϕµγµ +
1

2!
ϕµνγµν + · · · +

1

D!
ϕµ1µ2···µDγµ1µ2···µD

(2.3)

living in the flat C-space associated to the Clifford algebra in D-dim.1 In
D = 4, the Clifford algebra is 24 = 16 dimensional and Φ can be represented in
terms of the entries of a 4 × 4 matrix. Φ−1 is the inverse 4 × 4 matrix-valued
field (assuming det(Φ) ̸= 0) and such that all the matrix coordinates displayed
in eq-(2.2) obey the previous n-ary commutation relations found in section 1
due to the ΦΦ−1 = Φ−1Φ = 1 condition. In D-dim the Clifford-valued field Φ
is represented by a 2[

D
2 ] × 2[

D
2 ] matrix where [D2 ] is the integer part of D

2 . We
shall take D even for simplicity.

Therefore, the construction of the matrices in eqs-(2.2) in terms of the aux-
iliary field Φ will automatically obey the n-ary commutators

[ Xµ, Xν ] ∼ Xµν , [ Xµ1 , Xµ2 , Xµ3 ] ∼ Xµ1µ2µ3

[ Xµ1 , Xµ2 , ......., Xµn ] ∼ Xµ1µ2···µn (2.4)

Hence, one has constructed an explicit matrix realization in (2.2) of the n-ary
commutation relations in terms of Φ = ΦMΓM .

For example, if the Φ = ΦM (x, xµ, xµ1µ2 , · · ·)ΓM Clifford-valued field is de-
signed to obey a generalized version of the massless Klein-Gordon equation

∂N∂
N (ΦMΓM ) = 0; ∂N = {∂x, ∂xµ , ∂xµ1µ2 , · · ·} (2.5)

then any solution of eq-(2.5) will provide an explicit construction (realization)
of the family of matrices in eqs-(2.2) obeying the n-ary algebra, and which are
given in terms of Φ = ΦMΓM . Each one of the components ΦM are functions
of the polyvector-valued variables x, xµ, xµ1µ2 , · · · , xµ1µ2···µD .

If one constrains the solutions of (2.5) to obey ∂N∂
N (ΦM ) = 0, for all

values of the polyvector-valued index M ranging from 1 all the way to 2D

(the dimension of the Clifford algebra in D-dim), one will have 2D uncoupled
equations for the ΦM components. Whereas if one has one single equation of

1In eq-(2.3) we introduced the combinatorial numerical factors
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the form displayed by eq-(2.5) one will have an equation which will couple all
of the ΦM components.

In a nut-shell, the central idea that can inferred from eq-(2.2) is that the
noncommutativity of the polyvector matrix coordinates stems from postulating
the existence of a Clifford-valued field Φ = Φ(x, xµ, xµ1µ2 , · · · , xµ1µ2···µD ) in C-
space; i.e. it is the presence of matter which endows the spacetime points with
a noncommutative algebraic structure.

In string theory, the target spacetime coordinatesXµ(σ, τ), µ = 0, 1, 2, · · · , D−
1 are the components of spacetime vectors, but they areD scalar fieldsX0(σ, τ),
X1(σ, τ), · · · , XD−1(σ, τ) from the two-dim worldsheet point of view. Thus one
has a spacetime coordinate/world sheet scalar field correspondence. In a similar
fashion, one has in eq-(2.2) a matrix coordinate/field correspondence given by
X = XMΓM = (Φ−1ΓMΦ)ΓM .

Instead of imposing the generalized Klein-Gordon equation for Φ another
route one can take is in the study of p-branes moving in Noncommutative target
C-space backgrounds. A p-brane action associated with the commutative em-
bedding functions Xµ(σa), a = 1, 2, · · · , p+1, from the p+1-dim world-manifold
into a target background can be generalized to C-spaces [4] by embedding a Clif-
ford world-manifold of dimension 2d into a target Clifford space of dimension
2D with d ≤ D via means of the commutative embedding polyvector-valued
functions

XM (σA) = X(σ, σa, σa1a2 , · · · , σa1a2···ad), Xµ(σ, σa, σa1a2 , · · · , σa1a2···ad),

Xµ1µ2(σ, σa, σa1a2 , · · · , σa1a2···ad), Xµ1µ2µ3(σ, σa, σa1a2 , · · · , σa1a2···ad), · · ·

Xµ1µ2···µD (σ, σa, σa1a2 , · · · , σa1a2···ad) (2.6)

The C-space version of a p-brane action is [1]

S = − T

2

∫
dσdσadσa1a2 · · · dσa1a2···ad

√
|H|

(
HAB ∂AX

M ∂BX
N GMN − (2d − 2)

)
(2.7)

with ∂A = ∂σA = ∂σ, ∂σa , ∂σa1a2 , · · · , ∂σa1a2···ad , and H = det(HAB) is the
determinant of the 2d×2d auxiliary metric HAB on the Clifford world-manifold
of dimension 2d. The components of such metric have a similar form to the
metric in eqs-(1.17), and such that its determinant is given in terms of the sums
of antisymmetrized products of block determinants. For example, if one has a
2 × 2 block matrix comprised of entries A,B,C,D the determinant would be
det(A) det(D)−det(B) det(C). GMN is the 2D×2D metric on the target Clifford
space background of dimension 2D ≥ 2d. To simplify matters we shall work on
a flat C-space background. T is the tension of the generalized brane in Clifford
space and whose units must be such to render the action (2.7) dimensionless.

One can proceed next to construct the noncommutative C-space general-
ization of the above action (2.7) by promoting the C-space commuting polyvec-
tor coordinates XM (σA) to matrix-valued noncommuting polyvector coordi-
nates (denoted by a bold face font) XM (σA),M = 1, 2, · · · , 2D, and defined by
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XM (σA) = Φ−1(σA)ΓMΦ(σA), with ΓM = 1, γµ, γµ1γ2 , · · · , γµ1µ2···µD . All the
derivatives of the matrices XM (σA) with respect to σA can be written in terms
of the derivatives with respect to the Clifford-valued field Φ(σA) ≡ ΦN (σA)ΓN ,
as follows

∂AX
M = − 1

2
(Φ−2 ∂AΦ + ∂AΦ Φ−2) ΓM Φ + Φ−1 ΓM ∂AΦ (2.8)

where one has taken into consideration the ordering due to the noncommutative
nature of the matrix representation of the Clifford-valued field Φ.

For example, in a D target spacetime background, one has a total num-
ber of 2D field components in the definition of Φ(σA) = ΦN (σA)ΓN given
by ϕ, ϕµ, ϕµ1µ2 , ϕµ1µ2µ3 , · · · , ϕµ1µ2···µD , and where all of the latter field com-
ponents are themselves functions of the 2d polyvector-valued coordinates σA

associated with the Clifford world-manifold of the generalized brane of dimen-
sion 2d ≤ 2D ⇒ σA = σ, σa, σa1a2 , σa1a2a3 , · · · , σa1a2···ad .

The action in a flat C-space background involving the matrices XM is given
by

S = − T

2

∫
[DΩ]

√
|H|

(
HAB Trace ( ∂AX

M ∂BX
N GMN ) − (2d − 2)

)
(2.9)

where all the derivatives of the matrix coordinates ∂AX
M can be rewritten in

terms of the derivatives of Φ via eq-(2.8). The measure [DΩ] is defined as

[DΩ] ≡
∏

dσA = dσ dσa dσa1a2 · · · dσa1a2···ad , d ≤ D (2.10)

and GMN = ηMN is the flat C-space metric for the target background.
Such an action (2.9) will provide the sought-after 2D equations of motion

δS
δXM = 0 for the 2D matrices XM (σA),M = 1, 2, · · · , 2D, and which in turn
due to eq-(2.8), can be recast in terms of the equations of motion for Φ(σA)
so that one will be able to determine (in principle) the 2D field components

of Φ(σA) ≡ ΦN (σA)ΓN . Once the functional expression for the 2[
D
2 ] × 2[

D
2 ]

matrix Φ = ΦN (σA)ΓN is known one can read-off the expressions for the matrix
coordinates XM (σA) directly from the definition XM ≡ Φ−1(σA)ΓMΦ(σA) by
performing a simple multiplication of matrices, with the bonus that the matrix
coordinates XM (σA) will also satisfy the n-ary algebra (1.23), by construction.

One must note that not all of the solutions XM to the equations of motion
are independent due to the fact that one must obey the n-ary commutation
relations. In flat C-space backgrounds, the matrices Xµ, µ = 1, 2, 3, · · · , D
reproduce all of the n-ary algebra elements since the bivectors Xµ1µ2 , trivec-
tors Xµ1µ2µ3 , · · · are generated by simply performing the n-ary commutation
relations (1.23) involving the matrices Xµ’s. In a sense, the branes living in
Noncommutative C-space are condensates of lower dimensional branes since
the bivectors, trivectors, · · · are composites of the Xµ elements.
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2.2 Deformation Quantization of Branes in C-spaces

The Moyal noncommutative but associative star product in ordinary 2d-dim
phase space comprised of coordinates qa, pa; a = 1, 2, · · · , d is given by [5]

X ∗ Y ≡ e
ih̄
2 Ωij∂i∧∂j X(qa, pa) Y (qa, pa) =

∞∑
n=0

(ih̄/2)n

n!
Ωi1j1Ωi2j2 · · ·Ωinjn ∂ni1i2···inX ∂nj1j2···jnY (2.11)

where Ωij = −Ωji is the inverse of the symplectic antisymmetric 2d×2d matrix
Ωij in the 2d-dim phase space and ∂i ≡ (∂qa , ∂pa

), a = 1, 2, · · · , d are the phase
space derivatives. The Poisson bivector is defined as Π = Ωij∂i ∧ ∂j . Noncom-
mutative and nonassociative star products have been studied by many authors,
see [13] and references therein.

A C-space generalization of the star product (2.11), when there is no mix-
ing of the different grades in the derivatives with respect to the polyvector
coordinates, is of the form

X ∗ Y ≡ e
ih̄
2 Ω∂q∧∂p e

ih̄
2 Ωij∂i∧∂j e

ih̄2

4 Ωi1i2|j1j2∂i1i2
∧∂j1j2 · · ·

e
ih̄n

2n! Ω
i1i2···in|j1j2···jn∂i1i2···in∧∂j1j2···jn X(qA, pA) Y (qA, PA) (2.12)

The derivatives ∂I ≡ (∂qA , ∂pA
), A = 1, 2, · · · , 2n are the Clifford phase space

derivatives. ΩIJ = −ΩJI is the inverse of the symplectic matrix in the Clifford
phase space of dimensions 2n+1 and is comprised of blocks of different sizes
depending on the grade of the polyvector-valued coordinates

qA = (q, qa, qa1a2 · · · qa1a2···an), pA = (p, pa, pa1a2
· · · pa1a2···an

) (2.13)

The powers of h̄ in (2.12) are required to compensate for the units of the cells
“areas” in Clifford phase space. For example, the cells “areas” of the form
dqa1a2 ∧ dpa1a2

have dimensions of h̄2. The star product (2.12) is very different
from the more general star product described at the end of this section [3].

Inspired by theWeyl-Wigner-Moyal-Groenewold (WWMG) deformation quan-
tization procedure [5], one may find the correspondence between operators
X̂M (q̂A, p̂A) in the Hilbert space, which depend on the position q̂A and momen-
tum operators p̂A, and the functions XM (qA, pA) of the Clifford phase space
coordinates qA = (q, qa, qa1a2 , · · ·); pA = (p, pa, pa1a2

, · · ·). The C-space exten-
sion of the WWMG map is given by2

XM (qA, pA) ∼
∫

⟨qA − q′A| X̂M |qA + q′A⟩ e2ipAq′A/h̄|A| ∏
dq′A (2.14)

where |A| denotes the grade of the polyvector-valued coordinates. |A| = 0, 1, 2, 3, · · · , D.

2We omit factors involving powers of (2π) in front of the integrals
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Such mapping is the C-space extension of theWeyl-Wigner-Moyal-Groenewold
(WWMG) correspondence [5] between operators Â, B̂ in a Hilbert space and
functions in phase space A(qa, pa), B(qa, pa), such that W [A] = Â;W [B] =
B̂ ⇒W [A]W [B] = ÂB̂ =W [A ∗B], and leading to W−1[ÂB̂] = A ∗B. There-
fore, the star product obeys similar conditions so that

(XM ∗XN )(qA, pA) ∼
∫

⟨qA − q′A| X̂M X̂N |qA + q′A⟩ e2ipAq′A/h̄|A| ∏
dq′A

(2.15)
The WWMG quantum map of the operator X̂M can also be rewritten as

XM (qA, pA) ∼
∫ ∑

m,n

ψm(qA−q′A) ⟨ψm|X̂M |ψn⟩ ψ∗
n(q

A+q′A) eipAq′A/h̄|A| ∏
dq′A

(2.16)
after inserting 1 =

∑
m |ψm⟩⟨ψm| in eq-(2.14). In order to evaluate the quanti-

ties ⟨ψm|X̂M |ψn⟩ one needs to know what are the quantum states |ψn⟩ of the
generalized brane in flat C-spaces, and in order to attain that, one has to quan-
tize the ordinary brane in the first place which is notoriously difficult due to the
nonlinearity of the equations of motion.

A different generalized Wigner function ansatz than the one displayed by
eq-(2.14) was proposed by [7]. The C-space extension of the generalized Wigner
ansatz provided by [7] in ordinary spaces is given by

YM (qA, pA) ∼
∫

Ψ†
α(q

A−q′A) ΓM
αβ Ψβ(q

A+q′A) e2ipAq′A/h̄|A| ∏
dq′A (2.17)

where Ψ is a spinor with 2[
D
2 ] components, and one has written the explicit ma-

trix (spinorial) indices of the gamma matrices ΓM
αβ = (1αβ , γ

µ
αβ , γ

µ1µ2

αβ , · · · , γµ1µ2···µD

αβ ).
In essence, eq-(2.17) states that the bosonic fields in the Clifford phase space
YM (qA, pA)’s are nonlocal composites of fermionic bilinears.

The star product resulting from eq-(2.17) turns out to be

(YM∗Y N )(qA, pA) ∼
∫

Ψ†
α(q

A−wA) (ΓMΓN )αβ Ψβ(q
A+wA) e2ipAwA/h̄|A| ∏

dwA,

(2.18)
with wA = q′A + q′′A. The key condition W−1[ΓMΓN ] = YM ∗ Y N will impose
strong constraints on the above spinorial fields Ψα(q

A) in C-space.
Extending the numerical calculations of [7] to C-spaces one finds the required

conditions on the Ψ’s to be given by∫
Ψ†

α(q
A − vA) Ψβ(q

A − vA)
∏

d(qA − vA) = δαβ , vA = q′A − q′′A (2.19)

in order for eq-(2.18) to hold.
Comparing eq-(2.17) with eq-(2.14) is tantamount of establishing the corre-

spondence XM (qA, pA) ↔ YM (qA, pA), and X̂M ↔ ΓM . The latter was pre-
cisely the same required correspondence at the beginning of this work in order
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to derive the n-ary algebra (1.23) of the noncommutative polyvector coordinates
associated with the noncommutative C-space.

The Moyal bracket of two functions in phase space is defined by

{A(qa, pa), B(qa, pa)}MB ≡ A(qa, pa)∗B(qa, pa) − B(qa, pa)∗A(qa, pa) (2.20)

and vanishes in the classical limit. Consequently, the h̄→ 0 limit involving the
commutator of two operators Â, B̂ in a Hilbert space as follows

limh̄→0
1

ih̄
[Â, B̂] = limh̄→0

1

ih̄
{A,B}MB = {A,B}PB (2.21)

yields the classical Poisson bracket.
Finaly, we arrive at one of the main results of this section. Since the star

product is associative W−1[ÂB̂Ĉ] = A ∗ B ∗ C, the integral representation of
eqs-(2.17) can be extended to

(YM1 ∗ YM2 ∗ YM3)(qA, pA) ∼∫
Ψ†

α(q
A − wA) (ΓM1ΓM2ΓM3)αβ Ψβ(q

A + wA) e2ipAwA/h̄|A| ∏
dwA, (2.22)

and so forth for multiple star products, such that

[ Y µ1 , Y µ2 ]∗ = Y µ1 ∗ Y µ2 − Y µ2 ∗ Y µ1 = { Y µ1 , Y µ2 }MB = 2Y µ1µ2

(2.23)
and after more laborious algebra one can show that

[ Y µ1 , Y µ2 , Y µ3 ]∗ = 3!Y µ1µ2µ3 (2.24)

[ Y µ1 , Y µ2 , · · · , Y µn ]∗ = n!Y µ1µ2···µn (2.25)

Consequently, one recovers in this way via the Moyal deformation quantization,
an n-ary algebra which is isomorphic to the n-ary algebra displayed in section
1, and involving the noncommutative coordinates of Clifford space.

When p+1 = 2n, the p+1 coordinates of the p+1-dim world volume of the
p-brane have a one-to-one correspondence with the q1, p1, q2, p2, · · · , qn, pn phase
space coordinates of a 2n-dim phase space. In this way the star product de-
formation of an ordinary p-brane action in flat target Minkowsky backgrounds,
when p+ 1 = 2n is even, could be given by [3]

Sp =
T

(ih̄)(p+1)/2

∫
dp+1σ

√
({Xµ1 , Xµ2 , ·, Xp+1})2MNPB →

T

∫
dp+1σ

√
({Xµ1 , Xµ2 , · · · , Xp+1})2NPB (2.26)

11



and such that in the classical h̄ = 0 limit, the Moyal defomed Nambu Poisson
brackets (MNPB) divided by (ih̄)(p+1)/2 lead to the Nambu Poisson Brackets
(NPB) . In order to show this, one requires to decompose the MNPB into sums
of products of Moyal brackets, when p+ 1 = d = 2n = even, as follows [8]

{ Xµ1 , Xµ2 , · · · , Xµp+1}MNPB = { Xµ1 , Xµ2 , · · · , Xµp+1}∗ =

{ Xµ1
, Xµ2

}∗ ∗ { Xµ3
, Xµ4

}∗ ∗ ..... ∗ { Xµp
, Xµp+1

}∗ ± ........ (2.27)

where the ellipsis denotes signed permutations; i.e. the star-product deforma-
tions of the Nambu-Poisson-Brackets can be decomposed as a suitable anti-
symmetrized sum of the star products of the Moyal brackets among pairs of
variables. For instance

{A,B,C,D}∗ = {A,B}∗ ∗ {C,D}∗ + {C,D}∗ ∗ {A,B}∗ + {C,A}∗ ∗ {B,D}∗ +

{B,D}∗ ∗ {C,A}∗ + {D,A}∗ ∗ {C,B}∗ + {C,B}∗ ∗ {D,A}∗ (2.28)

Each term in (2.28) splits into 4 terms giving a total of 4 × 6 = 24 = 4! terms
out of which 12 have a positive sign and 12 have a negative sign.

When p + 1 = odd, attempts have been made to introduce quantum defor-
mations based on the Zariski star product deformations of the Nambu Poisson
Brackets (NPB), but unfortunately these deformed brackets failed to obey all
the required algebraic properties of a (quantum) bracket [8]. Therefore, to our
knowledge, only when p+1 = 2n is even one can perform a suitable star product
deformations of the Nambu-Poisson Brackets (NPB).

The Moyal deformations of the generalized brane actions in flat target C-
spaces given by eq-(2.7) can be obtained by replacing ordinary products in
eq-(2.7) for star products in C-space. This procedure is much simpler than try-
ing to construct the C-space extension of eq-(2.26). However, one can no longer
use the star product involving the phase space variables (2.12) but a different
one. The correct noncommutative and associative star product [9],[10],[11] cor-
responding to a Lie-algebraic-like structure of the noncommutative polyvector-
valued coordinates σA of the 2d-dim world manifold, and associated with the
motion of a generalized brane in target flat C-space backgrounds described by
the functions XM (σA), is given by

(XM1 ∗XM2 )(σA) = exp

(
i

2
σAΛA[ i ∂σ′A , i ∂σ′′A ]

)
XM1(σ′A)XM2(σ′′A)|σ′A=σ′′A=σA .

(2.29)
where the expression for the bilinear differential polynomial ΛA[i∂σ′A , i∂σ′′A ]
appearing in the kernel of the exponential (2.29), and derived from the Baker-
Campbell-Hausdorff formula, has the following form

ΛA[k, p] = i kB pC fBC
A +

i2

6
kB1 pC1 (pB2 − kB2) f

B1C1

D fDB2

A +

12



i3

24
(pB2

kC2
+ kB2

pC2
) kB1

kC1
fB1C1

D1
fD1B2

D2
fD2C2

A + ......... (2.30)

The above kernel is given in terms of the structure constants [σB , σC ] = fBC
A σA

of the polyvector coordinates algebra displayed below, after setting kB = i ∂σ′B , pC =
i ∂σ′′C .

The commutators [σB , σC ] = fBC
A σA are defined in the same manner as the

noncommutative polyvector coordinates algebra in section 1 as follows

[ σa1 , σa2 ] = σa1 σa2 − σa2 σa1 = 2 σa1a2 . (2.31a)

[ σa1a2 , σb ] = σa1a2 σb − σb σa1a2 =

4
(
ηa2b σa1 − ηa1b σa2

)
. (2.31b)

[ σa1a2a3 , σb ] = σa1a2a3 σb − σb σa1a2a3 = 2 σa1a2a3b. (2.31c)

[ σa1a2a3a4 , σb ] = σa1a2a3a4 σb − σb σa1a2a3a4 = − 8 ηa1b σa2a3a4 ± ......
(2.31d), · · ·

The metric ηAB appearing in the above polyvector-coordinate algebra (2.31)
is a flat world manifold metric which is required in order for the algebra to
obey the Jacobi identities. Therefore, one must not confuse the flat ηAB metric
appearing in the algebra (2.31) with the auxiliary world manifold metric HAB

appearing in the action (2.7).
Because the star product (2.29,2.30) is very elaborate, the star product

deformation of the action (2.7) is far more complicated than the mere ex-
pression of the action (2.9) involving directly the noncommutative matrix co-
ordinates XM in C-space. This was one of main purposes of this section :
to construct generalized brane actions in noncommutative matrix coordinates
backgrounds in C-space rather than perform a deformation quantization proce-
dure. A key instrumental role was played by the auxiliary Clifford-valued field,
Φ(σA) = ΦN (σA)ΓN , which provided the functional form of the noncommuta-
tive matrix coordinates in C-space given by : XM = Φ−1(σA)ΓMΦ(σA), and
which by construction, satisfy the n-ary algebra (1.23). The Clifford-valued
field Φ might have a connection to dark matter but it is too early at this stage
to speculate.

The n-ary algebra found in section 1 is an example of L∞-structures in
noncommutative field theories which have recently captured a lot of interest.
Such noncommutative field theories are based on homotopy algebras (n-ary
algebras). A recent review of L∞-structures in noncommutative gravity can be
found in [14].
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3 Coherent States and Strings in Clifford space

In this last section we briefly discuss the extension of coherent states in C-
spaces and provide a preliminary study of strings in target C-space backgrounds.
Guided by the definition of a coherent state associated with a quantum harmonic
oscillator as a displacement of the ground state (vacuum)

|z⟩ = D(z)|0⟩ > = eza
† − z̄µa |0⟩ = e−|z|2/2

∞∑
n=0

zn√
n!

|n⟩ (3.1)

the generalized coherent states in Clifford (phase) space are defined as

|Z,Zµ, Zµν , · · · , Zµ1µ2···,µn⟩ = eZa†+Zµa†
µ+Zµνa†

µν+ ··· − Z̄a−Z̄µaµ−Z̄µνaµν ··· |0, 0, · · · , 0⟩
(3.2)

One can perform the power series expansion after recurring to the Baker-Campbell-
Hausdorff formula in order to generate the C-space version of the infinite sum
in (3.1). This is attained via the use of the generalized bosonic creation and
annihilation operators (bosonic oscillators) in C-space which obey the following
non-zero commutation relations

[a, a†] = 1, [aµ, a
†
ν ] = ηµν , [aµ1µ2 , a

†
ν1ν2

] = ηµ1µ2|ν1ν2

[aµ1µ2···µn
, a†ν1ν2···νn

] = ηµ1µ2···µn|ν1ν2···νn
(3.3)

while the other commutators are zero.
The action of the creation operators on the vacuum is

|nµ⟩ =
(a†µ)

nµ√
nµ!

|0⟩, no sum over µ (3.4)

|nµν⟩ =
(a†µν)

nµν√
nµν !

|0⟩, no sum over µ, ν (3.5)

|nµνρ⟩ =
(a†µνρ)

nµνρ√
nµνρ!

|0⟩, no sum over µ, ν, ρ (3.6)

etc · · ·. When one performs the power series sum over all the mode numbers
n, nµ, nµν , · · · in (3.2) one recovers the generalized coherent state in C-space
indicated by the left hand side of (3.2).

Let us shift the focus now from coherent states to the study of strings in
C-spaces. Adopting the units h̄ = c = G = 1, an open string with wordsheet
(dimensionless) coordinates σ, τ , moving in a flat C-space target background
XA = XA(σ, τ) admits the solutions to the equations of motion (∂2σ−∂2τ )XA = 0
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given by the following open string mode expansion3

XA = XA
0 + (ls)

2|A|PAτ + il|A|
s

∑
n ̸=0

1

n
αA
n e−inτ cos(nσ) (3.7)

where |A| is the grade of the polyvector coordinate XA. XA
0 is the center of

mass position and PA the total string momentum describing the center of mass
motion of the string. ls is the string length, and the string tension is T ∼ l−2

s .
The closed string mode expansion is split into left and right movers modes αA

n

and α̃A
n as follows

XA
R =

1

2
XA

0 +
1

2
(ls)

2|A| PA(τ − σ) + il|A|
s

∑
n ̸=0

1

n
αA
n e2in(τ−σ) (3.8a)

XA
L = XA

0 +
1

2
(ls)

2|A|PA(τ + σ) + il|A|
s

∑
n ̸=0

1

n
α̃A
n e−2in(τ+σ) (3.8b)

In a canonical quantization procedure the mode coefficients become the cre-
ation and annihilation operators associated with the oscillator modes, and one
can perform the following rescaling

aAn ≡ 1√
n
αA
n , aA†

n = aA−n, n > 0 (3.9)

leading to the following non-vanishing commutators

[am, a
†
n] = δm,n, [aµm, a

ν†
n ] = δm,n η

µν , m, n > 0 (3.10)

[aµ1µ2
m , aν1ν2†

n ] = δm,n η
µ1µ2|ν1ν2 , m, n > 0 (3.11)

[aµ1µ2···µn
m , aν1ν2···νn†

n ] = δm,n η
µ1µ2···µn|ν1ν2···νn , m, n > 0 (3.12)

Similar results follow for the closed string modes where the right moving and
left moving oscillators commute.

In the ordinary string moving in flat target Minkowski backgrounds, states
with an even number of temporal creation operators acting on the ground state

|ϕ⟩ = aµ1†
m1
aµ2†
m2

· · · aµn†
mn

|0, k⟩, P̂µ|ϕ⟩ = kµ|ϕ⟩ (3.13)

have a positive norm, while those which can be constructed with an odd number
of temporal creation operators have negative norm (ghosts) [2]. For example,
the state |ϕ⟩ = a0†m |0⟩ has ⟨ϕ|ϕ⟩ = −1. The common lore is that negative-norm
states lead to violations of causality and unitary. The bosonic string theory is

3Since we are dealing with a flat C-space background we may use now the index A instead
of M for XA
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free of negative-norm states, in D = 26 [2], and when the Regge intercept (due
to normal orderings) is a = 1.

In C-space the situation is far more complex. Firstly, the effective 2D dimen-
sions of the C-space corresponding to a Clifford algebra in a D-dim Minkowski
spacetime is a space of split signature. For instance, in D = 3 + 1 spacetime,
the 24 = 16 dim C-space interval

(dω)2 = (dx)2 + dxµdx
µ + dxµ1µ2

dxµ1µ2 + dxµ1µ2µ3
dxµ1µ2µ3 + dxµ1µ2µ3µ4

dxµ1µ2µ3µ4

(3.14)
has a split signature (8, 8) [12]. The terms containing the temporal variable
x0, x0µ, x0µ1µ2 , x0µ1µ2µ3 appear with a minus sign, and there are 1+3+3+1 = 8
of them in (3.14). Therefore, having a split signature is more problematic since
there will be a proliferation of negative-norm and null sates. But according to an
alternative quantization [15] a split-signature leads to negative energies which
is consistent with the correspondence principle, while the former one (negative
norms) is incorrect. In particular, recent findings by [16] and others [17] reveal
that negative energies do not lead to instabilities in bounded regions.

Nevertheless, the formulation of the no-ghost theorem of a bosonic string
living in target flat C-space backgrounds is more complicated than in Minkowski
backgrounds. Among other problems is that SO(8, 8) is not the Lorentz group
in a 15+ 1-dim Minkowski spacetime. A particle moving in a spacetime of split
signature (8, 8) does not have transverse degrees of freedom to the light-cone
directions since the number of light-like directions is 16.

Therefore, more work remains in order to study the spectrum of strings
moving in flat C-space backgrounds. In particular, one will have states like

|Ω⟩ = aµ1ν1†
m1

aµ2ν2†
m2

· · · aµnνn†
mn

|0,k⟩, P̂µν |Ω⟩ = kµν |Ω⟩, etc, · · · (3.14)

which are not conventional antisymmetric tensor fields. The use of Young
tableaux will be essential to describe the symmetry/antisymmetry structure
of the indices of the fields.

To sum up : our prior construction of n-ary algebras, based on the rela-
tion among the n-ary commutators of noncommuting spacetime coordinates
[X1, X2, ......, Xn] with the polyvector valued coordinates X123...n in noncom-
mutative Clifford spaces, [X1, X2, ......, Xn] = n! X123...n, allowed to construct
generalized brane actions in noncommutative matrix coordinates backgrounds
in Clifford-spaces (C-spaces) given by eq-(2.9). An instrumental role is placed
by the auxiliary Clifford-valued field Φ(σA) = ΦN (σA)ΓN , living on the world
manifold of the generalized brane, which allows to construct a matrix realization
of the n-ary algebra given by XM ≡ Φ−1(σA)ΓMΦ(σA). There was no need to
introduce quantum groups nor Clifford-Hopf algebras. We then proceeded with
a discussion and an analysis on the deformation quantization of branes in C-
spaces. We finalized by describing an extension of coherent states in C-spaces
and provided a preliminary study of strings in target C-space backgrounds. It
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remains to analyze in further detail the spectrum, the analog of the no-ghost
theorem, and the critical dimension.
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